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ABSTRACT 

 

 

Due to rapid advancements in wireless communication the scarcity of radio spectrums are 

decreasing day by day. To ensure the future efficient wireless communication services, the radio 

spectrum management is a very important factor. To cope up with this demand, cognitive radio 

(CR) is a solution of huge prospect for spectrum sensing in order to detect and utilize empty 

spaces in the spectrum without creating interference to the primary users (PUs). The CR is referred 

to an intelligent and reconfigurable radio which enables efficient usages of unused spectrum while 

avoiding any kind of interference. Spectrum sensing is the key element in CR network for 

identifying the opportunity and to avoid the interference of PUs. The sensing methodology of 

spectrum depends upon its band of interest, surrounding environments, knowledge of pattern of 

PUs, required accuracy, required time of detection, power consumption and complexity & cost of 

the device.  

 

This work focus on the formulation of mathematical system model for classical narrow band 

transmitter based detection which includes energy detector (ED) based sensing techniques, 

cyclostationary features detection and matched filtering and the simulation and performance 

analysis of their characteristics curve by MATLAB software. Finally, the work has recommended 

the best techniques for optimum performance of narrow band spectrum sensing over different 

fading environments.  
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Chapter I 

 

Introduction 

 

1.1 Motivations: Spectrum Sensing for Dynamic Spectrum Access 

 

The available Electromagnetic Spectrum is becoming overcrowded day by day due to remarkable 

increment in wireless devices and transition from voice only communication to video 

applications. The current static frequency allocation schemes cannot accommodate the 

requirements of higher data rate devices. To cope up with this demand, Cognitive Radio (CR) is 

a solution of huge prospect which can ensure the efficient use of the radio that can adjust its radio 

resources. Spectrum sensing is a task of obtaining awareness about the spectrum uses and 

existence of primary users in a geographical area [1]. As per the definition adopted by Federal 

Communication Commission (FCC); Cognitive radio; A radio or system that senses its 

operational electromagnetic environment and can dynamically and automatically adjust radio 

operating parameters to modify system operation, such as maximize throughput, mitigate 

interference, facilitate interpretability, access secondary markets [2].  

 

CR represents a possible solution to the problem of scarcity, due to the variety of bandwidth 

demanding newly developed wireless communication technology allows in principle flexible and 

agile access to the spectrum as well as improving spectrum efficiency substantially [3].  CR can 

be described as an intelligent and dynamically reconfigurable radio that can adjust its radio 

parameters in response to surrounding environment [3]. The ability of CR depends largely on its 

spectrum sensing, since it provides device excess to one spectrum band while avoiding 

interference to the other devices [4]-[7]. CR has been made feasible by advances such as software 

defined radio (SDR), machine learning techniques and smart antennas [8]. CR signifies a radio 

that employs model-based reasoning to achieve a specified level of competence in radio related 

domain [9].  

 

One  of  the  most  important  components  of  the  cognitive  radio   concept   is   the   ability   to   

measure,   sense,   learn,  and be   aware   of   the   parameters   related   to   the   radio   channel 

characteristics,   availability   of   spectrum   and   power,   radio's operating   environment,  user   

requirements  and   applications, available  networks  (infrastructures)  and  nodes,  local  policies 

and  other  operating  restrictions.  In  cognitive  radio  terminology,primary users can be defined 

as the users who have higher priority  or  legacy  rights  on  the  usage  of  a  specific  part  of  the 

spectrum.  On the other hand,secondary users, which have lower priority, exploit this spectrum in 

such a way that they do that they do not cause interference to primary users.  Therefore, secondary 

users need to have cognitive radio capabilities, such as sensing the  spectrum  reliably  to  check  

whether  it  is  being  used  by  a primary user and to change the radio parameters to exploit the 

unused  part  of  the  spectrum[1].The designers of co-operative spectrum sensing scheme should 
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consider bandwidth usages for sharing the spectrum sensing data while improving spectrum 

sensing performance 

 

 
 

Figure 1.1: Spectrum allocation and spectrum usages measured from 

 

The precious radio frequency (RF) spectrum is allocated by government spectrum regulators. In 

order to support various types of wireless devices and different kinds of services without 

interfering,  spectrum  regulators  adopt  a  traditional  fixed  spectrum  access  (FSA)  policy, 

which  assigns  each  band  of  RF  spectrum  with  particular  bandwidth  to  wireless  primary 

users.   However,  with  the  increase  of  new  wireless  products,  especially  the  widely  usage  

of machine-to-machine products [10] in the future, the spectrum demand is constantly increasing 

while,  in  several  counties,  most  of  the  available  spectrum  has  been  fully  utilized,  which 

evidently  shows  that  spectral  resource  will  no  longer  be  enough  for  new  wireless  products 

by  using  FSA  police.  On  the  other  hand,  a  primary  user  is  wasting  its  allocated  spectrum 

when  it  is  assigned  a  certain  spectrum,  but  actually  unused  it.   Recent researches on the 

measurements of actual spectrum utilization in Fig. 1.1  also  have  shown  that  only  some 

portions  of  the  whole  spectrum  have  been  highly  used  while  large  portions  of  them  are 

severely  under-utilized.   For  instance,  the  spectrum  between  30  MHz  and  3  GHz  in  New 

York, the maximal occupancy has been measured to be 13.1%, while the average occupancy from 

six locations is 5.2% [11].  

 

To  resolve  the  spectral  scarcity  problem  mentioned  above,   cognitive  radio  (CR)  is proposed  

to  advance  spectral  usage  [12]. The  federal  communications  commission  (FCC) allows  

secondary  user  (SU)  to  enter  into  one  spectrum  band  when  the  primary  user  (PU) does  

not  use  its  band  after  adopting  CR  techniques  [2].  As Figure 1.2  shows,  cognitive  radio is  

designed  to  sense,  detect  surrounding  PUs'  state:  1)  when  PU  is  absent,  SU  reuses  PUs' 

spectrum  hole.   2)  when  PU  is  present,  SU  retreats  from  the  PU  spectrum  hole.   Thus, 

spectrum sensing is a critical part for a SU operation since all other SU's activities depend on the 

sensing result.   Up  to  now,  researchers  have  developed  several  local  techniques  to improve  

spectrum  sensing  performance  [11]-[13].    However, these local techniques are not always 
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reliable and cannot provide a satisfactory detection performance when multipath and shadowing 

effects exist [14].  In  many  other  wireless  networks,  relays  have  been  introduced to  solve  

the  multipath  and  shadowing  effects  [15], [16].   

1.2 Preliminaries of Cognitive Radio Networks 
 

Most of today’s radio systems are not aware of their radio system environment as they are 

designed to operate in a predefined frequency band using a specific spectrum access system. 

Overall spectrum illustration can be improved significantly by allowing secondary licensed users 

to dynamically access spectrum holes temporarily unoccupied by the primary user in the 

geographical region of interest as shown in the below figure. Here, I would like to highlight some 

basic features which are related to CR for better understanding. 

 

 

Figure 1.2: The concept of accessing spectrum hole dynamically 

 

1.2.1 Spectrum Holes 

 

Spectrum holes can be defined as band of frequencies which are currently vacant for the use of 

the PU in a specific time and geographic area [2]. It represents the potential opportunities for non- 

interfering (safe) use of spectrum and can be considered as multidimensional regions within 

frequency, time, and space. The spectrum holes can be identified in the following frequency and 

time. 

 
 

1. Spectrum Hole in Frequency Domain: The activities of CR in this continuous band of 

frequencies do not cause any harmful interference to the PUs. By using modern spectrum 

sensing techniques, CR can explore the spectrum holes and avail the opportunity to access and 

use the holes without being degrading the performance of PUs or license users available in part 

of the frequency spectrum. The available spectrum is divided into narrower channels of bands. 
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Spectrum opportunity in this dimension means that all the bands are not used simultaneously 

at the same time, i.e some bands might be available for opportunistic usages. 

 

2. Spectrum Hole in Time Domain:       The spectrum hole in time domain can be defined as a 

frequency band which is not presently used by the PUs for a certain period of time. This 

involves the availability of a specific part of the spectrum in time. In other words, the band is 

not continuously used. There will be times where it will be available for opportunistic use. 
 

3. Spectrum Hole in Spatial Domain: The spectrum can be available in some parts of the 

geographical area while it is occupied in some other parts at a given time. This takes the 

advantages of propagation loss in space. This measurement can be avoided by simply looking 

into the interference levels. No interference means no primary users transmission in a local 

area. 

 

1.2.2 Radio Spaces 

Radio space can be defined as “a theoretical hyperspace occupied by radio signals, which has 

dimensions of locations, angle, and arrival, frequency, time and possible others. Few of important 

radio spaces are:  
 

1. White Spaces:    In spectrum white spaces, license bands are no more exist at that time, only 

natural noise such as broadband thermal noise and impulsive noise are present. 

2. Gray Spaces: In gray spaces which 0partially filled by low power interferes. 

3. Black spaces: Those places are occupied by the high priority licensed users which is also 

called as PUs. 
 

According to the space classification, a CR node can transmit in the gray and white space, but it 

is prohibited to operate in the black space once the PU is active. 

