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Abstract 

 

 

The prediction of the three-dimensional structure of a protein from its amino acid sequence 

is an experiment that is very much well known optimization problem which is known as the 

Protein Folding Optimization (PFO) in many years. The PFO problem states to the 

computational problem of how to predict the local structure of a protein from its amino acid.  

PFO problem is the NP-hard and most challenging problem. Various kind of optimization 

algorithm already applied for solving the PFO problem, but none of the existing algorithm 

not provide the accurate result within optimal time. Fruit Fly Optimization Algorithm (FOA) 

is a recent metaheuristics algorithm that have the intensity and diversity characteristics of 

searching technique. Therefore, we applied FOA for solving PFO problem in the HP 

(Hydrophobic-Polar) cubic lattice model. In order to increase the convergence of the FOA, 

we have designed and developed three different operators of FOA: smell-based search, local 

vision-based search and global vision-based search technique for the perspective of PFO 

problem. The proposed algorithm is based on two extra mechanisms centroid hydrophobic 

and moderator mechanism, which are accountable for improving the accomplishment of the 

algorithm. The centroid hydrophobic mechanism tries to move the hydrophobic monomers 

to the center position of the structure. The moderator mechanisms try to move a part of 

monomers in the protein sequence each possible directions and place at the position where 

the maximum energy value found. This two extra mechanisms improved the performance of 

the propose algorithm magically. Moreover, we have developed a reconstruction operator 

for producing an accurate 3D structure of protein sequences by erasing overlapping in cubic 

lattice points. The experiment result shows of our proposed Fruit Fly Optimization 

Algorithm for Protein Folding Optimization (PFO_FOA) provide better accuracy than the 

existing algorithms.    
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CHAPTER I 

 

 

Introduction 

 

 

1.1  Background 

 

The prediction of the three-dimensional structure of a protein from its amino acid sequence 

is an experiment that is usually known as Protein Folding Optimization (PFO) problem. The 

potential impact of significant advances in structure prediction is enormous, since we already 

have ample evidence of the importance of 3D structure information in so many areas of 

biology. The PSP problem states to the computational problem of how to predict the local 

structure of a protein from its amino acid. Protein structure is controlled by its structure and 

Degrees Of Freedom (DOF) is reduced by cubic lattice model, take into account only specific 

interactions and therefore speed up the calculation of energy [1]. 

1.2  Motivation 

Protein is an important substance found in every cell in the human body. Although all the 

necessary information needed for life is encoded in DNA, the process of life maintenance, 

replication, defense and reproduction are carried out by proteins. Protein regulates all the 

activities of human organisms [1].A protein structure created from sequence of amino acid 

which is depending on the tertiary structure that builds unusual forms of protein which causes 

many types of diseases. Some of them are cystic fibrosis, Alzheimer’s disease, parkinson’s 

disease, different types of cancer and mad cow. The primary structure is predicted by the 

tertiary structure, will be capable of improving these diseases [2]. If we can correctly design 

a method that gives sufficient information about the 3D native structure, then it is possible 

to explain how the protein works, how to cure diseases by appropriate drug design and so on 

[3]. For all these reasons, protein folding optimization (PFO) is a very important and tough 

problem in computational biology [4]. Many existing algorithms [2-14] has already solved 

the PFO problem. Our motivation is to develop an algorithm that can solve the protein 

folding optimization problem more efficiently than the remaining algorithms.  

Fruit Fly Optimization Algorithm (FOA) is a recent procedure that has shown robust 

performance than all other approaches in solving different optimization problems [5]. 
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Intensification and diversification are the main characteristics of FOA that help the algorithm 

to find a solution more quickly and efficiently. Though it is a metaheuristics algorithm, it 

can be designed for any optimization problem and the algorithm is suitable for the PFO 

problem as well [6]. 

1.3  Objectives 

 

The objective of this thesis is to develop a method to predict the tertiary structure of protein 

known as protein folding optimization problem using the fruit fly optimization algorithm 

(FOA). Moreover, the three operators of FOA: Smell Based Search, Local Vision Based 

Search and Global Vision Based Search have been designed to solve PFO problem. For 

improving the performance of FOA design and developed two extra mechanisms: centroid 

hydrophobic and moderator mechanism, that make the PFO more acuratable.  

 

1.4  Contribution of the thesis 

We have proposed a method to predict the tertiary structure of protein, known as protein 

folding optimization problem using modified fruit fly Optimization algorithm (FOA). The 

three operators of FOA: Smell Based Search, Local Vision Based Search and Global Vision 

Based Search have been designed to solve PFO problem with two extra mechanisms: 

centroid hydrophobic and moderator mechanism. We have also designed a reconstruction 

mechanism to get the valid structure. The simulation results show that FOA performs 

accurately in the instance of PFO. The goals of this thesis can be summarized as follows:  

a) We have implement the operators of the FOA algorithm with respect to the PFO problem. 

b) We measures the performance of our mentioned algorithm with GAAM [7] for the PFO 

problem. 

c) We use the intensification and diversification characteristics of FOA algorithm to solve 

the problem efficiently.  

d) We have predict the three-dimensional native structure from the given amino acid 

sequence in less computational time than existing systems.  
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e) We finds optimal solutions with lower standard deviation than the present approximation 

algorithms. 

1.5 Protein Folding Optimization Problem  

Protein Folding Optimization is a procedure where an amino acid monomer sequence will 

be given consider as input conformation, from which we have to determine the accurate 

tertiary structure with actual functionality [7]. 

1.5.1  Protein Structure 

When two or more amino acids connected by peptide bonds, then it is called protein.  There 

are four categories of structures found in protein that are primary structure, secondary (2D) 

structure, tertiary (3D) structure and quaternary structure. The chain of amino acid sequence 

can be referred to as the primary structure. After the folding or coiling the primary structure 

the secondary structure (2D) can be formed. There are two levels of 2D structures observed 

in proteins that are alpha (α) helix and beta (β) pleated sheet. Within a single polypeptide 

chain the layout of the secondary structure of amino acids sequence or protein is the tertiary 

(3D) structure of protein or polypeptide. On the other hand the quaternary structure of protein 

is the alignment of the amino acid monomers in different polypeptide chains [8]. The natural 

view of the four different categories of protein structures is shown in Fig 1.1.  

           

Fig 1.1. Types of protein structures [8] 
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1.5.2  HP (Hydrophobic-Polar) Model 

The protein folding optimization procedure can be specified by a common model such as 

HP (hydrophobic-polar) model, which was introduced by Ken A. Dill in 1985 [9]. The PFO 

has been proved as NP-complete problem representing by the HP model [10]. Following of 

this model amino acids can be categories into two levels, hydrophobic (H) and polar (P) or 

hydrophilic. Within in a unit distance, the maximum amount of hydrophobic-hydrophobic 

(H-H) contact [7, 11] is the main theme of the HP model. Because the maximum amount of 

hydrophobic-hydrophobic (H-H) contacts illustrate the most static structure of protein. If C 

represents the most static conformation or structure, then the objective function ( 𝐹𝐶 ) 

considering to HP model can be described as follows, 

                  )1.1(HHMaxFC
  

The law of thermodynamics describes that the most static conformation contains the 

minimum energy value. Now if 𝐸𝐶 represents the energy value of the conformation then the 

energy value function can be describe as, 

                )2.1(1 *FE CC
  

When the amount of hydrophobic-hydrophobic (H-H) increases, the energy function value 

is decreasing. Energy minimization represents the forming the optimal structure or 

conformation with minimum energy value [11]. In addition, representing by the HP model, 

protein folding optimization problem can be regarded as NP-hard optimization problem [12].  

1.5.3  Search Space Formation 

Suppose, S =  HPHHPHPHH is an amino acid sequence. We can represent the sequence of 

amino acids as a set of binary strings, if the length of the sequence is 𝑙  then it can be 

represented as a string  𝑆 =  {𝑆1, 𝑆2, . . . , 𝑆𝑙}  where  𝑆𝑖  ∈  {𝐻, 𝑃}  and 𝑖 =  1,2, … . . , 𝑙  [7]. 

Here the task is to determine the 3D native conformation of a protein or polypeptide from 

the given primary sequence. At first, candidate structures have to be chosen for the amino 

acid sequence uniform randomly. In the cubic lattice, an individual amino acid of a specific 

protein structure is represented by three dimensional coordinate  (𝑥, 𝑦, 𝑧). When no cubic 

lattice point is holding by more than one amino acid monomer then the conformation is 

called valid conformation [13]. If any overlapping occurs in the cubic lattice positions, then 

the conformation is called invalid conformation. For each possible candidate structure, there 

are some directions associated with it. If Xi represents a particular structure of the population, 
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then the possible directions are left (L), right (R), forward (F), backward (B), up (U) and 

down (D) [7]. For an amino acid sequence of length  𝑙 , the number of directions will 

be (𝑙 − 1). Because, the first position of the first amino acid is fixed for representing other 

amino acids with respect to its position. 

           𝑋𝑖,𝑗 ∈ {𝐿, 𝑅, 𝐹, 𝐵, 𝑈, 𝐷} 𝑤ℎ𝑒𝑟𝑒, 𝑗 = 1,2, … . , 𝑙 − 1. 

Protein structures are formed according to these directions in the cubic lattice where each 

amino acid has unique coordinate value. For example, a structure is represented 

as  𝐵𝐵𝐵𝑈𝑅𝐷𝐹𝑈𝐿𝑈𝑅𝑅𝑈𝑅 [7]. Furthermore, a set of candidate structures can be termed as a 

population. 

1.5.4  Energy Value Calculation   

After the formation of a population, the energy of specific solution is calculated using an 

energy function. In the cubic lattice, the maximum amount of hydrophobic-hydrophobic (H-

H) touches for each individual amino acid is 4, but only the first amino acid and last amino 

can have maximum 5 touches. At the case of each amino acid is represent by 𝑖 then we have 

to start the checking of contact its second adjacent  (𝑖 + 2) position. Now if  𝑐𝑚and  𝑐𝑛 are 

two adjacent amino acids and C is the set of all valid structures, then the energy function 

(FE) is given in [7, 11] as follows: 

  )3.1(,
1 2

,* 
 


l

m

l

mn
nmnmE eccF a  

Where, 

 





otherwise,0

holds1condition_,1
,

if
a cc nm

 

acidsamino

connectednotandadjacentare,1condition_ cc nm


 






otherwise,0

acids amino chydrophobi areand,1
,

cc nm
nm

if
e  

Where two hydrophobic-hydrophobic amino acid monomers that are contacted with each 

other by cubic lattice points, then H-H contact value is at a -1. And the summation of all 

values of H-H contacts represents the energy value of the conformation or structure [7]. 
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Fig 1.2. Calculation of energy value. Here, the white amino acids or monomer are P (polar) 

type and the blue amino acids are H (hydrophobic) type. The protein energy value FE = -4 

for sequence S = {H, H, P, H, H, P, H, P, H, P, H} in the representing in cubic lattice. 

1.5.5  Selecting New Population 

After the calculation of energy all conformations, a conformation with minimum energy 

value is chosen as the optimal native tertiary conformation or structure. In this thesis, a fruit 

fly optimization algorithm (PFO_FOA) has been used with HP cubic lattice model for 

determining the tertiary structure of protein. In a natural protein, hydrophobic amino acids 

attend to be near to the center position and the hydrophilic amino acids attend to move in the 

outer portion. The most static conformation of protein illustrates maximum hydrophobic 

amino acids in the center position of the conformation. We have reconstructed the primary 

operators of FOA for solving protein folding optimization procedure. Furthermore the 

proposed algorithm develops two efficient mechanisms, centroid hydrophobic and 

moderator mechanism. These two efficient mechanisms raise the contribution of the 

PFO_FOA algorithm sincerely. Working with these two efficient mechanisms, the three 

primary operators of FOA algorithm also raise the energy values of the individual solution. 

After applying primary and efficient operator many invalid conformation may be created. 

The invalid conformation represents a conformation where in a cubic lattice position two or 

more amino acids hold at the same position. If any invalid conformation is created after 

applying primary and efficient mechanisms, then the reconstruction mechanism reconstructs 

the invalid conformation and produces a valid conformation. 

1.6  Organization of the thesis 

Chapter II related works studies on PFO is described. The protein folding optimization 

problem has been solved by different exact algorithm, heuristic algorithm and metaheuristic 

algorithm. This chapter discus about the proposed technique of the existing algorithms. It 
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also briefly describes some of the existing algorithm limitations. It also includes alluring 

advantages of existing algorithm by the proposed method.  

 Chapter III presents the proposed methodology named PFO_FOA and describes its 

working procedure in detail. This chapter first describes the fruit fly optimization algorithm 

with its operators. Then discuss about the proposed fruit fly optimization algorithm for 

solving protein folding optimization problem also includes the overall functional diagram of 

the proposed mechanism. It then describes the three basic operators design and two extra 

mechanisms. It also describes the reconstruction operator for invalid structure.  

Chapter IV shows the dataset and simulated results of the proposed methodology. Here it 

demonstrates the improved performance of PFO_FOA in comparison with Genetic 

algorithm with advanced mechanism (GAAM) [7] which is the state of the art of this 

problem. 

Chapter V lists the concluding remarks gathered from this study. It also includes what future 

direction of researches are needed to explore for more desirable PFO problem and FOA 

algorithm.   
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CHAPTER II 

 

 

Literature Review and Related Works 

 

 

2.1  Introduction 

 

To predict the protein tertiary structure different approaches were proposed. The approaches 

include exact, heuristics and meta-heuristics which are described below. 

2.2  Exact Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                       

Exact algorithm's term is used in that process where the algorithm provides the best or 

optimal result of the optimization problem. In the case of complex optimization problem 

(like NP-hard problem) exact algorithm provide approximate value with polynomial-time, 

but in case of well-known optimization problem exact algorithm needed exponential time 

[14].  Many exact algorithms used to solve PFO problem, some of these are described below. 

 

2.2.1  Dynamic Programming 

In 2005 Zhao et al. [15] proposed a dynamic programming (DP) algorithm for protein folding 

optimization problem. In this algorithm, using dynamic programming procedure a directed 

graph is built and then find the optimum path by searching, based on the 2D structure 

propensity of the polypeptide or protein sequence.  Here the peptide bond of the desired 

secondary structure can be any one element of the set  

Ω={αα,αβ,ββ,βα,α_B,β_B,α_E,β_E,α,β}.  The two dimensional structure trend to the 

coefficient of the protein sequence create a matrix that constitutes all the possible propensity 

values for the desired structure. By improving the matrix a directed graph G is drawn with k 

vertices from which the secondary structure of the corresponding protein can be predicted. 

In graph G, all the paths are directed and a path from the initial node to the last node can be 

termed as a solution of the PSP problem. The scoring function of the path represents a path 

that associate with weight. By this process by using dynamic programming approach an 

optimal path is computed. The algorithm provides 76.70% accuracy for the average three-

state. 
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Advantages 

Because of utilizes SSPC of dynamic programming approach can conquer the 

faults of the methods based on a single amino acid’s propensity and the 

approach is faster. 

Disadvantages 

Dynamic programming takes exponential space for large instances. 

In 2017 Sabzekar et al [16] proposed an efficient dynamic programming algorithm for 

predicting protein β-sheet. In this paper brute-force calculation in this formation space leads 

to truck with a connective detonation problem with unmanageable computational 

complexity. To achieve stable long range interaction, a rising approach is to detail and rank 

all β-sheet outline for a given protein and find the one with the highest score. The problem 

with solution is that the search space and the problem grow exponential with respect to the 

number of β-strand. Mainly generate and search the space of the problem efficiently to curtail 

the time complexity of the problem. Two tree structure, called sheet-tree and grouping-tree, 

are proposed. Firstly, more correct β-sheet structure is beginning of experimental all possible 

formation. Secondly, by the process of searching the space, the time complexity of the 

process is reduced efficiently. Which make the proposed method on target to predict β-sheet 

structure with high number of β-strand. The prediction of tertiary structure two types: 1) low 

accuracy and 2) exponential increase of the conformational space of the problem with the 

length of the primary sequence.  The proposed method, each βstrand can merge with at most 

two other β-strand. 

Advantages: 

If an optimal solution contains optimal sub solutions then a problem exhibits 

optimal substructure. When a recursive algorithm would visit the same sub 

problems repeatedly, then a problem has overlapping sub problems. 

Disadvantages: 

Increasing the number of β-strands, the total number of nodes of the tree and 

therefore the computation time of the problem increase. 
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2.2.2  Greedy Algorithm 

In 2005 Tuffery et al. [17] proposed a greedy algorithm for predicting structure of protein. 

Start at the N- terminus of the structure of protein with the end of the C-terminus the greedy 

algorithm performs the incremental construction. Here, the length of a protein is L+3 and 

the number of protein reconstructions structure to be pursued hugely. The main idea ahead 

greedy algorithms is that, the every ith positions of any conformation , and after constructing 

all the possible spread of the conformation, only a highest number of hydrophilic (H) 

conformations (heap size) into all the structures produced are remain fixed for the next 

iteration. The total procedure remaining same until reach to the C-terminal vastly is 

performed. For a protein of length L + 3, after the total procedure all possible of 

reconstructing the protein structure number is  

L

i in1
and the complication of the search 

procedure (the average number of states per remainder) is sL
L

i in
 1

. 

Advantages 

Greedy Algorithm takes less space than dynamic programming. 

Disadvantages 

One problem is that here the conformations of the entire sequence are not 

taking account into account in the selection, without when the extremity is 

achieved. 

2.3  Heuristics Algorithms 

The main motivation of using heuristic algorithm in bioinformatics is that maximum 

bioinformatics problems are difficult to solving at polynomial time of their size with 

optimally. In many practical situations, the acceptable solution to an optimization problem 

can be produced by the heuristic algorithm. But the produced solutions is to be correct, there 

is no formal proof. Under the given constraints, when there is no acquainted process to find 

an optimal solution the heuristic algorithm are used. For solving the problems which are 

always near thought to be NP-hard (exactly, not provide solution in polynomial time) [18]. 

Some heuristic algorithms are described below. 
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2.3.1  Alphabet Reduction Algorithm 

One of the heuristic algorithms is an alphabet reduction algorithm, which was proposed by 

Bacardit et al. [19] in 2007. This algorithm minimizes the alphabet size of the including 

variables that are involved for predicting the tertiary structure. At the situation of protein 

folding optimization problem the alphabet reduction is to convert to a two letter 

hydrophobic/ hydrophilic (polar) HP from twenty letters alphabet this an example at this 

case. An extended compact genetic algorithm was used as this mechanism for optimizing to 

a fixed number of type or letters from the distribution of the twenty letters of alphabet 

number. A rigorous information theory measure was chosen for the fitness function of such 

minimization process as the mutual knowledge. The Minimum Description Length (MDL) 

principle was used as the fitness function according to this mechanism. For maintaining the 

accuracy and complexity of the system the MDL principle was applied.   

)1.2(* ELWTLFitness   

Where TL stands for theory length (which represent the complexity of the output) and EL 

stands for exceptions length (which represent the accuracy of the output). This fitness 

function has to be minimized. W is a weight that maintains the connection between TL and 

EL. 

Advantages: 

Alphabet reduction algorithm works depending on the number of letters in 

the alphabet. So, it works very faster than all other exact algorithms. Since 

the number of strings is not a concern for this algorithm, so it can compute 

large instance in a considerable time. 

 Disadvantages: 

One problem is that for the mutual knowledge to provide a reliable fitness 

function, the dataset does not have efficient number of solutions. 

2.3.2  Hybrid Hill-climbing and Genetic Algorithm 

In 2011 Shih-Chieh Su et al. [20] proposed a Hill climbing algorithm for protein structure 

prediction problem. Here, a genetic algorithm which was based on the elite-based 

reproduction strategy (ERS-GA) has been proposed by the authors. On basis of ERS-GA, 
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for the protein folding optimization on two dimensional triangular lattice problem the system 

has been extended with a hybrid or mixed of hill climbing and genetic algorithm (HHGA). 

A n length amino acid sequence consider as an input of the problem,  in the two dimensional 

triangular lattice this amino acid sequence was encoded as a chromosome with a string of 

lenth (n-1) which are represent by the symbol of {L, R, RU, RD, LU, LD}, that are marked 

on the folding directions left, right, right-up, right-down left-up and left-down, gradually. 

Within a fixed range, a starting population was produced randomly in the (n – 1) dimensional 

space. The population size was set at fixed 200 length for experimenting in this paper. Within 

the population every chromosome needs to be computed its fitness function. Here 

hydrophobic-polar model was used to calculate the energy value as the fitness function as 

follows. 

)2.2(
,

,,
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The goal of an optimization algorithm like hybrid hill climbing and genetic algorithm 

(HHGA) is to optimize the fitness value consider as the free energy. According to the free 

energy value the computed chromosomes are sorted then. Then at the next reproduction 

procedure this sorted populations is considered as the base populations. On basis of the 

fitness value of the populations, the knowledge of the selecting solutions are copied or 

modified within the reproduction process. The crossover, mutation and selection are the 

main operators of the reproduction procedure in GA. The first half of the population has 

gone to the next iteration or generation and the second half of the population is used for 

generating offspring of the crossover and mutation operations in this procedure. After that a 

local search has been applied to each individual of the population for better performance in 

their mechanism. This process continues until the best fitness value is found. 
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Advantages 

Hill climbing algorithm was better for finding a local optimal solution (local 

optimal solution represents that solution cannot become better by taking into 

account a neighboring aspect). 

 Disadvantages 

Since it attempts to find a better solution by gradually exchanging a single 

position of the candidate solution, there is no possibility always finds the best 

optimum (the global solution) among all of the population in the searching 

space.  

2.3.3  A New Heuristic Algorithm (Integer Programming Model) for Protein Folding 

in the HP Model 

Metodi traykov et al [21] exhibited a new heuristic process basis of main integer 

programming model extended from a background applied to Contact Map Overlap problem 

at 2016. The Contact Map Overlap problem is similar to the conversion to a problem of 

searching like that optimizes the number of overlapping edges that indicate the HP folding 

problem. From the computational experiment they show that for arbitrary long protein 

sequences the idea decomposing the HP problem to tractable subproblems has been worked 

better. The length of the subproblems then changing to the PATHFINDER function and then 

replacing the PATHFINDER to an advanced integer programming approach able to solve 

optimally of all instances.  