 

1.2.3 Cognitive Radio Features 
 

Cognitive Radio can be described as an intelligent and dynamically reconfigurable radio that can 

adjust its radio parameters in response to surrounding environment. CR is proposed by J. Mitola 

II in [12] and later officially defined as [2] A“Cognitive radio is a radio that can change its 

transmitter parameters based on interaction with environment in which it operates.From the above 

mentioned definition two major characteristics of cognitive radio can be summarized as cognitive 

capability and reconfigurability.  

 

1.2.3.1 Cognitive Capability 

 

The cognitive features enables the cognitive radio to interact with its environment in a real time 

manner and intelligently determine based on quality of service (QoS) requirements. It senses an 

unused spectrum in the surroundings, and then smartly selects optimal spectrum and appropriate 

parameters to access this spectrum via cognitive capability. This process can be described as a 
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cycle with three main operations: spectrum sensing, spectrum analysis and spectrum decision 

[20], thus the cognitive features are as follows: 

 

1. Spectrum Sensing: In cognitive network, one cognitive radio captures some 

information from spectrum bands seeking for available holes. Also, the radio should keep 

monitoring spectrum bands and retreat from those holes when primary users want to reuse their 

spectrum. It is done by either cooperative or non-cooperative technique in which cognitive radio 

nodes continuously monitor the RF environment. 

 

2. Spectrum Analysis: The surrounding spectrum bands are extracted and estimated from 

the information captured via spectrum sensing. It estimates the characteristics of spectrum bands 

that are sensed through spectrum sensing. 

 

3. Spectrum Decision: An appropriate spectral band will be chosen for SU transmission 

according to the spectrum characteristics analyzed for particular cognitive radio node from the 

spectrum analysis operation. Meanwhile, the cognitive radio will also intelligently choose suitable 

parameters, e.g. transmission mode, data rate and bandwidth needed in transmission, for 

transmission in current communication. 

 

1.2.3.2 Reconfigurable Features 

 

Reconfigurable is another characteristic of CR enabling CR changes its parameters to adapt to a 

dynamic communication environment [20]. Some parameters introduce in the following are 

considered mostly in CR. In order to get adapted to RF environment cognitive radio should change 
its operational parameters are as follows: 

 
1. Operating Frequency: It   is   available   for   cognitive   radio   to   change   the   
operating frequency  for  optimal  transmission  in  a  dynamic  environment  and  protecting  PU 
activity. CR is capable to varying its operating frequency in order to avoid the PU to share 
spectrum with other users. 

 

2. Modulation Scheme: In   order   to   adapt   to   SU's   transmission   requirements   

and   channel conditions, a cognitive radio is available to adjust its modulation scheme According 

to the user requirements and channel condition CR is able to adaptively reconfigurable the 

modulation scheme. 

3. Transmission Power: For the mitigation of interference and power efficiency 

enhancement, cognitive radio allows power reconfiguration based on power constraint or limit 

required in the networks. In order to improve the spectral efficiency or diminish interference 

transmission power can be reconfigurable. 

 

4. Communication Technology: In heterogeneous networks, cognitive radio will 

adjust itself and be used in different types of communication systems with its interoperability by 
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changing modulation scheme interoperability among different communication systems can also 

be provided by CR. 

1.3 Challenges of Dynamic Spectrum Access in Cognitive Radio Networks 

 

There are many challenges that are yet to be resolved for obtaining the optimum performance 

from a cognitive radio network (CRN) which are: 

 

1.3.1 Hardware Requirements 

Spectrum sensing for CR applications requires high sampling rate, high resolution ADCs with 

high dynamic range, channel estimation, soft information generation, power control etc. The 

hardware development becomes very challenging to meet all the requirements. Moreover, the 

development of radio frequencies(RF)  components like antennas, power amplifiers etc for 

operating large operating bandwidths and high speed processing units with relatively low delay 

became tremendous challenging task for CR.  Spectrum sensing for cognitive radio applications 

requires high sampling rate, high resolution analog to digital converters (ADCs) with large 

dynamic range, and high speed signal processors. Noise variance estimation techniques have been 

popularly used for optimal receiver designs like channel estimation, soft information generation 

etc., as well as for improved hand-off, power control, and channel allocation techniques [21]. 

 

1.3.2 Detecting Hidden Primary Users 

 

To manage and overcome hidden primary users caused by multipath fading or shadowing 

observed by secondary users transmission become very challenging task. The hidden primary 

user’s causes unwanted interference to the PU (receiver) as the signals of the primary transmitter 

could not be detected because of the locations of devices. The hidden primary user problem is 

similar to the hidden node problem in Carrier Sense Multiple Accessing (CSMA). It can be caused 

by many factors including severe multipath fading or shadowing observed by secondary users 

while scanning for primary users’ transmissions. Here, cognitive radio device causes unwanted 

interference to the primary user (receiver) as the primary transmitter’s signal could not be detected 

because of the locations of devices. Cooperative sensing is proposed in the literature for handling 

hidden primary user problem [22-24].  

 

1.3.3 Detecting Spread Spectrum Primary Users 
 

Detecting the spread spectrum i.e. frequency hopping spread spectrum (FHSS) and direct 

sequence spread spectrum (DSSS) became very challenging task in CRN. FHSS devices change 

their operational frequency dynamically to multiple narrow band channels. This is known as 

hopping and performed according to a sequence that is known by both transmitter and receiver. 

Primary users that use spread spectrum signaling are difficult to detect as the power of the primary 
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user is distributed over a wide frequency range even though the actual information bandwidth is 

much narrower [25]. This problem can be partially avoided if the hopping pattern is known and 

perfect synchronization to the signal can be achieved as discussed in Section II. However, it is 

not straightforward to designalgorithms that can do the estimation in code dimension. 

 

1.3.4 Sensing Duration and Frequency 

 

In orderto prevent interference to and from primary license owners,cognitive radio should be able 

to identify the presence ofprimary users as quickly as possible and should vacate theband 

immediately. Sensing methods should be ableto identify the presence of primary users within 

certainduration. This requirement poses a limit on the performance ofsensing algorithm and 

creates a challenge for cognitive radiodesign.Hence, to prevent interference to and from primary 

license owners, the sensing frequency, channel detection time, channel move time, interference 

tolerance level of PUs and optimum sensing durations to search for an available channel and 

monitor a used channel creates a challenge for cognitive radio. The optimum value depends on 

the capabilities of cognitive radio itself and the temporal characteristicsof primary users in the 

environment [26]. In addition to sensing frequency, the channel detection time, channel move 

time and some other timing relatedparameters are also defined in the standard [27]. Anotherfactor 

that affects the sensing frequency is the interferencetolerance of primary license owners. For 

example, when acognitive radio is exploiting opportunities in public safetybands, sensing should 

be done as frequently as possible inorder to prevent any interference. Moreover, CR should 

immediately vacate the band it is needed by public safety units. The effects of sensing time on the 

performance of secondary users are investigated in [40]. 

 

1.3.5 Decision Fusion in Co-Operative Sensing 

 

CR uses co-operative sensing techniques to avoid the interference to the PUs in which sharing 

information among cognitive radios and combining results from various measurements is a 

challenging task. The optimum fusion rule for combining sensing information is the Chair 

Varshnery rule is used as solution. For hard decisions AND, OR or M out of N methods can be 

used for combining information from different CR. The shared information can be soft or hard 

decisions made by each cognitive device [28]. The soft information-combining output performs 

hard information combining method in terms of the probability of missed opportunity. On the 

other hand, hard-decisions are found to perform as good as soft decisions when the number of 

cooperating users is high in. The optimum fusion rule for combining sensing information is the 

Chair-Varshney rule which is based on log-likelihood ratio test and are used for decisions 

classification from secondary users in [28]-[30].  
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1.3.6 Security  

 

In cognitive radio, a selfish or malicious user can modify its air interface to mimic a primary user. 

Hence, it can mislead the spectrum sensing performed by legitimate primary users. The 

challenging of CR is to develop an effective counter measures to identify the attack. Such a 

behavior or attack is investigated in [31] and it is termed as primary user emulation (PUE) attack. 

Its harmful effects on the cognitive radio network are investigated. The position of the transmitter 

is used for identifying an attacker in. A more challenging problem is to develop effective 

countermeasures once an attack is identified. Public key encryption based primary user 

identification is proposed in [32] to prevent secondary users masquerading as primary users. 

Legitimate primary users are required to transmit an encrypted value (signature) along with their 

transmissions which is generated using a private key. This signature is, then, used for validating 

the primary user. This method, however, can only be used with digital modulations. Furthermore, 

secondary users should have the capability to synchronize and demodulate primary users’ signal. 

 

1.4 Objectives and Research Contributions 
 

The aim of this work is to analyze the performance of classical narrowband spectrum schemes 

namely Energy Detection, cyclo Stationary Feature Detection and Matched Filtering over 

different fading channels in CR. The performance has been analyzed over AWGN, Rayleigh 

Fading Channels and Rician Fading Channels. This work has compared the performance among 

them and proposes the effective one for further improvement of the detection performance. More 

specially, the thesis has the following objectives: 

To develop system model and analyze the detection performance of narrow band detection i.e. 

Energy Detection, Feature Detection and Matched Filter Detection over AWGN, Rayleigh Fading 

Channels and Rician Fading Channels. 