 

 

Advantages 

The authors indicate that the programming of the algorithm is not difficult for 

that reason this procedure are easily applicable. 

 Disadvantages 

Appling advanced integer programming models, the authors capable of 

finding optimal result only for instances which are less than length size 100. 

Protein folding optimization in a cubic lattice in hydrophobic-polar model has been 

developed by Nicola Yanev et al [22] at 2016. The authors presented a new mixed integer 
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programming formulation for solving the protein folding problem with exact algorithm, and 

two heuristic algorithms which are stated as a combinatorial optimization problem in a 

simple cubic lattice. The proposed model allows for finding optimal folds for sequences of 

up to 100 elements on a computer with average capabilities using a mixed linear integer 

programming problem with xik binary and also using appropriate solvers like CPLEX) or 

GUROBI. 

2.4  Meta-Heuristics 

A meta-heuristic represent an algorithmic framework that is totally problem independent 

(not depend on the problem) that provides the near optimal solution in polynomial time 

whereas exact algorithm fails to solve those [23]. The main difference between heuristics 

and meta-heuristics algorithms is heuristic algorithms are problem dependent, whereas meta-

heuristics are problem independent. Meta-heuristics are developed  specially  to  find  a  

solution  that  is  “good  enough”  for computing  time. Some meta-heuristics approaches for 

protein structure prediction problem are described here. 

2.4.1  Improved Bees Algorithm 

In 2015 Nanda Dulal Jana et al.[24] developed an Adaptive Polynomial Mutation based Bees 

Algorithm (APM-BA) which is a nature inspired or swarm intelligence based algorithm 

based on the foraging behavior of honey bees colony for solving the protein structure 

prediction problem in two dimensional AB off-lattice model. They proposed the main 

strategy by their scoring are not improved during the execution phase, then the adaptive 

polynomial mutation technique has been applied to each of the best searching bees mutation 

processes. They designed a neighborhood solution of each of the say, B picked site in the 

local search procedures. For representing the number of iterations they used parameter trial 

conduct to unskilled search before better position is produced. In this paper authors show 

that the proposed strategy is able to make exploration of the search space and preventing 

stuck in local optima.  

Advantages 

Here have a high probability to go out from marked site to unmarked site and 

made inspection on the searching population space..  
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Disadvantages 

Bees Algorithm has the pitfall when solving multimodal optimization 

problems the premature convergence due to absence of diversity in the search 

space. BA has the limitation of premature convergence due to many local 

minimal solutions in the search space. In this paper concerns limited number 

of protein sequences with shorter lengths. 

2.4.2  Memetic Algorithm 

A Memetic Algorithms are population-based metaheuristics for 3-D protein structure 

prediction problem was developed by Leonardo Correa et al. at 2016[25]. In this paper, the 

memetic algorithm uses a structured population and a local search strategy which was 

incorporated with a Simulated Annealing algorithm, as well as ad-hoc crossover and 

mutation operators to deal with the problem. Here designed a new strategy for extracting, 

representing and manipulating structural data from experimentally determined 3-D protein 

structures. They used structural knowledge stored in the Protein Data Bank, by using an 

Angle Probability List (APL) to initialize the solutions of each agent in an attempt to reduce 

the size of the search space and inject high-quality solutions as starting point. APL used the 

previous occurrences in known protein structures experimentally determined which is 

presenting the preferences of an amino acid residue in a specified protein according to its 

secondary structure. 

 

Advantages 

The proposed MA could predict good approximations to the three-

dimensional protein structures, regarding structural analysis. It is possible to 

apply the developed method to other classes of proteins.  

Disadvantages 

In this paper, there is no experimental result showed on the larger protein 

sequences. 

2.4.3  Genetic Algorithm 

A genetic algorithm for protein structure prediction problem was developed in 1997 

Khimasia et al. [26]. For simple lattice based protein structure prediction methods the 

performance of the simple genetic algorithm is introduced. In this paper two important 
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decisions are found that are required multipoint crossovers and require a local perturbation 

for effectively concluded the GA procedure.  

2.4.3.1  Improving genetic algorithms by systematic crossover 

Another genetic algorithm for protein structure prediction problem was developed by Unger 

and Ron in 2004 [27]. In the conventional Monte Carlo steps, structures change through 

mutation. At the crossovers procedure the polypeptide chain is exchanged between 

conformations. Different genetic operators are repeated up to valid structures are created.  

A genetic algorithm with 2D protein folding simulations with the HP model (GAOSS) has 

been proposed by Chenhua Huang et al. in 2010 [28]. In this paper only nine benchmark 

dataset used for computation. The authors of GAOSS compared their simulation results with 

other four corresponding mechanisms. The comparison ensures the possibility of finding 

more protein structures and also ensure the computing speed of searching protein structures.   

2.4.3.2  Genetic algorithm with particle swarm optimization 

A particle swarm optimization based genetic algorithm with advanced mutation has been 

proposed by Cheng-Jian Lin and Shih-Chieh Su in 2011 [29]. GA is disabled for efficient 

mutation operation aimed at each residue. In which, the mutation was based on particle 

swarm optimization and the cognitive components encourage the particle to move toward 

their own best positions. By calculating the difference between the current particle and the 

local best particle and the difference between the current particle and the global best particle 

determine the variations of the current position. Through, the mutation process only one 

child replaces its parent and go to the next generation and PSO improves the mutation 

mechanism. Mutation plays an important role in PSO to ensure the searching capability of 

near global optimal solution. A phenotype based crowding mechanism in 2014 developed 

by Custódio et al. [30] for maintenance of useful diversity within the populations. The 

distanced between two individual 3D structure are calculated by crowding mechanism for 

the positioning of hydrophobic monomers. The algorithm granted multiple solutions 

capabilities for this reason. The computationally expensive term in this process is




N

i. ji

ijij

) / N(N-

)q(p

1

2

21
. Where N is the number hydrophobic amino acids and pij (resp.qij) 

denoting the distance between H monomers i and j on the parental (resp. new) structure. 
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2.4.3.3  Genetic algorithm with advanced mechanisms 

The complication of protein structure prediction (PSP) acts as the computational problem to 

predict the real structure of a protein from its amino acid sequence. In this paper [7], tested 

to the protein structure prediction in a hydrophobic polar model on a cubic lattice. This 

Genetic algorithm different system used and extended with crowding, clustering, repair, 

local search and opposition based. Here, the population P of their algorithm generated 

popSize (population size) solutions 𝑥𝑖 =  1,2,3 … 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 . Each population has a fixed 

amino acid length (L) size L-1 absolute direction : 𝑥𝑖 , 𝑗 =  {𝐿, 𝑅, 𝑈, 𝐷, 𝐹, 𝐵};  𝑖 =

1,2 … 𝑝𝑜𝑠𝑖𝑧𝑒 𝑎𝑛𝑑 𝑗 = 1,2 … 𝐿 − 1 . For every produced sub part of the population the 

algorithm used different point (one, two or multi-point) crossover randomly applied and the 

mutation segment randomly selects one, two or three directions. The mutation operation 

ensures that improve the efficiency of the native structure of protein. 

The local search used to improve convergence speed and raise the quality of conformation 

by consecutive monomer where one of the consecutive monomers must be hydrophobic (H). 

If the local movement of 1 or 2 consecutive monomers improves the native structure, then 

the movement is accepted or not rejected. Infeasible solution to feasible solution that don’t 

attend the lattice point for more than one monomer it’s the repair mechanism used the 

backtracking algorithm. Here, infeasible solution means that two or more amino acid in the 

protein sequence occupied the same lattice point of the corresponding cubic lattice model. 

Here, the local search performed by repair and evolutionary process with one or two 

consecutive monomers movement. 

Improved solutions are then compared with the localest solution of the population P and the 

closeness between two individuals solutions are determine by computing hamming distance 

of the individuals. Hamming distance determines the difference between corresponding 

point direction of two individual structures. The crowding mechanism can compared 

between two individuals. Crowding mechanism ensures that a good solution formed at the 

last of the process of evolutionary. 

Advantages 

Genetic algorithm provides optimized local search by multiple pathways. In 

general, genetic algorithm gives outstanding performance due to its inherited 

advantages [7]. 
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Disadvantages 

Crossover and mutation are two key operations in the genetic algorithm. 

Crossover have the capability of linking two different chromosomes very 

robustly for constructing a new conformation, while mutation may be 

restricted by local optimum [7]. GA always found the optimum solution, a 

little more slowly than the dynamic programming for the smaller instances.  

2.4.4  Particle Swarm Optimization 

In 2012 Mansour et al. [11] developed an efficient PSO algorithm for 3D structure of protein. 

By exploring search space of probable solutions the 3D structure with minimum free energy 

has been returned. Here, a selective solution of protein sequence called as a particle which 

designed by a n length’s array (with indexing 0, 1, ..., n-1), where n represents the of the 

selected amino acid sequence of protein. The dth position of the amino acid sequence is 

represented by Xd  and the actual value of this position or element may be one of the six 

possible directions {b, f, u, d, l, r}. Staring with a randomly created set of solutions N or 

particles collected in a swarm. That is, every position Xd of amino acid d (d = 1, 2, ...,n-1) is 

addressed a random value for the selective solution/particle i (i = 0, 1, ..., N-1). A particle is 

invalid if it occupied the same value on the 3D cubic structure. In this algorithm, invalid 

particles are reconstructed using a backtracking algorithm with repair function. Then each 

hydrophobic amino acid of the sequence is searched for any non-consecutive (monomer not 

connected by direct bonding) and around of six positions of the lattice which are hydrophobic 

amino acids and these particles position are scored as energy values function calculation. 

The main operation of the algorithm, update the swarm location using the velocity of the 

particle at every stage. Finding the optimal solutions these operators explored new searching 

areas in the search space. When two successive iterations may not improve the observed 

result, then the algorithm terminated.  

2.4.4.1  Discrete particle swarm optimization 

Particle swarm optimization (PSO) is a swarm based computer intelligence algorithm. A 

discrete particle swarm optimization algorithm (DPSOHP) for solving  the secondary and 

tertiary structure of protein with HP lattice models-based protein structure prediction 

problem has been developed in 2014 by Xiao et al. [31]. Based on the set concept and the 
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possibility theory of DPSOHP on a set-based PSO (S-PSO) used the discrete particle swarm 

optimization method.  

A particle in the algorithm is defined as a set of elements. The velocity of a particle is defined 

as the elements associated with possibility. For both tertiary and secondary structure of 

protein, starting from the center of the cubic lattice or square lattice of the particles construct 

a sequence of proteins at the middle position of the respective lattice. For solving overlap in 

the amino acid sequence within the lattice position at first the protein sequence is organized 

by HP model. PSO is mimics the movements of organisms in a school of flying birds. When 

searching solution (food) in a gradual space, adjusting each particle (bird) flying velocities 

and positions at step by step according to the particle own experience and other particle 

experiences. Here, the special velocity and position updating is the bodily representation of 

the framework of DPSOHP. 

Velocity and position are two main attributes of every particle 𝑖  𝑤ℎ𝑒𝑟𝑒, 𝑖 = 1, 2, … , 𝑚, 

which are denoted by  𝑉𝑖  = < 𝑣𝑖
1, 𝑣𝑖

2, … . . 𝑣𝑖
𝑛 >   and   𝑥𝑖  = < 𝑥𝑖

1, 𝑥𝑖
2, … . . 𝑥𝑖

𝑛 > . Where 

𝑗 (𝑗 = 1,2, … , 𝑛)  denotes the jth dimension of the particle i. The vector 𝑝𝑏𝑒𝑠𝑡𝑖
  = <

𝑝𝑏𝑒𝑠𝑡𝑖
1, 𝑝𝑏𝑒𝑠𝑡𝑖

2, … . . 𝑝𝑏𝑒𝑠𝑡𝑖
𝑛 >  is the best solution found by particle I so forward and the 

vector 𝑔𝑏𝑒𝑠𝑡𝑖
  = < 𝑔𝑏𝑒𝑠𝑡𝑖

1, 𝑔𝑏𝑒𝑠𝑡𝑖
2, … . . 𝑔𝑏𝑒𝑠𝑡𝑖

𝑛 > is the optimal solutions found by all the 

particles so advanced.  

The velocity updating process starts by calculating Coefficient×Velocity 

                                  
)3.2(

)(
'

















 Ee
e

e

p

j

i
   

Where 𝜔 an inertia weight. Then respectively determine the values of 𝑝𝑏𝑒𝑠𝑡𝑖
𝑗

− 𝑥𝑖
𝑗
, generate 

random number 𝑟𝑖𝑗 from [0, 1]. Then determine 𝑐𝑟𝑖𝑗(𝑝𝑏𝑒𝑠𝑡𝑖
𝑗

− 𝑥𝑖
𝑗
)  and  𝜔𝑣𝑖

𝑗
+ 

𝑐𝑟𝑖𝑗(𝑝𝑏𝑒𝑠𝑡𝑖
𝑗

− 𝑥𝑖
𝑗
) and update the value of 𝑣𝑖

𝑗
at equation (7). 

Using the newly updated value to improve its solution efficiency for every particle the 

position updating process is done. Two middle amino acid of a protein sequence Mid-1 and 

Mid, respectively, where, Mid = ⎡n/2⎤ is chosen for path construction. After choosing 

middle amino acids, these monomers are placed in the center position in the lattice or cubic 

board. Then the particle randomly selects left or right part for folding.  
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When all amino acid occupied every possible position in the lattice, then no new amino acid 

can be placed on the path construction procedure. During the construction phase for that 

reason protein cannot fold anymore, solving this problem a path retrieval procedure applied 

for producing feasible structure from infeasible structure. In this process the total sequence 

divided into two parts. Then checked which portion (Left or Right) of the sequence the 

motionlessness occurred and performed path retrieval mechanism.  

Another particle swarm optimization mechanism for solving protein structure prediction 

problem has been introduced by by Hamed Khakzad at al. in 2015 [32]. The authors of this 

paper introduced a graphical processing unit (GPU) based parallel architecture for 

accelerating the PSP problem. The pitfall of the proposed algorithm provides slow 

performance when implemented on the CPU. 

 

Advantages 

With respect to solution accuracy and speed, the PSO algorithm provide 

efficient result for searching for the ground states of the protein structures. 

By applying the PSO on the mutation process in GA optimized the solutions 

[28]. This allows greater diversity and exploration over a single population. 

Disadvantages 

The algorithm provides better results for short length protein, but the result 

of the long length sequence the search space is not efficient [11]. 

 

2.4.5  Ant Colony Optimization 

In 2002 Shmygelska et al. [33] exhibited the ACO approach for protein folding optimization 

problem. In which, they have highlighted the global pheromone update and randomly chosen 

starting position in the folding procedure.  

2.4.5.1  An improved ant colony optimization algorithm 

In 2003 the same authors improved the ACO algorithm [34] including long range moves that 

allow performing updates of the protein with high densities, the used of selected local search 

and improving ants. The time complexity of the local search phase has been reduced by 

selective local search reduces with time critical operation only on promising is performed, 

low energy conformations.  
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In 2006, D. Chu al. developed a parallel ant colony optimization for predicting the 3D protein 

structure prediction problem [35]. The simulation result of the parallel ant colony indicate 

that this procedure is outperformed and climbed than the single colony optimization 

algorithm.  

2.4.5.2  ACO-metaheuristic for 3D-HP protein folding 

The concept of Ant Colony Optimization (ACO) was used for solving tertiary structure of 

protein with HP model for protein folding optimization in 2015 by N. Thilagavathi and T. 

Amudha. [36]. ACO is a meta-heuristic which mimics the foraging nature of real ants for 

solving optimization problems. The concept of foraging is that the members of the 

population will communicate indirectly with each other. Ants are agents that build structures 

and give solutions. Each ant gives a unique structure. The best solution (structure) is then 

chosen among all possible solution. Here HP cubic lattice model was chosen for computing 

free energy. The cubic model has 6 possible moves as F (Forward), B (Backward), L (Left), 

R (Right), U (Up) and D (Down) to pas a remain in the lattice. Each residue has six possible 

movements in six directions; among the possible directions, one direction was selected 

which is minimum. After determining every possible direction, here checked to mark 

whether the movement leads towards the correct direction. In lattice model, the hydrophobic 

(H) interactions are driving force for protein folding. And each conformation must be taking 

a self-avoiding path. No two amino acid monomers not occupied same cubic lattice position. 

For each amino acid sequence the energy value has been computed depend on the number 

of H-H contacts. Getting the best tertiary structure of protein the concern is to minimize the 

energy value. Based on the pheromone trail of the move and the heuristic information the 

possibility of transition was chosen. At the starting , the level of pheromone is fixed at a 

constant value and after the construction phase the pheromone  value has been updated. By 

two stages: Local update and Global update, the pheromone value are modified. All 

iterations, ants modify the pheromone value internally while marked every path. 

                               )4.2(1
0PPP ijij

   

Where the pheromone amount of two position (i, j)  within the tertiary cubic  lattice  model 

is represents by 𝑃𝑖𝑗 , the  term  (1- 𝜌)  can  be interpreted  as  trail  evaporation and 𝜌  is  the 

persistence  of  the  trail . 𝑃0 is set a small positive constant  value  which is the pheromone 
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initialization value. At the global update, the level of pheromone was reduced and this will 

be reduced the possibility. As a result, the searching process will be more different. 

                               )5.2(1 PPP ijijij
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𝐸𝑔𝑏 represents the global energy of the best folding structure. On the paths of the optimal 

solution, the global update rule is used to provide a greater amount of pheromone. The next 

step of pass has been chosen on heuristic information and pheromone matrix value at the 

construction phase. In this paper three different types of energy functions have been applied. 

The energy functions are represented by D85, K99 and I09. The letter of the energy function 

describes the first character of the author last part of the published year. 

Energy function D85 

From the local structure of protein sequence, the substitute energy value was calculated, the 

name of this energy value is ‘Free Energy (FE)’ function. The energy value is score as -1 

when both amino acid Si and Sj are not adjacent and both are hydrophilic H amino acid and 

also have topological contact between them. Otherwise, it is scored as 0. If, ‘c’ represents 

the conformation state of a protein sequence,  
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Energy function K99 

Depending upon the closeness between two hydrophobic (H) amino acid the energy value 

has been calculated. All nonadjacent amino acids, which are topological connected are used 

in this energy calculation. 
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Energy function I09 

The reconstruct fitness function (EI09) is defined as 

                      )8.2(
8509 PHEE CCDI

c   

Here, α is a constant value that ensures this will be the prevalent term within high integer 

constant value. Hc denotes H-compliance, which measures the distance of H amino acids to 

the core or center. Pc denotes P-compliance that computes how close polar (P) amino acids 

are to the outer border. 

In this procedure at starting population start with five solutions or ants and each solution, try 

to fold every possible direction by folding process and produced different folding structures 

or solutions using the energy functions. The computational complexity of the methodology 

represents number of possible structures, 

Possibility of structure = 𝑛6 

Where,  

n = Structure length  

6 = All possible directions in cubic lattice 

 

 

Advantages 

The algorithm uses three different energy functions that provide good 

solutions to this problem. 
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Disadvantages 

The initial population starts with only five solutions or ants this is a major 

obstacle for finding the best solution. 

2.5  Multi-objective optimization algorithm 

Multi-Objective (MO) optimization has been proposed in 2015 by Garza-Fabre et al [37] for 

protein structure prediction problem. Here, HP lattice model has been used which is an 

abstract formulation for PSP problem. Under the HP model, the PSP can be defined as 

finding a best structure such that the total number of interactions among hydrophobic amino 

acids is large as possible. MO approach is used as a substitute constraint handling approach 

in the sense that infeasible solutions can also provide important information for solving PSP 

problem.  

Single-objective optimization refers to solving a problem based on only one objective 

function. For Single-objective optimization problem, the task is to search a structure x such 

that 

                                           )9.2(X F
x  

                                             xOFminimizeAnd   

Here XF denotes the possible, feasible set and OF(x) is the objective function of x. The 

destination of this procedure is to find the optimal solution(s) based on the objective 

function, so that  

                XxXx FopFop
xEminE  thatsuch),13(  

Similarly, a multi-objective optimization problem can be accurately defined as solving a 

problem based on multiple objective functions. For multi -objective optimization problem, 

the task is to search a structure x such that 

                   X Fx  

                                   T
k

xxxxOF OFOFOF ..,.........,minimizeAnd
21

  

Where T defines a set of trade-offs among the conflicting objectives. Here, a fitness 

landscape has been introduced which consists of a triplet term (𝑋 , 𝑁 , 𝜉). The first element 
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represents the search space, the second element represents a function that maps each possible 

solution to a set of solutions or neighbor solutions and the third element defines an ordering 

relation between the solutions and is directly related to the objective function. 

Protein structure prediction (PSP) problem can be stated as an energy minimization problem. 

In HP model, amino acids can be categories as into two types (hydrophobic (H) and 

hydrophilic (P) types) based on their hydrophobicity nature. And protein can be termed as a 

chain of H and P type monomers. The goal of the problem is to optimize the H-H contacts 

using a cubic lattice. Such contacts are referred to as topological contacts. There is an energy 

function that design every conformation, 𝑐 with an energy value (𝐸𝑣) as stated in [20]. 

                              )10.2(,
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The PSP problem with hydrophobic-polar model can be represented in terms of multi-

objective optimization by defining an extra objective function. With MO optimization, a 

two-objective function equation of the PSP problem can define as follows: 

                                 )11.2(,
21

T
xxxOF OFOF    

                          Where, 

   xExOF 
1

 

   xCollisionsxOF 
2

 

Where 𝑥  is a particular conformation, 𝑂𝐹(𝑥)  is the objective function of  𝑥 . Here, 

𝑂𝐹1(𝑥) and 𝑂𝐹2(𝑥) are to be minimized.  

On three-dimensional cubic lattice, five directions have been introduced here {F (front) , U 

(up), D (down), L (left), R (right)}. And on the two dimensional lattice, there are 3 directions 

{F, L, R}. No backtracking algorithm has been used because the algorithm ensures each 

conformation to be one step self-avoiding. The first amino acid is assumed to be fixed and 

has forward direction. For a sequence of length  𝑙, there are  𝑙 − 2 encoding decisions that 
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has to be taken. Also, a feasible conformation must have two properties: connectivity and 

self-avoidance.  