To propose the most effective method of narrow band spectrum sensing to mitigate the effects of  

AWGN, Rayleigh Fading Channels and Rician Fading Channels and to improve the detection 

performance. The work consists of total five chapters which are follows: 

In Chapter 1, an introduction to the topics discussed in this work is presented. In particular, 

Chapter 1, the preliminaries of CR, their features, challenged and thesis contribution has been 

discussed has been discussed.  

In Chapter 2, the state of art schemes of CR systems are described. In particular, state of art of 

dynamic spectrum access in CR networks and the spectrum sensing techniques are presented 

which are essential for understanding the rest of the chapters. 

In Chapter 3, we have discussed about the Problem Formulation and System Modeling of 

different classical based narraowband sensing over different fading channel 

 

In Chapter 4, the mathematical model and receiver operating characteristics have been developed 

using MATLAB simulation for the classical narrowband spectrum sensing techniques over 
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AWGN, Rayleigh Fading Channels and Rician Fading Channels. This work has compared the 

performance of the above mentioned classical narrowband spectrum sensing techniques over 

AWGN, Rayleigh Fading Channels and Rician Fading Channels.The worked has also discussed 

the limitation of narrow band sensing and suggested the probable solutions and future challenges. 

At the end of this chapter the works summarizes the main contributions introduced in this thesis 

and introduces future research directions. 

In Chapter 5, we have discussed about the concluding remarks and future works. 

 

1.5 Thesis Outline 
 

This work analyzed the Performance of Narrow Band Spectrum Sensing technology in classical 

approaches i.e. Energy Detection, Feature Detection and Matched Filter Detection over AWGN, 

Rayleigh Fading Channels and Rician Fading Channels. It will also propose the most effective 

method of narrow band spectrum sensing to mitigate the effects of AWGN, Rayleigh Fading 

Channels and Rician Fading Channels and to improve the detection performance. 

 

(1)   The approach for formulation of mathematical model over different fading channels in 

different sensing techniques. 

(2)   Simulation, analysis and compare the characteristics of different narrowband channel 

performance.  

(3)   Suggestion of the techniques for optimum performance considering future trends and 

challenges of CR 

. 
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Chapter II 
 

 

State of the Art and Literature Reviews 
 

2.1 Introduction 

 

The demand of wireless communication is increasing day by in the present context. Spectrum 

scarcity occurs due to the use of traditional static frequency allocation planning for 

communication protocol. To meet the increases demand, CR concept came up with the possible 

solution to the problem of spectrum scarcity which brings the concept of Dynamic Spectrum 

Sensing (DSA).  DSA makes it possible to a CR user to sense the vacant spectrum before using it 

temporarily and avoids interference to PU when PU reuses the spectrum [12]. In order to support 

spectrum accessing functionality, CR nodes have the duty to sense the radio environment 

dynamically for being aware of the highly polarized license while spectrum sensing is the most 

challenging task in the promising CR networks. 

The idea of CR was first presented officially in an article by Joseph Mitola III and Gerald Q, 

Maguire, Jr in 1999. It was a new approach in wireless communication that Mitolla describe as 

“The point in which wireless personal digital assistance (PDAs) and the related networks are 

efficiently computationally intelligent about radio resources and related computer to computer 

communication to detect user communications needs as a function of use context, and to provide 

radio resources and wireless and wireless services most appropriate to this needs’ [40].  This is 

an intelligent wireless communication system that is cognizant of its surrounding environment 

and uses a understanding methodology building to learn from the environment, adopt its internal 

states to statistical changes in the incoming radio frequency stimuli by making corresponding 

variation in certain operating parameters in real time and with two primary objectives.: 1) highly 

reliable communication whenever and wherever needed 2) Efficient utilization of radio spectrum 

[41]. 

 

The concept of CR technology made feasible by recent advances such as software-defined radio 

(SDR) which allows in principle flexible and agile access to the spectrum as well as improving 

spectrum efficiency substantially. The concept of CR technology is to efficiently utilization of the 

underutilized bandwidth which is called white spaces (WS). DSA sense the White spaces (WS) 

for opportunistically use and thus more likely to occur interference to the PUs. Therefore one of 

the main challenges in CR network is related to the management of the available radio resources 

among the PSs and cognitive users for satisfying the respective quality of service (QoS) 

requirements and limiting the interference to the PUs [3],[5].  

 

The outside world provides stimuli. Cognitive radio parses these stimuli to recognize the context 

of its communications tasks [9]. Incoming and outgoing multimedia content is parsed for the 

contextual cues necessary to infer the communication context. The orient stage decides on the 

urgency of the communications in part from these cues in order to reduce the burden on the user. 

Cognitive radio is a goal driven framework in which the radio automatically observes the 

environment, infers context, assesses, and learns from its mistakes.  



22 
 

 

Interest is rapidly growing in lowering barriers to spectrum access and improving spectrum 

efficiency.  The introduction of software-defined radios and the realization that new levels of 

computational performance applied to radios creates exciting new possibilities for wireless 

devices. This has resulted in explosive growth in interest in cognitive radios. The term cognitive 

radio was first used by Joe Mitola [9]. The concept and the term cognitive radio quickly caught 

the interest of many in the communications field. Cognitive radio technology enables a number 

of capabilities to improve the usefulness and effectiveness of wireless communications. Those 

functions include:  
 

•     Exploit locally vacant or unused radio channels, or ranges of radio spectrum, to provide 
new paths to spectrum access.  

 
•     Roam  across  borders  and  perform  self-adjustment  to  stay  in  compliance  with  all  
local  radio operations and emissions regulations.  

 
•     Negotiate as a broker on behalf of the radio user with multiple service providers to give 
network access best matched to the user needs at the lowest cost.  

 
•     Adapt itself without user intervention to save battery power or to reduce interference to 
other users.  

 
•     Make  use  of  location  awareness  to  ensure  that  radio  emissions  do  not  interfere  
with  licensed broadcasters.  

 
•     Understand and follow the actions and choices taken by their users to become more 
responsive and anticipate user needs over time.  

 
•     Formulate and issue queries, one radio to another.  

 
•     Execute commands sent by another radio.  

 
 
2.2 Architecture of SDR 
 

It was thought of an ideal goal which a software defined radio (SDR) platform should develop 

reconfigurable wireless black- box that automatically varies its communication variables with 

network and user demands, [18] 

 

 

 

Figure 2.1: a.  SDR 

Software-defined radio (SDR) is a radiocommunication system where components that have 

been typically implemented in hardware (e.g. mixers, filters, amplifiers, 

modulators/demodulators, detectors, etc.) are instead implemented by means of software on a 

personal computer or embedded system. While the concept of SDR is not new, the rapidly 

evolving capabilities of digital electronics render practical many processes which used to be only 

theoretically possible. A software-defined radio can be flexible enough to avoid the limited 

spectrum assumptions of designers of previous kinds of radios, in one or more ways including: 
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 Spread spectrum and ultra wideband techniques allow several transmitters to transmit in 

the same place on the same frequency with very little interference, typically combined with 

one or more error detection and correction techniques to fix all the errors caused by that 

interference. 

 Software defined antennas adaptively lock onto a directional signal, so that receivers can 

better reject interference from other directions, allowing it to detect fainter transmissions. 

 Cognitive radio techniques: each radio measures the spectrum in use and communicates 

that information to other cooperating radios, so that transmitters can avoid mutual 

interference by selecting unused frequencies. 

 Dynamic transmitter power adjustment, based on information communicated from the 

receivers, lowering transmit power to the minimum necessary, reducing the near-far 

problem and reducing interference to others, and extending battery life in portable 

equipment. 

 Wireless mesh network where every added radio increases total capacity and reduces the 

power required at any one node. Each node only transmits loudly enough for the message 

to hop to the nearest node in that direction, reducing near-far problem and reducing 

interference to others. 

 

 

 

 

 

 

Figure 2.1: b.   CR 

CR is an autonomous agent that perceives the user ’s situation to proactively assist the user with 

wireless information services, particularly if the user is too busy or otherwise occupied, such as 

when in personal distress.  
 

2.3 Attributes of Cognitive Radio  

The  above  definitions  provide  good  boundaries  for  a  working  definition  of  a  CR  because  

it  provides multiple valid perspectives of parties with vested interests in this technology. A 

number of attributes have been mentioned in the preceding section, which are now distilled. 

Therefore, depending on the perspective of who is defining a CR, it would possess any or all of 

the capabilities described in the following sections.  
1. Aware:  First of all, the CR possesses awareness. It can sense, store, recall, disseminate, 

and make inferences from information  derived  from  its  RF  environment,  geolocation,  
contextual,  and  is  able  to  sense  its  current internal states.  

2. Adjustable: The operating characteristics of the CR can change in response to its 
environment, of which it is aware.  It can  change  its  emissions  (frequency,  power,  
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&modulation)  in  real-time  without  user  intervention  in response to unexpected changes to 
its environment, or to save battery power or reduce interference to other users.   Also,  since  
the  CR  is  spatially  aware,  it  can  cross  political  borders  and  adjust  itself  to  stay  in 
compliance with all local radio operation and emissions regulations.  

 

3. Automatic Operation: The CR does not require user intervention in order to be adjustable. 

Fundamentally, it may have to perform spectrum sensing and exploitation to be adjustable. 

On its own the CR can exploit locally vacant or unused radio  channels  or  ranges  of  radio  

spectrum  to  provide  new  paths  to  spectrum  access,  based  on  rules originating from local 

policy constraints.  