 

Advantages 

Two objective functions have been used here that provides better 

performance than one objective function. 

Disadvantages 

The MO approach can be proved not efficient when a search trend towards 

the possible are is not predefined. 

2.6  Discussion 

Form this literature review and related works studies, it is clear that different categories of 

algorithms are already applied for solving the well-known protein folding optimization 

problem. But none of this algorithms are not accurately predict the tertiary structure of 

protein. All of these algorithms have some drawbacks. For all of these reason, we applied a 

new metaheurestic algorithm the Fruit Fly Optimization algorithm (FOA) for solving the 

protein folding optimization problem. 
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CHAPTER III 

 

 

 Fruit Fly Optimization Algorithm for Protein Folding Optimization Problem 

 

  

3.1  Fruit Fly Optimization  

 

Fruit fly optimization algorithm is the most recent transformative computation technique 

which was called attention to by Wen Tsao Pan in 2011 [38].The Fruit Fly Optimization 

Algorithm (FOA) is another canny strategy on the food finding behavior of the fruit fly, It 

impersonates the foraging behaviors of drosophila. The fruit fly itself is better than different 

species in sensing and perception, particularly in osphresis and vision. The osphresis organs 

of fruit flies can discover a wide range of aromas drifting noticeable all around; it can even 

smell food source from 40 km away [5,37]. At that point, after it draws near to the food area, 

it can likewise utilize its sensitive vision to discover food and the organization's rushing area, 

and fly towards that heading as well. Because of its benefits of being straightforward, 

actualize, and use the problem-oriented specific search operators, the FOA applied in some 

various fields, for example, Travelling Salesperson Problem [39],multidimensional 

knapsack problem [40],structural damage identification [41],annual power load forecasting 

model [42],Tuning of PID Controller [43], Twin support vector machines [44], financial 

distress [5], semiconductor final testing [45], and steelmaking casting [46], project 

scheduling problem [47]. On one hand, with respect to the exhibition of the FOA, it has 

demonstrated promising potential in tackling the complex problems. The behaviors of the 

fruit flies could be demonstrated in Fig 3.1. 

3.1.1  Characteristic 

 

Fruit fly’s food discovering characteristics is isolated into a few essential strides as appeared 

in Fig 3.1, and the steps could be given as pursues ; 

1) Random primary fruit fly swarm location is,  

Init A_axis  

Init B_axis 
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2) Find with random direction and distance to the olfactory organ. 

Ai = A_axis + RandomValue 

Bi = B_axis + RandomValue 

3) Since food’s location is unknown, the distance (Dist) to the archetype is calculate 

first, and the define value of smell intentness (S), which is the opposite of distance, 

is then calculated. 

Disti= √(Ai
2 + Bi

2 ) 

Si = 1/Disti 

 

4) Substitute smell intentness decision value (S) into smell intentness define function 

(fitness function) so as to search the smell intentness (Smelli) of the separate 

location of the fruit fly. 

Smelli = Function(Si) 

5) Search the fruit fly with maximum smell intentness (searching the maximal value) 

in the fruit fly swarm. 

[bestSmellbestIndex] = max(Smell) 

Fig 3.1. The foraging progress of the fruit flies 
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6) Keep best smell intentness value and a, b coordinate, the fruit fly swarm will usage 

vision to fly unto that location. 

Smellbest = bestSmell 

A_axis = A(bestIndex) 

B_axis = B(bestIndex) 

7) Enter recurrent optimization to repeat the impersonation of steps 2-5, then define 

if the smell intentness is upper to the preceding iterative smell intentness, if so, 

implement step 6. 

3.1.2  Operators 

3.1.2.1  Smell-based search 

In the standard FOA, the smell-based inquiry is the center pursuit strategy. During the 

technique of smell-based inquiry, S natural product flies is created around the area of each 

swarm and such created organic product flies build the sub-swarm. To comprehend the 

MSRCPSP, neighborhood based inquiry administrators focusing on the errand arrangement 

and the asset task are intended to actualize the smell-based hunt. Tooth and Wang [48] 

proposed a viable strategy to understand the RCPSP, which utilized an administrator by 

swapping two nearby exercises without priority relationship. 

3.1.2.2  Knowledge-guided search  

The practices of natural product flies are improved in the FOA. Basically, the hunt practices 

of natural product flies are constrained to an irregular pursuit utilizing olfactory in the FOA. 

Facilitate nourishment looking [49] notwithstanding the smell-based inquiry and vision-

based inquiry. The natural product fly may effectively neglect to discover the nourishment 

source through just the irregular olfactory prompts, particularly in an unpredictable situation. 

Consequently, the sanctioned FOA can't accomplish great arrangements when being applied 

straightforwardly for complex streamlining problems. The information base comprises of 

two sections, for example the experiential undertaking list gave by the best natural product 

fly and the experiential probability of asset task for each assignment. 

3.1.2.3  Vision-based search  

After the smell-based inquiry, S organic product flies are created in each swarm. In the 

neighborhood vision-based pursuit, the arrangements in each sub swarms are assessed, and 

afterward the best produced arrangement is chosen to supplant the focal area of the sub 
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swarm if better outcomes can be gotten. That is, it needs to select one best arrangement from 

S+1 arrangements. The TOPSIS [50] is a broadly embraced choice strategy for the 

enhancement issues with numerous criteria. It positions competitor arrangements dependent 

on the criteria data. What's more, the TOPSIS gives a quantitative measure to how great an 

answer is among a lot of up-and-comer arrangements, which is proper to finish the 

determination in the vision-based pursuit. Along these lines, the TOPSIS is utilized to choose 

the best arrangement in each sub swarm. The non-overwhelmed arranging strategy (NST) 

[50] is additionally generally utilized in the choice procedure in multi-target advancement 

issues. The NST underscores the uniform dispersion of arrangements just as the nature of 

arrangements, which is valuable for a way to deal with spread the whole Pareto front. 

Therefore, the 10 NST is employed to sort the candidate solutions in the global vision 

process. 

3.1.3  Algorithm 

Step 1: Initialization, initialized the headquarters position of the swarms and the parameters 

of the algorithm. 

Step 2: Smell-based search. 

Step 2.1: For every fruit fly, randomly ordain a postulant location for the food source near 

the headquarters location of the swarms.  

Step 2.2: Count the smell intentness of every individual fruit fly location. 

Step 3: Vision-based search. 

Step 3.1: Ordain the most possible location with the largest smell concentration.  

Step 3.2: The fruit fly swarms into the location and the location of the swarm headquarters 

is updated. 

Step 4: Stopping the condition. If the stopping condition is met, the algorithm ends; 

otherwise, repeat step 2 and step 3. 

3.2  Protein Folding Optimization using FOA  

The fruit fly optimization algorithm (FOA) is a newly proposed metahuristic algorithm that’s 

mimic the behavior of fruit flies. The fruit fly algorithms is a bio-inspired algorithm. It is 

inspired by the nature of fruit flies. The fruit fly is the best optimization of other fly species, 

especially in sensing and perception. The fruit fly searches the food by source using their 
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smell and vision organs. Firstly they use osphresis organs to find all kinds of scents in the 

air. Then they fly toward to food. When they get close to the food, they use their vision 

organs to get closer. Using the intensive and diversity characteristics of fruit fly optimization 

algorithm searching process are divided into two stages that are smell phase and vision phase 

[5]. Vision phase included process of searching, local vision phase and global vision phase.  

There FOA divided into three parts: first the initialization of the optimization problem with 

different parameter values, post process, visualize result and this process continue until 

optimal value found [47]. 

The protein folding optimization problem are represented by the way, from the given 

sequence of amino acid that represent the primary structure using HP model create remove 

the self-avoiding path of protein sequence and produced a sequence that are represented by 

only H and P value. For example, HPHHPPHHHHPHHHPPHHPPHPHHHPHPHHPP 

HHPPPHPPPPPPPPHH is a sequence of 48 length amino acids that represented by HP 

model.  For creating the search space or the initial population, produced different initial 

structure according to randomly selecting direction among all possible directions, for 

example, FRBULLLURRFLLDRRRRFLLLURFLLDLULUUUURBBBBBBBBBRR 

represent one initial structure that is randomly created by choosing random directions. The 

representation of directions for solving the protein folding optimization problem in the cubic 

lattice model are shown in Fig 3.2. 

 

Fig 3.2. Direction representation in cubic lattice 
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After creating initial population apply different basic operators of selecting algorithm and 

try to search the optimal structure using intensive characteristics of the choosing method. 

After completing all the iteration process of the proposed method the optimal structure is 

chosen among all the structures in the search space. The final structure of protein sequence 

folding is RUUULDDFDRUULUFDRRDLDLULDBLBRBUFFLFURUFFLBBBRDB. 

The protein folding problem at a glance are shown in Fig. 3.3. In this figure the green 

monomers of the protein structure indicate hydrophobic amino acid and the blue monomer 

indicate the hydrophobic or polar amino acids. 

 

Fig 3.3. Protein folding problem at a glance 



 

34 
 

The total process of PFO process using fruit fly optimization process is shown in a block 

diagram in Fig 3.4. The pseudo code of this proposed mechanism describes in algorithm 3.1.  

 

Fig 3.4 Block diagram of PFO_FOA 
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3.2.1  Initialization of search space 

The initial population of the PFO problem are created by randomly selected directions from 

all position of directions. For this problem the initial population set are represented by a one 

dimensional array. The length of the sequence is represented by l and the array length will 

be  l-1 because we omit the first positions as it is fixed. Using  six direction-L,R,U,D,F,B 

directions of three dimensional cubic lattice create initial search space where, L,R,U,D,F,B 

means left, right, up, down, forward, backward respectively. For creating the initial search 

space, instance of the population is generated randomly among these six possible directions. 

For example, in Fig 3.4. a structure of sequence is {H,H,P,P,H,H,H,P}. The first positions is 

fixed and no directions is set into this positions. In second step left directions left (L) has 

been set randomly. Similarly in third step upward (U) has been set and in step 4 ,5, 6, 7 and 

8, right(R) , forward(F), right(R)  down (D) and back (B) has been set respectively. After 

completion of the eight steps a new structure is created which represent an initial structure 

of the initial population. Similarly population size structures are create for executing next 

procedure. The process of producing initial search space is depicted in Fig 3.4. 

 

Fig 3.5. Initialization of search space 

Generating an individual conformation or solution check the solution already exist or not. 

When generating the solution does not exist in the population then it accepted otherwise 

discard the conformation and generate new one. In the initialization process, the 

parameters of FOA algorithm are also initialized. A stopping criteria based conditional 

loop start executing until met condition. Every solution of the population is iterated and 

modified by the three operators of FOA algorithm. At first any conformation or structure 

modifies by the Smell Based Search then it modified by the Local Vision Based Search 
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after that, this conformation mixed to another conformation in the population modified by 

the Global Vision Based Search operator. At each step of the operation of any operator 

the reconstruction operator perform for producing valid conformation from the invalid 

conformation that may be produced all the operators procedure. 

Algorithm 3.1. PFO_FOA  

1: Input: 

2: Number of iteration G 

3: Population size of the fruit fly swarm M 

4: Initialization: 

5: Randomly generate a fruit fly swarm's initial location X(1), Y(1), Z(1) For i=1:1:M 

6: Randomly assign each fruit fly a direction and distance Xi=X(1)+ Random value , 

Yi= Y(1)+ Random value, Zi= Z(1)+ Random value 

7: Calculate Smelli = Function(Si) and find out the best smell concentration 

      bestSmell =max( Smel). 

8: Set the best smell concentration  Smellbest = bestSmell 

9: Searching: 

10: While K=1:1:G or the stopping criteria not met do 

11: For i=1:1:M  

12: SBS = Smell Based Search ( conformation, population[i]) 

13: SBS = reconstruction (conformation, SBS) 

14: {LV1, LV2}= Local Vision Based Search ( conformation, population[i], population[j] 

15: LV1 = reconstruction (conformation, LV1) 

16: LV2 = reconstruction (conformation, LV2) 

17: {GV1, GV2}= Globall Vision Based Search ( conformation, population[i], 

population[j]) 

18: GV1 = reconstruction (conformation, GV1) 

19: GV2 = reconstruction (conformation, GV2) 

20: CH = Centroid Hydrophobic (conformation, population[i])) 

21: Mod = Moderator (conformation, population[i])) 

23: CH = reconstruction (conformation, CH) 

24: Mod = reconstruction (conformation, Mod) 

25: End for 

26: End for 

27: population[newP] = bestEnergy(SBS,LV1,LV2, GV1, GV2) 

28: output: bestEnergy, meanEnergy, stdEnergy 

 

 

3.2.2  Smell Based Search 

 This is an operator that included in the initial iteration stage of our proposed methodology 

for updating the conformations. A smell based search process take a backup of the selecting 
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solution and select some random portions of the selecting conformation. After that the 

selecting part try to fold in different directions, that directions are randomly selected. If the 

choosing new directions for that part make better energy value than the previous structure 

then it added to the population and go to the next iteration process. Here, one part is chosen 

from the given example sequence depending on the smell value. In this part have two 

monomers and the directions in that part are replaced by two directions that are randomly 

selected. In this type of operator operation, a little change occurs within the protein structure 

that shown in Fig 3.5. Here, the selecting part UR are folded to FB that are randomly 

choosen. The updated solution is the output of this operator. The pseudo code of the process 

is given in Algorithm 3.2. 

 

Fig 3.6. Smell Based Search 

Algorithm 3.2. Smell Based Search  

1: procedure smellBasedSearch (hp_sequence, folding_solution) 

2: l = lengthOfhp_sequence 

3: Duplicate folding_solution to form new_folding_solution 

4: Set lPosition randomly from 1, 2, 3,. . ., l 

5: s = Rand(0,(l- lPosition)) 

6: for i = s to (s+lPoint) do 

7:  x_axis = rand(2,5); 

8:             If(b=0) Then x_axis= x_axis+1, and b=1. 

9:            Else x_axis= x_axis-1, and b=0. 

10:          End if 

11:          new_folding_solution [i] = direc_name[x_axis] 

12: End for 

13: output: new_folding_solution 

14: End procedure 
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3.2.3  Local Vision Based Search 

At local vision based search operator, firstly two random conformations are selected for 

modification. From the selecting conformation, the first conformation is divided into two 

parts depending on the value of local vision point (LV1), which chosen randomly. Then one 

of the two parts are selected and the selecting part is folded to opposite direction of its parent 

folding direction. The directions of the selected part are changes by opposite or alter 

direction of its own folding, such as F to B, U to D, L to R and vice versa. For the second 

selecting conformation, similarly divided and chose one part. The selecting part folding 

directions are changes according to the direction of the first selecting conformation direction 

of this part. In Fig. 3.6 first conformation divided into two parts or block, the first part 

directions are changes based on opposite direction and the last block is remain same as its 

parent. Second conformation dived into three parts, the starting and ending parts are the same 

folding direction of its parent and the middle part are folded according to the directions of 

the same part of the first conformation. Here, the first solution first portion LUR are folded 

to RDL and the second solution middle portion are folded in the direction of first solution 

middle portion RFB. The pseudo code of the process has been given in Algorithm 3.3. 

 

Fig 3.7. Local Vision Based Search 

Algorithm 3.3. Local Vision Based Search  

1: procedure localVisionBasedSearch (hp_sequence, folding_solution1, 

folding_solution2) 

2: l = lengthOfhp_sequence 

3. Duplicate folding_solution1 to form new_folding_solution1 

4: Duplicate folding_solution2 to form new_folding_solution2 

5: Set lPosition randomly from 1, 2, 3,. . ., l 

6: s = Rand(0,(l- lPosition)) 

7: for i = s to (s+lPoint) do  
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8:             If(lv1=0) Then x_axis= 

Opposite_direction_value[folding_solution1[i]], and lv1=1. 

9:            Else x_axis= Direction_value[folding_solution2[i]], and lv1=0. 

10:          End if 

11:         new_folding_solution1[i] = direc_name[x_axis] 

8:             If(lv2=0) Then x_axis= 

Opposite_direction_value[folding_solution2[i]]+1, and lv2=1. 

9:            Else x_axis= Direction_value[folding_solution1[i]]+1, and 

lv2=0. 

10:          End if 

11:         new_folding_solution2[i] = direc_name[x_axis] 

10: end for 

11: output: new_folding_solution1 and new_folding_solution2. 

12: end procedure 

 

 

3.2.4  Global Vision Based Search 

At first global vision based search operator, select two random conform from the population 

search space. From this two random conformation one individual position selected based on 

parameter value of global vision operator. This parameter value divided the each 

conformation into two blocks or part. Then the last parts of the selecting conformation are 

exchange directions to each other and construct two novel conformations. The interchanging 

of the last parts of the selecting conformation has been shown in Fig 3.7. Here, position 4 

selected randomly that divided each selecting conformation into two parts. The last portion 

of the first conformation BLU and the last portion of the second conformation RDB are 

interchanged to each other and produced two new conformations. The pseudo code of the 

process has been given in Algorithm 3.4. 

 

Fig 3.8. Global Vision Based Search 
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Algorithm 3.4. Global Vision Based Search  

1: procedure globalVisionBasedSearch (hp_sequence, folding_solution1, 

folding_solution2) 

2: l = lengthOfhp_sequence 

3: p = Rand(0,l) 

4: Duplicate [l…n] values from folding_solution1 to 

new_folding_solution1. 

5: Duplicate [0…l] values from folding_solution2 to  

new_folding_solution1. 

6: Duplicate [l…n] values from folding_solution2 to  

new_folding_solution2. 

7: Duplicate [0…l] values from folding_solution1 to  

new_folding_solution2. 

8: Output: new_folding_solution1 and new_folding_solution2. 

9: end procedure 

 

 

3.2.5  Centroid Hydrophobic 

The centroid hydrophobic operator measures the center or core of an individual 

conformation. Then compute the distance value of each hydrophobic (H) monomer from its 

core position. The center possition is calculated by the first hydrophobic and last 

hudrophobic amino acid position average value. It measures that whether each hydrophobic 

(H) amino acids of the conformation are in the center positions or not. If the hydrophobic 

amino acids are not in the center positions, it reform the structure in this way that the 

hydrophobic amino acids are remains at the center position. Similarly, it reforms the 

structure in that way such that the hydrophilic amino acid remains in the remote portion of 

the center position of the conformation. If   (𝑋ℎ, 𝑌ℎ, 𝑍ℎ)  represent the core position and 

(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) represents 𝑖𝑡ℎamino acid, then centroid hydrophobic is calculated as follows: 
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𝐻𝑠  represents the distance value of hydrophobic amino acid from the core position. 

Determining all hydrophobic monomers distance values from the center, this mechanism try 
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to move the hydrophobic amino acid in such a way that occupied at near of the center 

position of the structure. By changing the direction of folding of H monomer position , 

calculate the distance value, if the 𝐻𝑠 is minimum than the previous direction then change 

the folding direction otherwise not changes.  

Change_direction = Min(𝐻𝑠[𝑖])      Where, 𝐻𝑠[𝑖] represents all possible direction distance  

Actually, this operator tries to follow the nature of a real protein folding procedure. The 

process of centroid hydrophobic mechanism are shown in Fig 3.8. From this example figure 

last monomer is hydrophobic monomer and it folded to the right direction of the previous 

amino acid. According to centroid hydrophobic, H monomers tend to be inner part. By 

changing the folding direction of the last amino acid from right direction to left direction, 

then the hydorphofobic amino acids are close to each other of the conformation. The energy 

value has also grown 3 to 4 due to this mechanism.  

 

Fig 3.9. Centroid Hydrophobic mechanism 

 

3.2.6  Moderator Mechanism 

The moderator mechanism attempts to fold each individual monomer position of the last half 

of a protein conformation in such way that are folded in all possible directions. At first 

divided of the selecting conformation into two part. For each monomer in the last part of the 

selecting conformation, it checks the vacant and consucutive positions in the cubic lattice 

points. After that, try to move vacant position in the cubic lattic free position. When a 

monomer change its folding direction then other monomers which are associated to this 

monmer are remains same folding formation. After the modification process measures 

whether the free energy value of the newly construct conformation increases from the 

previous or not. If the energy value is not increased, then the cubic lattice point is not 

changed for the amino acid, otherwise, the position of the monomer is changed to the grown 



 

42 
 

up position. By this extra mechanism, every monomer of the last part of the selecting 

conformations are folded with the direction which can provide improved energy value than 

the remaining direction.  

In Fig 3.9(a) a sample conformation with thirteen monomers is given. This is a valid structure 

(no overlapping) with the energy value is 3. The main theme of moderator procedure is to 

improve the energy value of each conformation by changing the monomer directions in all 

directions that may be possible.  

                                      

                                        Fig 3.10(a). Before Moderator Mechanism 

In this mechanism, we tries to move the monomers from the last position and gradually 

moves towards the middle monomer. Here the last amino acid position means 13th position 

monomer tries to move in every possible direction, then the energy value is not increasing. 

When changing all possible directions of the 13th monomer then this mechanism goes to the 

previous (12th) amino acid position. By this mechanism, when try to changes the folding 

direction of the second last monomer (12th), at the case of right direction where chosen then 

the energy value increase from 3 to 5 as shown in Fig 3.9(b). This direction modification 

process continue until reach to the middle monomer position, the mechanism tries to update 

the direction where maximum energy value gained for each monomer and improve the 

performance of the proposed algorithm. 

 

3.2.7 Reconstruction 

After performing all operation of FOA with all the extra mechanism, various invalid 

conformation (overlapping structure) may be constructed. Invalid conformation indicates 

that in one cubic lattice position more than one amino acids occupied the same position. 
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                                                Fig 3.9(b). After Moderator Mechanism 

 

When an inaccurate conformation is produced by different operator operation, then creating 

valid structure we have applied the backtracking algorithm to modify the collision point 

positions. In this process, check the previous monomer position where the collision occurred 

and tries to move that monomer position in such a way that molecule folded to another 

direction and produced different cubic lattice positions. If no free consecutive lattice point 

found where it can be placed, then change the previous amino acid folding direction and 

modify its position. When a valid conformation reach then stop this process otherwise 

continues the same process. The procedure of reconstruction mechanism are shown in Fig 

3.10. The pseudo code of the process has been given in Algorithm 3.5. 

 

Fig 3.11. Reconstruction 

 

Algorithm 3.5. Reconstruction  

1: procedure Reconstruction (sequence, solution ) 

2: n = lengthOfSequence 

3:  for i = 1 to n do 

4: if overlap exists then 

5:  for j=i-1 to 1 do  
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6: if solution[j] have free lattice point then 

7: move solution[i] to the free lattice point 

8: end if 

9:  end for 

10: end if 

11: end for 

12: output: solution. 