 
4. Adaptive: The CR can understand and follow the actions and choices taken by its user and 

over time learn to become more responsive and to anticipate his needs.  
 

2.4 Cognitive Radio Elements  

In this section, we describe some of the elements or capabilities that may be found in a cognitive 

radio. These elements are used to provide inputs or constraints to the cognitive and policy engines.  

 

2.4.1     Spectrum Sensing and Sensors  

 

A cognitive radio requires current information regarding its awareness of its environment, its 

internal state, node capabilities, and current needs of its user.   Environmental sensing may be 

local and self contained in a radio or remotely performed elsewhere in the network.  In 

collaborative sensing for example, some other device or system collects information about a 

radios environment and that information may be relayed to the user's radio.  
 
1. Spectrum Sensing: Spectrum sensing refers to the action of a wireless device measuring 

characteristics of received signals, which  may  include  RF  energy  levels  as  part  of  the  
process  of  determining  if  a  particular  section  of spectrum is occupied. Sensing  in  the  
spectrum  domain  is  the  detection  of  some  signal  features  indicating  the  presence  (or 
absence) of other users/services.  These can include signal energy, periodic features (pilots, 
preambles, chip rates),  likely  identity  of  the  other  users/services,  estimation  of  
interference-tolerance  capabilities  and estimation of the duration of spectrum occupancy.  

 
2. Collaboration and Spectrum Sensing: In cognitive radio systems, two or more wireless 

nodes combining their capabilities and spectrum-usage resources using negotiated or prior 
arrangements, is a common way for cognitive radios to have a more global sense of spectrum 
usage. Delegation of spectrum-usage tasks based on the expected global value of this action 
allows the network to select more globally optimal choices in minimizing interference over a 
larger region. The  implementation  of  a  collaborative  communications  solution  may  be  
more  effective  than  individual 'greedy/selfish' approaches. The first stage of a collaborative 
approach is to identify and form the adhoc network using underlay and overlay 
communications. The capabilities and objectives of each node can then be assessed and a 
leader (if required) is elected. A consensus formation process is initiated, and during the 
implementation of the strategy, monitoring and strategy-update mechanisms accommodate 
change.  

 
3. Advanced Collaborative Sensing: Individual cognitive radio devices could combine 
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cognition capabilities and information to achieve a set of goals that benefit all participants or 
reach a global consensus regarding a particular scenario.  One example of this application is 
a distributed sensor mesh network used to build a map of the wireless activity in a wide area 
for frequency planning and allocation, device detection and movement pattern monitoring.  

 
4. Inferred vs. Explicit Sensing: Inferred sensing refers to the act of monitoring 

performance indirectly through measures such as frame error rate.Explicit sensing refers to 
the act of explicitly taking steps and including circuits and devices to be able to directly 
measure an environmental quantity. 

 

2.4.2     Awareness 

 

Aware implies the ability to integrate sensations from the environment with one's immediate goals 

in order to guide behavior or draw conclusions. We recognize Cognizant as a formal equivalent 

of aware and the root of the name "Cognitive Radio". Conscious emphasizes the recognition of 

something sensed or felt. Cognitive radios are aware (conscious) radios with the following senses, 

and the ability to respond to those sensors.  
 
1. RF/Environment Awareness: Physical quantities including received voltage and ambient 

temperature fall in this class.    Received radio frequency  energy  is  a  measure  of  how  
much  a  section  of  spectrum  is  occupied  at  a  point  in  space. Cognitive radio uses 
spectrum awareness to optimize performance and spectrum utilization by a number of factors 
based on orthogonality in the dimensions of time, frequency, code, or modulation. 
Identification of all the sources and infrastructures in current geographical area capable of 
servicing the user and compatible with the radio constitutes network awareness. This also 
involves being aware of subtle nuances within the network's structure such as the data links, 
transport, routing paths and management layers. Network awareness also includes network 
characteristics such as the QoS, frame error rate, frame delay etc.  

 
2. Location Awareness: Geographical location identification by a radio constitutes location 

awareness.  Location awareness is significant, particularly for international and coalition 
communications. This awareness provides the radio ability  to  discern  local  infrastructure  
or  policy,  primary  incumbent  transmitters  and  receivers,  terrain, altitude, propagation 
channels, and the location of network members.  

 
 
2. User Awareness 
 

The  ability  to  interpret  a  user's  needs,  preferences,  service  and  operating  Requirements  

constitutes  user awareness.  User  awareness  drastically  simplifies  the  task  of  providing,  

choosing,  and  using  a  suitable wireless  network  service.  The  users  are  able  to  benefit  

from  a  targeted  solution  or  a  finite  range  of sufficient  solutions,  rather  than  simply  

being  overloaded  with  choices.  This  also  includes  user  speech, language and biometrics 

awareness.  

 
3. Hardware Awareness: The available wireless device processing power, real time operating 

system and remaining energy fall in this category of hardware awareness. This also includes 
DSPs, RF and multimedia chipsets in the wireless device that, among other functions, manage 
modulation, cryptography, protocols, and source coding for voice, data, and imagery.  High-
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density  FPGAs  are  also  important  resources  of  a  radio  enabling reconfiguration  and  
provide  capability  to  change  waveforms  and  adjust  performance  characteristics, 
frequency, power, and other attributes. Cognitive radios need to be aware of the processing 
functionality and capability in order to keep size and power consumption to a minimum.  

 
4. Policy Awareness: The  ability  to  operate  legally  and  agilely  across  multiple  bands  

and  in  multiple different  places  using policies as a means to check whether you're legal 
and eligible constitutes policy awareness. The policies can include regulatory and system 
specific policies. Hard/soft-wired policies can determine when spectrum is considered as 
opportunity as well as providing constraints on using these spectrum opportunities.  

 
 
2.5  Cognitive Cycle 
 

The outside world provides stimuli. Cognitive radio parses these stimuli to recognize the context 

of its communications tasks. Incoming and outgoing multimedia content is parsed for the 

contextual cues necessary to infer the communication context. 
 
The orient-stage decides on the urgency of the communications in part from those cues in order 

to reduce the burden on the user. Normally, the Plan-stage generates and evaluates alternatives, 

including expressing plans to peers and/or the network to obtain advice. The decide stage allocates 

computational and radio recourses to subordinate software. The Act-stage initiates tasks with 

specified resources for specified amount of time. 

 
Figure 2.2: Cognitive Cycle 
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2.6 Spectrum Sensing Techniques 
[  

A major challenge in cognitive radio is that the secondary users need to detect the presence of 

primary users in a licensed spectrum and quit the frequency band as quickly as possible if the 

corresponding primary radio emerges in order to avoid interference to primary users. This 

technique is called spectrum sensing. Spectrum sensing and estimation is the first step to 

implement Cognitive Radio system [5]. We can categorize spectrum sensing techniques into 

direct method, which is considered as frequency domain approach, where the estimation is carried 

out directly from signal and indirect method, which is known as time domain approach, where the 

estimation is performed using autocorrelation of the signal. Another way of categorizing the 

spectrum sensing and estimation methods is by making group into model based parametric 

method and periodogram based non-parametric method. Another way of classification depends 

on the need of spectrum sensing as stated below [13]: 

 

2.6.1  Spectrum Sensing for Spectrum Opportunities  

 

1. Primary Transmitter Detection:  In this case, the detection of primary users is performed 

based on the received signal at CR users. This approach includes matched filter (MF) based 

detection, energy based detection, covariance based detection, waveform based detection, 

cyclostationary based detection, radio identification based detection and random Hough 

Transform based detection. 

2. Cooperative and Collaborative Detection:In this approach, the primary signals for spectrum 

opportunities are detected reliably by interacting or cooperating with other users, and the 

method can be implemented as either centralized access to spectrum coordinated by a 

spectrum server or distributed approach implied by the spectrum load smoothing algorithm or 

external detection.  

2.6.2  Spectrum Sensing for Interference Detection 

 

1. Interference Temperature Detection: In this approach, CR system works as in the ultrawide 

band (UWB) technology where the secondary users coexist with primary users and are 

allowed to transmit with low power and are restricted by the interference temperature level so 

as not to cause harmful interference to primary users.  

 

2. Primary Receiver Detection: In this method, the interference and/or spectrum opportunities 

are detected based on primary receiver's local oscillator leakage power. 

 

2.7 Dynamic Spectrum Access (DSA) in CR Networks  
 
In order to meet the massive demand of frequency spectrum, the CR network has opened up a 

new way of sensing and utilizing properly wireless radio resources. In this section, the state of art 

DSA schemes will be discussed.  Latest experiment  on spectrum management[20] have  shown  

that  the  licensed  frequency  bands  are  rigorously  underutilized  most  of  the time and a 
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particular geographic location   mainly due to the traditional command  and control type spectrum 

regulation  In order to use those remaining spectrum holes or white spaces, effort is put on 

achieving DSA. A taxonomy of the DSA scheme [50] is illustrated in the following figure (fig. 

1).  

 

 
 

Figure 2.3: Fundamental Classification of Dynamic Spectrum Access 
 

2.8  Hierarchical Access Model  

 

In this model, a hierarchical access pattern for the primary and secondary users will be discussed. 