13: end procedure 
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CHAPTER IV 

 

 

Simulation Results 

 

 

4.1  Introduction 

 

In this chapter, the simulation result of proposed FOA for solving the protein folding 

optimization problem (PFO_FOA) are shown. Then we compared our simulation result with 

existing methods and formulate the comparison results. The proposed PFO_FOA algorithm 

has been implemented in Java programming language. We produced our simulation result 

using an Intel Core i5 computer with 2.60 GHz CPU and 4 GB RAM on windows operating 

system (64 bit). For the implementation, programming language was Java SE Development 

Kit 7 platform and Netbeans IDE 7.2.1 has been used. 

4.2  Data Sets 

Our developed PFO_FOA algorithm has been tested on 4 identical datasets [7]. Each set 

contains some sequences of amino acids. There are variations in the length of the sequences. 

The first dataset contains 10 sequences of 48 lengths each. The second dataset also contains 

10 sequences of 64 lengths. The third and fourth dataset contains sequences of different 

lengths. Each amino acid in the sequences is encoded with H or P according to their nature. 

Here, H represents hydrophobic amino acid and P represents hydrophilic amino acid. The 

dataset is shown in Table 4.1. 

4.3 Effect of Extra Mechanisms 

The effect of the extra mechanisms has been test over the first dataset of sequences. Because 

the set contains a large number of sequences and the length is medium. The test result of 

sequences S1.1 to S1.5 are shown in Fig 4.1. In this chart show comparative analysis of the 

best energy value of the sequences. Here show the result of FOA without applying the 

centroid hydrophobic and moderator mechanism, FOA with applying centroid hydrophobic, 

FOA with applying moderator mechanism, FOA with applying centroid hydrophobic and 

moderator mechanism.   
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Table 4.1: Dataset used in the developed algorithm 

Set Protein Sequence Length 

 

 

 

 

1 

HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 

H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 

PHPH2PH6P2HPHP2HPH2PHPHP3HP2H2P2H2P2HPHP2HP 

PHPH2P2HPH3P2H2PH2P3H5P2HPH2PHPHP4HP2HPHP 

P2HP3HPH4P2H4PH2PH3P2HPHPHP2HP6H2PH2PH 

H3P3H2PHPH2PH2PH2PHP7HPHP2HP3HP2H6PH 

PHP4HPH3PHPH4PH2PH2P3HPHP3H3P2H2P2H2P3H 

PH2PH3PH4P2H3P6HPH2P2H2PHP3H2PHPHPH2P3 

PHPHP4HPHPHP2HPH6P2H3PHP2HPH2P2HPH3P4H 

PH2P6H2P3H3PHP2HPH2P2HP2HP2H2P2H7P2H2 

48 

48 

48 

48 

48 

48 

48 

48 

48 

48 

 

 

 

 

2 

P2H5P3H2P5H2P3HP6HPHP3HP2HP2HP5HP4H2PH2P2HP2HP 

P2HPHP2HP2H3PH4P2H3P4HPHP3HPHP3HPHP5HPHP2HPHP3HP2HP2 

HPH2P2H2PHP5H3PH4P2HP2HPH2P3HPHP2H3PH2PHP5H8P3 

HP2H2P2HP2HPHP2HP4HP6HPHPH3P2HPHP3HPHP2H2P2HP2HP2HPH3PH 

HP3H2P2HPHP3HP3HPH2P3H2PHPH2PHP2HP3HP2HPH3P2HP2HP2H3PH4 

HP2H2PH4P6H2P2HP4H2P3HP2HPH2PHP4H2P4HP5HP4HPH2 

P4HP3HP3H4PH2P5HP2HPH2PHPHP5HP10H4P4H2P2H 

P3H3P2HPHP2HP2H2P3HP2HP2H2PHP3HP7HPH3PH5P2H2P3HP2H 

HP2HP2H3P4HPHP3HPH2PH5P4HPHPHP4HPHP3H2PHP4HP2H2PHP 

P2HP2HP2H3P3HPHP2HP2HP6HP2H3P2HP2HP2HPHP6H3P5HPHP 

64 

64 

64 

64 

64 

64 

64 

64 

64 

64 

 

 

 

3 

HPHP2H2PHP2HPH2P2HPH 

H2P2HP2HP2HP2HP2HP2HP2H2 

P2HP2H2P4H2P4H2P4H2 

P3H2P2H2P5H7P2H2P4H2P2HP2 

P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 

H2PHPHPHPH4PHP3HP3HP4HP3HP3HPH4PHPHPHPH2 

P2H3PH8P3H10PHP3H12P4H6PH2PHP 

H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2P2HPHPH12 

20 

24 

25 

36 

48 

50 

60 

64 

 

 

4 

P2H3PH3P3HPH2PH2P2HPH4PHP2H5PHPH2P2H2P 

PHPH3PH3P2H2PHPH2PH3PHPHPH2P2H3P2HPHP4HP2H P2H2P2HP2H 

P2H2P5H2P2H2PHP2HP7HP3H2PH2P6HP2HPHP2HP5H3P4H2PH2P5H2P4H4

PHP8H5P2HP2 

P3H3PHP4HP5H2P4H2P2H2P4HP4HP2HP2H2P3H2PHPH3P4H3P6H2P2HP2H

PHP2HP7HP2H3P4HP3H5P4H2PHPHPHPH 

HP5HP4HPH2PH2P4HPH3P4HPHPH4P11HP2HP3HPH2P3H2P2HP2HPHPHP8

HP3H6P3H2P2H3P3H2PH5P9HP4HPHP4 

46 

58 

103 

 

124 

 

136 
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Fig 4.1. Ebest value with and without extra mechanism chart for seq. (S1.1-S1.5) 

The test result of sequences S1.6 to S1.10 are shown in Fig 4.2. From the comparative result 

of Ebest value, it can be show that the centroid hydrophobic and moderator mechanisms 

increase the performance of the PFO_FOA algorithm. Because two extra mechanisms mimic 

the behaviors of real protein folding problem.  

 

Fig 4.2. Ebest value with and without extra mechanism chart for seq. (S1.6-S1.10) 
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4.3  Comparison with Existing Algorithm 

Genetic algorithm with advanced mechanism (GAAM) [7] is the state of art paper for the 

case of protein folding optimization problem. This mechanism was developed by Borko 

Bošković and Janez Brest in 2016. In GAAM, authors produced their result with comparing 

with the multiple minima genetic algorithm (GAHP) [52], memetic algorithm (MA) [53], 

ant colony optimization algorithm (ACO) [54], Constraint handling through multi-objective 

optimization (MO-FR) [55], improving genetic algorithms (HGA) [56], estimation of 

distribution algorithm (EDA) [57], clustered memetic algorithm with local heuristics [58]. 

In this paper authors showed their experimental results are better than all of the comparing 

methods. For that reasons, we have compared our proposed algorithm with the GAAM[7], 

GAHP[52], MA[53], MO-FR[55], HGA[56], EDA[57] . The results have been shown in 

Table 4.2, Table 4.3, Table 4.4, Table 4.5, Table 4.6, Table 4.7, Table 4.8 and Table 4.9. In 

the tables, the sequence number is generated by a dataset number followed by a serial number 

of the dataset. Such as, S1.1 represents dataset 1 and 10 number of sequences with length 48 

of the dataset. 

For dataset 1, we compared the best energy value of our proposed algorithm with GAAM[7], 

GAHP[52] and MA[53]. The comparison chart are shown in Fig 4.3. 

 

Fig 4.3. Comparison of Ebest value of dataset 1. 
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 We have computed the Ebest, Emean and Estd  for all the sequences into dataset 1. For dataset 

1, we compared our simulation result with GAAM[7], GAHP[52] and MA[53]. The 

comparison results with GAAM[7]  are shown in table 4.2 and comparison with GAHP[52] 

and MA[53] are shown in table 4.3. The length of all the sequences in dataset 1 is 48. We 

make 50 independent runs on each individual sequence on dataset 1. The Emean value 

indicates the average energy value of all the performed runs and Estd value represent the 

standard deviation of all the performed runs. Standard deviation value actually indicate the 

distance of each run result with the average result. From table 4.2, we can notice that 

PFO_FOA shows better Emean values for all the sequences in dataset 1. From the comparison 

table it is clear that our proposed algorithm not only always found the best energy value but 

also produced better Emean values and Estd values for all the sequences on the perspective of 

the GAAM [7]. 

Table 4.2. Results of dataset 1 with the number of runs was 50, compared with GAAM[7] . 

Seq. 
PFO_FOA GAAM[7] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 

S1.1 32 32.00 0.00 32 31.82 0.38 

S1.2 34 34.00 0.00 34 33.08 0.77 

S1.3 34 34.00 0.00 34 33.26 0.44 

S1.4 33 33.00 0.00 33 32.22 0.54 

S1.5 32 32.00 0.00 32 31.58 0.49 

S1.6 32 32.00 0.00 32 31.38 0.18 

S1.7 32 32.00 0.00 32 30.62 0.56 

S1.8 31 31.00 0.00 31 30.38 0.48 

S1.9 34 34.00 0.00 34 33.02 0.37 

S1.10 33 33.00 0.00 33 32.28 0.45 

 

 

Table 4.3 shows the comparative result of Ebest , Emean and Estd value with the GAHP[52] and 

MA[53]. From this comparison table we can show the PFO_FOA perform better energy 

value for all 10 sequences of 48 length monomers. 

For dataset 2, we compared the best energy value of our proposed algorithm with GAHP[52] 

and MA[53]. The comparison chart are shown in Fig 4.4. 
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Table 4.3. Results of dataset 1 with the number of runs was 50, compared with GAHP[52] 

and MA[53]. 

Seq. 
PFO_FOA GAHP[52] MA[53] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 
𝑬𝒃𝒆𝒔𝒕 

S1.1 32 32.00 0.00 32 30.72 0.67 32 

S1.2 34 34.00 0.00 34 31.26 0.59 34 

S1.3 34 34.00 0.00 34 32.08 0.80 34 

S1.4 33 33.00 0.00 33 31.16 0.81 33 

S1.5 32 32.00 0.00 32 30.52 0.73 32 

S1.6 32 32.00 0.00 32 29.86 0.78 32 

S1.7 32 32.00 0.00 32 29.82 0.56 31 

S1.8 31 31.00 0.00 31 29.32 0.58 31 

S1.9 34 34.00 0.00 34 31.92 0.66 33 

S1.10 33 33.00 0.00 33 31.08 0.56 33 

  

 

Fig 4.4. Comparison of Ebest value of dataset 2. 