The  fundamental  concept  is  to  open  licensed  spectrum  to  cognitive  users  while  limiting  

the interference perceived  by  the  primary  users.  This model can be categorized as two different 

approaches  for  allocation  of  the  spectrum,  i.e.,  spectrum  underlay and  spectrum  overlay. 

 

2.8.1 Spectrum Underlay 

 

In  an  underlay  system,  regulated  spectral  masks  impose  stringent  limits  on  radiated  power  

as  a function of  frequency,   and  perhaps  location.  Radios coexist in the same band with primary 

licensees,  but  are  regulated  to  cause  interference  below  prescribed  limits [50]. The underlying 

or the URs are sufficiently fast frequency hopping with relatively narrow bandwidth usage in each 

dwell, so that there is little interference from the URs. An underlay radio spectrum distribution is 

shown in the following figure (fig. 2).  

 
Figure 2.4: Spectrum Underlay 

In order to spread out the signal over a large bandwidth, underlay radios can use spread 
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spectrum signaling  systems,  wideband  orthogonal  frequency  division  multiplexing  

(OFDM),  or  impulse radio. 
 

2.8.2 Spectrum Overlay 

Spectrum overlay or OSA, can be applied in either temporal or spatial  domain. For the first case, 

secondary users aim to exploit temporal spectrum opportunities resulting from the bursty traffic 

of primary users and in the latter, cognitive users aim to exploit frequency bands that are not used 

by primary users in  a  particular  geographic  area[50]. A typical application is the reuse   of   

certain   TV   white   spaces   that   are   not   used   for   TV   broadcasting)   in   a   particular   

geographic   location.   In   the  TV  broadcasting   system,   TV-bands assigned  to  adjacent  

regions  are  different  to  avoid  co-site  interference. Spectrum overlay mechanism is shown in 

the following (fig. 3).   
 

 
Figure 2.5: Spectrum overlay 

 

Spectrum overlay is therefore defined  as  doing  some  pre-coding  at  the  transmitter  in  order  

to  diminish  the  interference  at  the receiver. 

 

2.9 Classification of Spectrum Sensing Techniques 

 
The Fig 2.6 shows the detail classification of spectrum sensing techniques. They are broadly 

classified into three main types, transmitter detection or non cooperative sensing, cooperative 

sensing and interference based sensing.  
 

 
 

Figure 2.6: Classifications of spectrum sensing techniques 

 

Transmitter detection technique is further classified into energy detection, matched filter detection 
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and cyclostationary feature detection [43]. In the remainder of this chapter we first briefly 

introduce the traditional spectrum sensing algorithms for narrowband sensing based on their 

implementation type.  However, the work will also highlight on wideband spectrum sensing and 

co-operative spectrum sensing and review the state-of-the–art technique for each category.Most 

of the spectrums sensing schemes are aimed to detecting a active PU transmitter nearby the 

cognitive radio [19].  However as primary receivers may be passive, such as TVs, some receivers 

are difficult to detect in practice. An alternative is to detect the primary transmitter by using 

traditional narrowband sensing algorithm including energy detection, matched filtering, 

cycloststionary feature detection atc. Here, the term “narrowband” implies that the frequency 

range is sufficiently narrow such that the channel frequency response can be considered flat. In 

other words, the bandwidth of our interest is less than the coherence bandwidth of the channel. 

The implementation of these narrowband algorithms requires different conditions, and their 

detection performances are correspondingly distinguished 

 
2.10 Narrowband Sensing 
 

The most efficient way to sense spectral opportunities is to detect active primary transmitter in 

the vicinity of CRs. This work has focused on the effects of this noise over classical narrowband 

based sensing namely energy detection, cyclostationary and matched filter. Generally, the 

performances of these three schemes depend largely on communication surroundings. These 

surrounding environments includes additive white noise (AWGN), multipath fading, shadowing 

and the hidden terminal problem [S1], detection in spectrum sensing may be significantly 

affected. 

 

2.10.1 Energy Detection 
 

The energy based spectrum sensing and detection is the simplest method for detecting primary 

users in the environment in a blind manner [20]. The energy detector is computationally efficient 

and could also be used confidently with analog and digital signals that are at the RF/IF stages or 

at the base band. The Fig 2.4 represents the block diagram of energy detector.  
 

 

s(t) decide PU state 

 
 
 

Figure 2.7: Block diagram of Energy Detector 

 
 

It can be described as; the received signal is passed through the band pass filter and this filter 

selects the required frequency as fc. The output of band pass filter is passed through the non-linear 

device called squaring devices, it will measure the energy associated with the signal. The non- 

linear device output is passed through an integrator; it will measure energy over the fixed duration 

of time window. After this block the energy y(t) of the signal, is compared with the threshold 

value(λ) which depends on the noise floor. 

This technique comprises low computational and implementation complexities, thus leads to its 

popularity. In addition, the notable advantages of this scheme are that it does not require any prior 

information about the PUs transmission [1]. When the signal-to-noise ratio is very low, it would 
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be hard to distinguish between the radio signal and noise signal, therefore the knowledge of the 

noise power can be used to improve the detection performance of the energy detector. 

 

The performance of the detection algorithm can be determined by two probabilities as the 

probability of detection (Pd) and probability of false alarm (Pf). ED is considered a non-coherent 

detection method where knowledge of variance is adequate for choosing threshold to obtain a 

predetermined false alarm rate. Meanwhile, to design a standard CR system higher value detection 

probability as well as lower value of false alarm probability is anticipated. The decision threshold 

λg can be selected for finding the optimum balance between Pd and Pf however this requires 

knowledge of noise and detection signal powers. The noise power can be estimated, while the 

signal power is difficult to predict as it changes depending n the transmission characteristics and 

the distance between the CR and PU [1]. A major drawback is that it has poor detection 

performance under low SNR scenarios and cannot differentiate between the signals from PUs and 

the interference from other CRs. 

 

The above figure (Fig-1) represents the block diagram of energy detector. It can be described as; 

the received signals passed through the band pass filter selects the required frequency fc. Output 

of band pass filter passed through the non-linear device called square law devices it will measure 

the energy associated with the signal. 

 

Non- linear device output is passed through an integrator; it will measure energy over fixed 

duration of time window. After this block the energy y(t) of the signal, is compared with the 

threshold value (λg) to decide whether the primary signal is present or not. The sensing 

performance is degraded when the CR user effected by shadowing and fading even though it uses 

energy detector. 

 

Energy  detection  will  be  optimal  detection  schemes  when  secondary  user  does  not  have 

the  information  of  PU  signal  [19].   Since energy detection adopts non-coherent detection 

method, it does not require the complicated processing as matched filter detection requires. 

Fig.2.4 presents the structure of energy detection.    Bandpass  filter  (BPF)  first  selects  a centre  

frequency  to  receive  signal  from  interested  bandwidth  [23] and  then,  the received  signal  is  

measured  by  a  magnitude  squaring  device.    Integrator controls the observation time, sums up 

all the received signals after squaring device measure during the observation time.  Then the 

receiver compares the sum with predetermined threshold to estimate PU activity.  Although 

energy detection can be performed without prior information obtained from PU's signal, and 

requires low implementation complexity, it performs poorly under low SNR conditions and 

cannot distinguish between signals of PU from signal of other secondary user.   Also,  noise  level  

uncertainty  results  in  energy  detection  poor  performance since energy detection requires the 

knowledge of noise power.  

 

 

 

 

 

 

2.10.2 Cyclostationary  Feature  Detection  
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Another promising spectrum sensing technique is based on feature detection. A feature is unique 

and inherent characteristics of the PUs signal and it is drawn as pilot signal, segment sync, field 

sync, and also the instantaneous amplitude, phase and frequency [36]. In practice, the 

instantaneous features are commonly perceived many signals employed in wireless 

communication and radar system [1]. Cyclostationary feature detection method detects and 

distinguishes between different types of PU signals y exploiting their cyclostationary features. 

Now a day, among to digital conversation has made the use of signal transformation practical in 

order to discover a specific feature. The fundamental and promising feature detection technique 

is based on the cyclic feature [1]. Cyclic feature detection approaches are based on the fact that 

modulated signal are usually coupled with sinusoidal carriers, hopping sequences, cyclic prefix, 

spreading codes or pulse trains, which result in a built in periodicity [36].  

 

Cyclostationary features are originated by the periodicity in the signal in statistical manner like 

mean and autocorrelation or they can be intentionally used in order to sustain the spectrum sensing 

by analyzing a spectral correlation function (SCF) or cyclic spectrum [36]. This detection 

algotithms can differentiate noise from the signals as noise is wide-sense stationary (WSS) with 

no correlation while modulated signals are cyclostationary with spectral correlation due to the 

redundancy of signal periodicities.  The block diagram of Cyclostationary feature detection is 

shown in fig 2.4. 

 

 

         Sampling Decide PU state 

 

S(t) 

 

Figure 2.8: Cyclostationary feature detection 

 

It exploits the periodicity in the received primary signal to identify the presence of primary 

users(PU). The periodicity is commonly embedded in sinusoidal carriers, pulse trains, spreading 

code, hopping sequencies or cycloic prefixes of the primary signals. Due to the periodicity, these 

cyclostationary signals exhibits the features of periodic statistics and pectral correlation which is 

not found in stationary noise and interference. Cyclostationary feature detector can overcome the 

energy detector limits in detecting signals in low SNR environments [42]. In fact, signals with 

overlapping features in the power spectrum, can have non-overlapping features in the cyclic 

spectrum [1]. 