 

We have computed the Ebest, Emean and Estd  for all the sequences into dataset 2. For dataset 

2, we compared our simulation result with GAHP[52] and MA[53]. The comparison results 
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are shown in table 4.4. The length of all the sequences in dataset 2 is 64. We make 50 

independent runs on each individual sequence on dataset 2. From comparison table 4.4, it is 

clear that proposed algorithm make best energy value for all sequences of length 64. For 

some sequences (S2.2, S2.4, S2.6, S2.9), we found better Ebest values with comparing GAAM 

[7] and GAHP[52]. For all sequences of dataset 2, our proposed PFO_FOA always obtained 

better Emean and Estd  values than both of GAAM [7] and GAHP[52]. 

Table 4.4. Results of dataset 2 with the number of runs was 50, compared with GAAM[7] 

and GAHP[52]. 

Seq. 
PFO_FOA GAAM[7] GAHP[52] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 

S2.1 32 32.00 0.00 32 30.86 0.60 31 28.50 1.10 

S2.2 38 38.00 0.00 37 35.12 0.71 36 33.18 1.22 

S2.3 45 45.00 0.00 45 43.54 0.37 44 41.88 0.87 

S2.4 42 42.00 0.00 41 39.74 0.59 39 36.02 1.39 

S2.5 42 42.00 0.00 42 40.62 0.72 40 37.96 1.12 

S2.6 35 35.00 0.00 34 33.52 0.50 33 31.52 0.86 

S2.7 28 28.00 0.00 28 28.00 0.00 28 26.70 0.70 

S2.8 38 38.00 0.00 38 36.54 0.54 36 33.72 0.85 

S2.9 41 41.00 0.00 40 38.00 0.60 38 36.32 0.93 

S2.10 31 31.00 0.00 31 31.00 0.00 31 28.90 0.88 

 

For dataset 3, we compared the best energy value of our proposed algorithm with GAAM 

[7], MO+FR[55], HGA[56], EDA[57], HGA[56] and CMA[58]. The comparison chart are 

shown in Fig 4.5. 

We have computed the Ebest, Emean and Estd  for all the sequences into dataset 3. For dataset 

2, we compared our simulation result with GAAM [7], MO+FR[55], HGA[56], EDA[57], 

HGA[56] and CMA[58]. The comparison results with GAAM [7] and MO+FR[55] are 

shown in table 4.5, comparison with EDA[57] and HGA[56]are shown in table 4.6 and 

comparison with CMA[53] are shown in table 4.7. The length of all the sequences in dataset3 

are 20 to 64. We make 50 independent runs on each individual sequence on dataset 3. 
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Fig 4.5. Comparison of Ebest value of dataset 3. 

From comparison table 4.5, it is clear that proposed algorithm make best energy value for 

all sequences of different lengths. For some sequences (S3.6, S3.7), we found better Ebest 

values with comparing GAAM [7] and  MO+FR[55]. For all sequences of dataset 3, our 

proposed PFO_FOA always obtained better Emean and Estd  values than both of GAAM [7] 

and MO+FR[55]. 

 

Table 4.5. Results of dataset 3 with the number of runs was 50, compared with GAAM[7] 

and MO+FR[55]. 

Seq. 
PFO_FOA GAAM[7] MO+FR[55] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 

S3.1 11 11.00 0.00 11 11.00 0.00 11 11 

S3.2 13 13.00 0.00 13 13.00 0.00 13 12.96 

S3.3 9 9.00 0.00 9 9.00 0.00 9 9 

S3.4 18 18.00 0.00 18 18.00 0.00 18 16.84 

S3.5 31 31.00 0.00 31 31.00 0.00 31 27.39 

S3.6 34 34.00 0.00 34 33.96 0.14 32 27.40 

S3.7 55 55.00 0.00 55 54.46 0.50 50 44.45 

S3.8 59 59.00 0.00 59 59.00 0.00 51 45.63 
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Table 4.6 show the comparative result of Ebest , Emean and Estd value with the HGA[56] and 

EDA[57]. From this comparison table we can show the PFO_FOA perform better energy 

value for all 8 sequences of different length monomers. 

 

Table 4.6. Results of dataset 3 with the number of runs was 50, compared with HGA[56] 

and EDA[57]. 

Seq. 
PFO_FOA HGA[56] EDA[57] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 

S3.1 11 11.00 0.00 11 10.52 0.54 11 10.82 0.38 

S3.2 13 13.00 0.00 13 11.28 0.90 13 12.02 0.94 

S3.3 9 9.00 0.00 9 8.54 0.64 9 8.96 0.19 

S3.4 18 18.00 0.00 18 15.76 1.05 18 16.40 0.80 

S3.5 31 31.00 0.00 28 24.60 1.57 29 27.24 0.92 

S3.6 34 34.00 0.00 26 23.02 1.48 29 25.70 1.26 

S3.7 55 55.00 0.00 49 41.18 2.75 49 46.30 2.04 

S3.8 59 59.00 0.00 46 40.40 2.50 52 46.78 2.28 

 

Table 4.7 show the comparative result of Ebest , Emean and Estd value with the CMA[58]. From 

this comparison table we can show the PFO_FOA perform better energy value for all 8 

sequences of different length monomers. From this table, we can notify that PFO_FOA 

provide not only provide best energy value but also provide better Emean and Estd value. 

 

Table 4.7. Results of dataset 3 with the number of runs was 50, compared with HGA[56] 

and CMA[58]. 

Seq. 
PFO_FOA CMA[58] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 

S3.1 11 11.00 0.00 11 11.00 0.00 

S3.2 13 13.00 0.00 13 13.00 0.00 

S3.3 9 9.00 0.00 9 9.00 0.00 

S3.4 18 18.00 0.00 18 18.00 0.00 

S3.5 31 31.00 0.00 31 31.00 0.00 

S3.6 34 34.00 0.00 31 31.00 0.00 

S3.7 55 55.00 0.00 54 52.52 0.20 
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S3.8 59 59.00 0.00 58 56.30 0.35 

For dataset 4, we compared the best energy value of our proposed algorithm with GAAM[7], 

GAHP[52] and MO-FR[55]. The comparison chart are shown in Fig 4.6. 

 

Fig 4.6. Comparison of Ebest value of dataset 4. 

Table 4.8 and 4.9 shown the Ebest, Emean and Estd  for all the sequences into dataset 4. For 

dataset 4, we compared our simulation result with GAAM[7], GAHP[52] and MO-FR[55]. 

Dataset 4 contains different five sequences of length 46-136. We make 50 independent runs 

on each individual sequence on dataset 4. From comparison table 4.8, it is clear that proposed 

algorithm make best energy value for all sequences of long lengths. Especially when the 

length of the protein sequences are long PFO_FOA obtained better Ebest, Emean and Estd values 

than GAAM [7] and GAHP[52]. 

Table 4.8. Results of dataset 4 with the number of runs was 50, compared with GAAM[7] 

and GAHP[52]. 

Seq. 
PFO_FOA GAAM[7] GAHP[52] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 

𝑬 𝒔 𝒕 𝒅  𝑬 𝒃 𝒆 𝒔 𝒕  
𝑬 𝒎 𝒆 𝒂 𝒏

 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 

S4.1 35 35.00 0.00 35 34,42 0.49 35 33.04 

S4.2 44 44.00 0.00 44 41.92 0.49 42 40.04 

S4.3 58 58.00 0.00 53 50.80 0.99 50 46.58 
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S4.4 69 66.83 0.88 68 64.78 1.25 63 58.12 

S4.5 73 70.62 0.94 71 68.54 1.20 70 62.22 

 

Table 4.9 show the comparative result of Ebest , Emean and Estd value with the HGA[56] and 

EDA[57]. From this comparison table we can show the PFO_FOA perform better energy 

value for all 5 long sequences of different length monomers. From this table, we can notify 

that PFO_FOA provide not only provide best energy value but also provide better Emean and 

Estd value. 

 

Table 4.9. Results of dataset 4 with the number of runs was 50, compared with MO-FR[55]. 

Seq. 
PFO_FOA MO-FR[55] 

𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 𝑬𝒔𝒕𝒅 𝑬𝒃𝒆𝒔𝒕 𝑬𝒎𝒆𝒂𝒏 

S4.1 35 35.00 0.00 32 28.92 

S4.2 44 44.00 0.00 41 34.52 

S4.3 58 58.00 0.00 40 35.35 

S4.4 69 66.83 0.88 51 43.56 

S4.5 73 70.62 0.94 55 46.94 

 

From all of the comparison result tables, we can see that the simulation result of our proposed 

PFO_FOA is better than the GAAM [7], GAHP[52], MA[53], MO-FR[55], HGA[56], 

EDA[57]  for especially the Emean and the standard deviation value for all the datasets. Using 

the intensive and diversity characteristics of FOA with extra mechanisms make the proposed 

algorithm accurate for the protein folding optimization problem. 
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CHAPTER V 

 

 

Conclusions and Discussions 

 
 

5.1  Conclusions 

 

The Protein folding optimization problem is the very well-known optimization problem in 

computation biology that accurately predict the native three dimensional structure of protein 

from the given primary sequence of amino acids. The most challenging task in this problem 

is that when the number of amino acids increases in the protein sequences then a huge range 

of search space are created. This exponential increase of search space make NP-hard problem 

of the protein folding optimization problem. Under the specified model that is called the HP 

model the representation of the protein folding problem is NP-hard problem. The fruit fly 

optimization is a recent bio-inspired algorithm that’s mimic the behaviors of  searching food 

of fly. Using the intensive and diversity characteristics of the fruit fly optimization algorithm 

we solved the protein folding optimization problem. The redesigned the basic operators of 

the fruit fly optimization algorithm with two extra mechanisms. The centroid hydrophobic 

and moderator mechanisms are the two extra mechanisms. The centroid hydrophobic 

mechanism mimic the behaviors of real protein folding and make accurate folding directions. 

The moderator mechanism check a fixed part of the protein sequences to every possible 

directions and make better energy value. This two mechanism improves the performance of 

the fruit fly optimization algorithm magically. Our proposed algorithm make better accuracy 

that all of the sequences into all the datasets. Our algorithm also includes a reconstruction 

mechanism that create accurate structure of protein sequences from invalid structures. 

Lastly, We compared our simulation  results with the genetic algorithm with an advanced 

mechanism (GAAM) [7] which is the state of the art and from the results and also compared 

with GAHP[51], MA[52], MO-FR[54], HGA[55], EDA[56] , it is clear that the performance 

of our algorithm is better than GAAM [7], GAHP[51], MA[52], MO-FR[54], HGA[55], 

EDA[56]. 
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 5.2  Future Work 

In future, research for the PFO problem can be done with the for larger sequences than the 

existing sequences. The performance of the FOA algorithm for the problem largely depends 

on population initialization. An efficient population initialization technique can be improved 

for the PFO problem. The execution time is a great factor in performance analysis. So our 

future work should be done on designing more efficient population initialization technique. 

Besides, we will try to decrease the execution time of our algorithm to increase the 

performance. A detailed study on parameters of FOA may provide better results and less 

execution time for this problem. Since there is no fixed rule for the parameters of FOA, 

finding the right value for the parameters is a tough task. So more experiment and study of 

parameters may give a better result in the case of PFO problem. 
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