 

2.10.3 Waveformbased or Coherent Sensing 

 

Waveform based or coherent sensing is another promising feature detection scheme which 

patterns like preambles, repeatedly transmitted pilot patterns, spreading sequence, etc. in wireless 

system. In the presence of known pattern, sensing can be performed by correlating the received 

PU signal with a known copy of itself [1] which provides a barrier of this types of sensing. It is 
shown that waveform based sensing outperforms energy detector based sensing in terms of 

reliability and convergence time. Likewise, the performance of the algorithm increases if the 

length of the known signal pattern increases. The OFDM waveform is altered before transmission 
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to generate cycle frequencies at different frequencies which is effective to categories the signals 

[1].  

 

Again if the number of features generated in the signal is increased, robustness against multipath 

fading is improved considerably at a cost of bigger overhead and bandwidth loss. The main 

advantages of the feature detection is easily distinguishable the signals from the noise. In contrast, 

feature detection requires long observation time and higher computationally complexities as it 

requires to calculate a two dimensitional function dependent on both frequency and cyclic 

frequency and also this scheme needs a prior information of the PUs. However, there are two 

disadvantages in this detection technique. First,  this  detection  technique  requires  partial  

information  of  the  PU  signal.   Secondly, high costs of computation because of the introduction 

of cyclic correlation function. 

 

Feature detection is proposed to overcome energy detection disadvantage where it cannot 

distinguish between diferent types of signals. Cyclostationary detection receiver detects the signal 

of PU via exploiting the cyclostationary features in the PU signal [20].  A block diagram of 

cyclostationary feature detection is present in Fig.2.5.  Mostly, PU  transmitted  signals  are  

modulated  signals,  which  are  modulated  by  pulse  train,  cyclic prefixes,  or  repeating  

spreading.  Because of these modulated signals' autocorrelation, they are regarded as 

cyclostationary. Cyclostationary feature detection adopts cyclic correlation function  for  

detecting  PU  signal  with  a  certain  modulation  type  with  additive  noise.  After obtaining  

partial  information  of  the  PU  signal,  cyclic  correlation  function  can  distinguish certain 

modulated PU signals from other modulated signals and noise because different types of 

modulated signals exploit different cyclic characteristics and wide-sense stationary additive noise  

has  no  correlation.  

 

2.10.4 Matched  Filter  Detection 

 

The matched filter is the optimal linear filter [51] for maximizing the signal to noise ratio (SNR) 

[1],[39] in the presence of additive stochastic noise. It is commonly used in radar, in which a 

signal is sent out, and measures the reflected signals looking for something similar to what was 

sent out. In signal processing, a matched filter is obtained by correlating a known signal, or 

template, with an unknown signal to detect the presence of the template in the unknown signal.  

 

r(t)  x(t) y(t) 

 

 

Figure 2.9: Matched filter block diagram 

 

This is equivalent to convolving the unknown signal with a conjugated time-reversed version of 

the template. Matched filters are commonly used in radar, in which a known signal is sent out, 

and the reflected signal is examined for common elements of the out-going signal. Pulse 

compression is an example of matched filtering. It is so called because impulse response is 

matched to input pulse signals. Two-dimensional matched filters are commonly used in image 

processing, e.g., to improve SNR for X-ray. Matched filtering is a demodulation technique with 
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LTI (linear time invariant) filters to maximize SNR. 

The advantages are achieved by correlating the received signal with a template for detecting the 

presence of a known signal in the received signal with a template for detecting the presence of a 

known signal in the received signal. However, it requires a prior knowledge of PUs and requires 

CRs to be equipped with carrier synchronization and timing devices that leads enhanced 

implementation complexity. At CR node, to maximize the output SNR for a certain input signal 

a matched filter is designed which belongs to the linear filter [3]. Matched filter detection is 

applied if a CR has a prior knowledge of PUs transmitted signal. Therefore, matched-filtering is 

known as the optimal strategy for detection of PUs in the presence of stationary Gaussian noise. 

The main advantages of matched filtering is the short time as it requires only 0 (1/SNR) samples 

to meet a given probability of detection constraint as compared to other detection schemes. As 

matched filtering requires a CR node to demodulate received PU signals and thus, it requires a 

prior information of the PUs transmission features such as bandwidth, operating frequency, 

modulation type and order, pulse shaping and frame format [36]. 

Further, if the CRs want to process a variety of signals, the implementation complexity of sensing 

unit is impractically large. In addition, this scheme consumes large power as various receiver 

algorithms require to be executed for detection and a prior knowledge requirement of PUs signals 

place it in the challenging to implement in CR networks [3] 

The optimal detection about additive noise's status is matched filter detection if cognitive radio  

has  PU  signal's  information  because  this  detection  maximizes  signal-to-noise  ratio 

(SNR)[38],[39]. Also,   matched   filter   detection   reduces   observation   time   by   coherent 

detection.   The  structure  of  a  matched  filter  detection  is  present  in  Fig.2.3.   But  coherent 

detection requires a prior information about the PU signal, e.g.  Pulse shape, packet format and 

modulation type, as a template for correlating with received signal and also needs carrier 

synchronisation and timing devices for signal processing. Thus,  matched  filter  detection  is more  

complexity  compared  with  other  classical  detection  schemes  and  it  performs  poorly when 

coherent detection knows few prior information obtained from PU's signal. synchronization and  

timing  devices  for  signal  processing.  Thus,  matched  filter  detection  is more  complexity  

compared  with  other  classical  detection  schemes  and  it  performs  poorly when coherent 

detection knows few prior information obtained from PU's signal.  

 

2.11 Wideband Sensing: Wideband spectrum sensing techniques aim to sense a frequency 

bandwidth that exceeds the coherence bandwidth of the channel. CR required exploiting spectral 

opportunities over wide frequency range from hundreds of megahertz to several GHZ for 

achieving higher opportunistic throughput. The maximum theoretically achieved bit rate is 

directly proportional to the spectral bandwidth. Hence wideband spectrum sensing aims to find 

more spectral opportunities over wide range and achieve higher opportunistic aggregate 

throughput in CRN. Wideband spectrum sensing can be broadly categorize into two types (1)  

Nyquist wideband sensing and  (2) Subnyquist wide band sensing. 

 

 

https://en.wikipedia.org/wiki/Linear_filter
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2.11.1 Nyquist Wideband Sensing  

1. Multiband Joint Detection: A multiband joint detection algorithm that can sense the 

primary signal over multiple frequency bands. The wide band signal first sampled by a high 

sampling rate ADC, after which a serial to parallel conversion circuit use to divide sampled 

data into parallel data streams. Then FFT use to apply to convert he wide band signals to the 

frequency domain. The wide band signal then divided into series of narrowband spectra. 

Finally spectral opportunities are detected using binary hypothesis. 

 

2. Wavelet- Based Spectral Detection: In this algorithm the power spectral density (PSD) 

is modulated as a train of consecutive frequency sub bands, where PSD is smooth within each 

sub bands but exhibits discontinuities and irregularities on the border of two neighboring sub 

bands. The wavelets transform use to locate the singularities of the wideband PSD and spectral 

edge detection purpose. 

 

3. Filter Bank Detection: In this techniques a bank of prototype filters are use to process the 

wide band signal. In each band, the corresponding portion of the spectral for the wideband 

signal is down converted to base band and then low-pass filtered. 

 

4. Sweep Time Detection: Sweep time detector detects the spectrum by sweeping the span 

of the spectrum. The resolution is directly offer how long it takes to complete a measurement. 

Time Pass band = 
𝑅𝐵𝑊

𝑆𝑝𝑎𝑛/𝑆𝑇
 

  

where RBW indicates the resolution band and ST indicates sweep time. 

 

2.11.2 SubNyquist Wideband Sensing  

1. Compressive Sensing: Compressive sensing(CS) becomes a promising approach to 

recover the wideband signal extending only partial measurements. In the CS framework, a 

real-valued finite –length, one –dimensional time –variant signal x(t), 0≤ t ≤ x, can be  denoted 

as a finite wideband sum of arthonormal basis functions 

  

x(t) = ∑biΨ(t) = Ψb

𝑁

𝑖=1

 

Where bi indicates basis co-efficient  

 

2. Multiband Joint Detection: A multiband joint detection algorithm that can sense the 

primary signal over multiple frequency bands. The wide band signal first sampled by a high 

sampling rate ADC, after which a serial to parallel conversion circuit use to divide sampled 

data into parallel data streams. Then FFT use to apply to convert he wide band signals to the 

frequency domain. The wide band signal then divided into series of narrowband spectra. 

Finally spectral opportunities are detected using binary hypothesis. 

 

3. Multi Channel Sub-Nyqyist Wideband Sensing: It is mixed analog-digital spectrum 

sensing method also known as modulated wideband converter (MWC) that has multi sampling 
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channels. A unified digital architecture for spectrum-blind reconstruction was introduced in 

that scheme. The multi channel structure in MWC provides robustness against the noise. 

 

4. Multi Coset (MC): It is another kind of multichannel sampling algorithm and applies 

when the frequency power distribution is sparse. 

 

5. Multi- rate Asynchronous Wideband Sub Nyquist Sampling: The sampling of the 

wideband signals performed by the parallel low-rate sampling. It has better data compression 

capability, to have excellent performance in realistic wireless channels, and is more suitable 

to implement in CR networks. 

 

2.11.3 Open Research Challenge 
 

1. Sparse Based Selection: Nearly all subnyquist wideband sensing techniques require that the 

wideband signal should be sparse in a suitable basis. 

 

2. Adaptive Wideband Sensing: The required number of measurement will proportionately 

change when the sparsity level of wideband signal varies. 

 

3. Cooperative wideband sensing 
 

 

2.11.4 Cooperative Spectrum Sensing  
 

Since relays  help  networks  increase  spatial  diversity  [52] cooperative  spectrum  sensing 

mitigates  shadowing  and  hidden  terminal  problem  effects.   Co-operative sensing can be 

divided broadly into 2 categories: 

 

2.11.4.1   Centralized Sensing 
 

In this sensing a central unit collects sensing information from cognitive devices, identifies the 

available spectrum and broadcast this information to other CRs or directly controls the CR traffic. 

The hard (binary) sensing results are gathered at a central place known as access point (AP). The 

user send the a quantized version of their local decisions to control unit (fusion centre) and the 

central unit is taken the final decision. The goal is to mitigate the fading effects of the channel 

and increase detection performance. 

 

2.11.4.2  Distributed Sensing 

 

Cognitive nodes (CN) share information with each other but they make their own decision as 

which port of the spectrum they can use. This makes low complexity with reduced protocol 

overhead. 

 

2.11.4.3 External Sensing 
 

External agent performs the sensing and broadcasts the channel occupancy information. The main 

advantages of external sensing are overcoming the hidden PUs problem and the uncertainty due 
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to shadowing and fading. 
 

2.12     Cooperative  Spectrum  Sensing  
 

Since  relays  help  networks  increase  spatial  diversity  [52], [53],  cooperative  spectrum  sensing 

mitigates  shadowing  and  hidden  terminal  problem  efects.   For  example,  in  a  distributed 

network  as  shown  Fig.2.6 from song p13,  each  SU  observes  PU  activity  independently,  and  

forwards  its received  data  or  local  decision  to  the  SU,  also  regarded  as  destination.   The  

destination  is the  SU  who  wants  to  utilize  PU  spectrum  through  report  channel.   Then  the  

destination combines  all  the  data  or  local  decisions  from  other  secondary  users  (relays)  

and  its  own received  data  or  local  decision  to  final  decide  on  PU's  activity.    Up  to  now,  

researchers have  designed  several  types  of  cooperative  spectrum  sensing  schemes,  i.e.  N-

out-of-K rule, maximal ratio combining (MRC) [54], square-law combining (SLC) [7], square-

law selection (SLS)  [7],  and  selection  combining  (SC)  [5].  Based on the type of information 

transmitted in report channels, cooperative spectrum sensing schemes are classified into data 

fusion and decision fusion.  Based on the methods to achieve cooperative sensing, cooperative 

spectrum sensing schemes have two models:  parallel fusion model and game theoretical model.  
 

 

2.12.1 Cooperation Fusion  
 

Data Fusion:  When secondary user relays received signal directly to destination without any  

further  processing,  the  destination  will  receive  these  signal  as  reference  when  making final 

decision on PU status.  If the destination knows well about the channel state information (CSI) 

between PU and the secondary users, MRC is the optimal scheme for spectrum sensing [55]. If  

the  destination  has  partial  CSI,  which  mostly  considered  as  SNR  in  spectrum sensing  case,  

between  PU  and  the  secondary  users,  selection  combining  is  the  best  choice.  
 

In  practice,  it  is  difficult  to  have  perfect  CSI  at  the  destination,  which  makes  MRC  non- 

practical.   When  energy  detection  is  employed  in  selection  combining,  each  secondary  user 

requires independently to send SNR and energy vectors to destination.  This requires much 

bandwidth for report channels.  Thus, SLC and SLS [5] [7] are proposed for bandwidth saving. 

In  SLC  and  SLS  schemes,  secondary  user  only  needs  to  send  energy  vector  to  destination, 

which saves nearly half of the bandwidth compared with the case of selection combining.  
 

2.12.2 Decision  Fusion:   Diferent  from  data  fusion  model,  in  decision  fusion  model,  each 

secondary  user  estimates  received  PU  signal  and  takes  local  decision  on  the  status  of  PU, 

independently.  The  destination  combines  local  decisions  from  secondary  users  and  its own 

local decision making a binary decision on PU's status.  The decision fusion also known as N-out-

of-K rule [33], including OR, AND  and  Majority  rules. Suppose k represents the number of 

secondary users and destination, the destination with N-out-of-K  rule makes final decision that 

PU is present when n or more local decisions show that PU is present.  

2.12.3 Cooperation  Models 
 

Cooperation structure, also called cooperation model [50], should consider how to group 

secondary users, how to combine local observations for making final decisions on PU activity are 

made.  Currently, there exist two common cooperation models:   parallel fusion (PF) model and 

game theoretical model.  
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1. Parallel  Fusion  Model:  Each  SU  has  the  same  priority  and  should  sense  PU  signal, 

report  its  received  signal  to  the  other  SU.  Thus,  distributed  cognitive  network  is  a  

special case  of  parallel  fusion  model.   For  example,  as  Fig.2.6  shown,  SU4  makes  its  

final  binary decision  based  on  its  local  sensing  and  sensing  data  from  other  SUs  via  

report  channels. Thus, parallel fusion model requires SUs to be synchronized.  Due to parallel 

fusion model's simple structure, data fusion and decision fusion are derived from this model.  

2. Game  Theoretical  Model:  In  game  theoretical  model,  secondary  users  are  regarded as 

a set of players.  Depending on the rules of the game, secondary users may have diferent 

performance.   Based  on  game  theoretical  model,  many  game  rules  are  developed  [51]  

[5]. For example, in a coalitional game [5], secondary users are divided into groups freely, 

called   based on their estimation about the communication surroundings. As Fig.2.7 shows, 

SU1, SU2 and SU3, belong to the same coalition 1, will sense the same specified PU1 

spectrum.  Then SU1 and SU2 will sense local data to SU3, which temporarily works as a 

local fusion center in coalition in this coalition, to make final decision.  However, these 

coalitions are self-organized and not fixed; each secondary user joins or leaves freely 

depending on its utility value, which accounts for the tradeof between receiving high 

probability of detectionand energy cost incurred. Thus, cognitive networks achieve high 

probability of spectrum detection and spectrum management by introducing game coalitional.  
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Spectrum sensing is the main feature of CR technology. Spectrum sense gives an idea of detecting 

the presence of PUs in a licensed user. In this work, we shall mainly discuss about the three 

classical method of narrowband spectrum sensing namely ED, Cyclostationary Feature Detection 

and Matched filter and compare their performance over different fading channel as the sensing 

performance can be degraded over AWGN, shadowing, multipath fading [5]. Energy detection is 

the most popular signal detection method due to its simple circuit in practical implementation. 

The principle of energy detector is to find the energy of the received signal and compares that 

with the threshold [45].  

 

The basic scheme for spectrum sensing is based on energy detection where received PU is 

measured in a specific time period of a particular frequency band of interest.[3]. This non-coherent 

detection scheme will be optimal detection schemes when a secondary user does not have 

information of primary user signal. A cyclostationary process has statistical properties that vary 

periodically over time. It exploits this periodicity in the received primary signal to identify the 

presence of primary users. In this method the cyclic spectral correlation function (SCF) is the 

parameter that is used for detecting the primary user signals. Matched filter is the optimal 

detection method since it maximizes the SNR of the received signal.  

 

3.1 Energy Detection Based System Modeling 

 

Energy  detection  will  be  optimal  detection  schemes  when  secondary  user  does  not  have 

the  information  of  PU  signal  [33].   Since energy detection adopts non-coherent detection 

method, it does not require the complicated processing as matched filter detection requires. Fig.31 

presents the block diagram of energy detection. Bandpass filter  (BPF)  first  selects  a centre  

frequency  to  receive  signal  from  interested  bandwidth [34][35]  and  then,  the received  signal  

is  measured  by  a  magnitude  squaring  device. The Integrator controls the observation time, 

sums up all the received signals after squaring device measure during the observation time.  Then 

the receiver compares the sum with predetermined threshold to estimate PU activity.  Although 

energy detection can be performed without prior information obtained from PU's signal, and 

requires low implementation complexity, it performs poorly under low SNR conditions and 

cannot distinguish between signals of PU from signal of other secondary user. Also,  noise  level  

uncertainty  results  in  energy  detection  poor  performance since energy detection requires the 

knowledge of noise power.  

 

 

 

 

 

s(t) decide PU state 

 
 

 

Figure 3.1: Spectrum Sensing of Energy Detection 

 

Fig 3.1 represents the basic structure of energy detection. Band Pass Filter (BPF) first selects a 
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centre frequency to receive signal from interested bandwidth [23][35][38] and then the received 

signal is measured by a magnitude squaring device. Integrator controls the observations time and 

sums up all the received signals after squaring devices. Then the receiver sum with predetermined 

threshold to estimate PU activity. This spectrum sensing technique performs poorly under low 

SNR conditions and cannot distinguish between signals of PU from signals of other secondary 

user [25][46][47]. During the energy Detection based sensing there are two common assumption 

works i.e. the noise is stationary and variance is known.The performance of ED further degrades 

when the noise is not stationary and the variance is not known [59]. Other problems with the 

energy detector include baseband filter effects and spurious tones [60].  

 

The received signal in narrowband energy detection follows a two hypothesis. Assume that the 

primary signal s(t), is transmitted between PU and SU over a wireless fading channel and the 

received signal is r(t). r(t) is considered as binary hypothesis that follows: H0 (representing the 

absence of PU) and H1 (representing the presence of PU) and can be expressed as [2] 

 

𝐻0:  𝑤(𝑛)         (1) 
 

𝐻1:  𝑟(𝑡) = ℎ𝑠(𝑛) +  𝑤(𝑛)       (2) 

 

Where s(n) is the signal to be detected,w(n) represent the additive white Gaussian noise(AWGN), 

n is sample index, h is complex fading envelope and h=0 or 1under hypothesis H0 or H1 

respectively. The received signal [5] is first pre-filtered by an ideal band pass filter with transfer 

function 

 

H(f)= {
2

√𝑁01
,

0
 

|𝑓 − 𝑓𝑐|≤W,(3) 
|𝑓 − 𝑓𝑐|>W, 

 

The goal of Energy detector is to decide between the two hypotheses which can be achieved by 

forming a test signal. If the value of test signal is lower than predefined threshold value (𝜆𝐸), 
hypothesis H0 is choose i.e. PU is absent, otherwise H1 hypothesis is chosen. The output of this 

filter is then squared and integrated over an observation vector of N size to finally produce a 

measure of the energy of the received waveform. 

 

 

 The output of the integrator denoted by Y will act as test statistics to test the hypothesis H0 and 

H1.Then the test of decision statistic Y can be written as    

 Y = ∑ |𝑦(𝑛)|𝑁
𝑛=0

2           (4) 
 

The performance of the detection algorithm can be summarized with two probabilities: probability 

of detection (𝑃𝐷) and probability of false alarm (𝑃𝐹) which can be generally computed by [5] 
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 𝑃𝐷 = 𝑃𝑅 (𝑌 > 𝜆𝐸|𝐻1)         (5) 

 𝑃𝐹 = 𝑃𝑅 (𝑌 > 𝜆𝐸|𝐻0)         (6) 

𝑃𝐹should be kept as small as possible in order to prevent underutilization of transmission 

opportunities. The decision threshold𝜆𝐸can be selected for finding an optimum balance between 

𝑃𝐷 and 𝑃𝐹 .However, this requires knowledge of noise and detection powers. The noise can be 
estimated, but the signal power is difficult to estimate as it changes depending on ongoing 

transmission characteristics and distance between the CR radio and primary user.  

The white noise can be modeled as zero mean Gaussian random variable with variance 

σw
2 , i. e w(n) = N(0, σw

2 ). For a simplified analysis if the signal term as a zero –mean Gaussian 

variable then, s(n) = N(0, σs
2). But the model for s(n) is more complicated as fading should be 

also considered. Because of these assumptions, the decision metric (4) follows a central chi-square 

(χ2) distribution with 2N degree of freedom  χ2N 
2 and can be modeled as 

 Y = {

𝜎𝑤
2

2
χ2𝑁
2 𝐻0

𝜎𝑠
2+𝜎𝑤

2

2
χ2𝑁
2 𝐻1

        (7) 

For energy detector, the probabilities of PD and PF can be calculated as [5] 

 PD= 1- 𝛤 (𝐿𝑓𝐿𝑡,
𝜆𝐸

𝜎𝑠
2+𝜎𝑤

2)      (8) 

PF= 1- 𝛤 (𝐿𝑓𝐿𝑡,
𝜆𝐸

𝜎𝑤
2)        (9) 

Where  𝛤(𝑎, 𝑥) is incomplete gamma function as given in [80] (ref. equation 6.5.1) 

The corresponding probability density function (PDF) in the presence of AWGN is expressed 

according to [5, (3)], namely 

 𝑓𝑌 (y)= 

{
 
 

 
 

1

2𝑁𝛤(𝑁)
𝑦𝑁−1𝑒−

𝑦

2𝐻0

1

2
(
𝑦

2γ
)

𝑁−1

2
𝑒
2γ+𝑦

2 IN−1(√2γy),      𝐻1

     (10) 

Where 𝛤(. ) is the incomplete gamma function, γ is the ratio of the Primary users signal power 

to noise power, i.e. (SNR) =
𝜎𝑠
2

𝜎𝑤
2 , 

and 𝐼𝑁(. ) is the N
th order modified Bassel function of the first kind.  

 

The (6) can be derived by (10) [7]: 

 𝑃𝐹 =
𝛤(𝑁

𝜆𝐸
2
)

𝛤(𝑁)
          (11) 
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The (5) can be obtained from (10) by using cumulative distribution function (CDF) of Y  

Hence, 𝑃𝐷 = 1 − F𝑌(y) =  𝑄𝑁(√2γ, √𝜆𝐸)      (12)      

whereF𝑌(y) represents the CDF of Y, 𝑄𝑁(. , . ) , represents the  Nth order generalized Marcum-Q 
function. 

If the signal power is unknown, we can first set the false alarm probability PF to a specific 

constant. By equation (10), the detection threshold 𝜆𝐸  can be determined. Then for fixed number 

of samples the detection probability PD can be evaluated by substituting the 𝜆𝐸 in (11). As 

expected PF is independent of γ under H0 there is no primary signal present. When h is varying 
due to fading, equation (12) gives the probability of detection as a function of the instantaneous 

SNR γ.In this case, the average probability of detection PD may be derived by averaging (12) over 

fading statistics [25], [72] 

𝑃𝐷 = =∫ 𝑄𝑁(√2γ, 𝜆𝐸)f𝑌 (y)𝑑𝑦       (13) 

Where f𝑌 (x) is the probability distribution function (PDF) of SNR under fading. 

Where F𝑌(y)is the Nth order generalized Marcum-Q function given by [75] 

 𝑄𝑁(√2γ, √𝜆𝐸) =   
1

√2γ
N−1 ∫ 𝑡𝑁𝑒 −

(√2γ)2+𝑡2

2
∞

𝜆𝐸
IN−1(√2γt) 𝑑𝑡   (14) 

Here,IN−1  denotes the modified Bessel function of the first kind.   

According to [76], equation (13) can be simplified and rewritten as 

       𝑄𝑁(√2γ, √𝜆𝐸) =   𝑒
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑖

i!

𝑁−1

𝑖=0

 +𝑒−
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑛

n!

∞

𝑛=𝑁

 (1 − 𝑒−γ∑
γ𝑘

k!

𝑛−𝑁

𝑘=0
  (15) 

 

 

 

 

 

3.2 Energy Detection Performance  

3.2.1 Raleigh Fading Channels 

The Channel between PU and SU is modeled as Rayleigh fading channels, the SNR’s (γ)PDF is 
following an exponential distribution given as [5] 

f(γ) = 
1

γˉ
exp (−

γ

γˉ
)         (16) 
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whereγˉ represents the average SNR in local channels. The average PD over Rayleigh fading 
channels is derived by averaging equation (12) and equation (16) 

 ˉPD = ∫ 𝑄𝑢(√2γ, 𝜆𝐸)fγ (x) 𝑑γ
∞

0         (17) 

By using [75, Eq(30)], equation (17) can be expressed as  

ˉPD=𝑒
𝜆𝐸
2 ∑

1

n!
(
𝜆𝐸

2
)2

𝑢−2

𝑛=0
+ (

1+γˉ

γˉ
)
𝑢−1

⌊𝑒
−

𝜆𝐸
2(1+ γˉ) − 𝑒−

𝜆𝐸
2 ∑

1

n!
𝑢−2
𝑛=0

𝜆𝐸γˉ

2(1+γˉ)
⌋  (18) 

 

3.2.2 Nakagami Fading Channel 

Although Rayleigh and Rician distributions are the most popular distributions to model fading 

channels, some experimental data does not fit well into neither of these distributions. Thus, a more 

general fading distribution was developed whose parameters can be adjusted to fit a variety of 

empirical measurements [73]. This distribution is called Nakagami fading distribution. It is 

possible to describe both Rayleigh and Rician fading with the help of a single model using the 

Nakagamidistribution. The Nakagami m-distribution is used in communication systems 

characterize the statistics of signal transmitted through multipath fading channels.  

The probability density function (PDF) γ in a Nakagami distribution follows an exponential PDF 
and given by [23] 

 f(γ) = 
1

𝛤(𝑚)
(
𝑚

γˉ
)
m

γm−1 exp (
𝑚γ

γˉ
), γ ≥ 0      (19) 

where m is the Nakagami parameter  

The average PD over Nakagami fading channel is derived by averaging equation (15) over 

equation (19) [77]. 

ˉPD=   𝑒
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑖

i!

𝑢−1

𝑖=0

 +𝑒−
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑛

n!

∞

𝑛=𝑢

(1 −
1

𝛤(𝑚)
(
𝑚

γˉ
)
m

∑
∫ e

−
m+γˉ

γˉ
γ
γ𝑘+𝑚−1dγ

∞
0

k!

𝑛−𝑢

𝑘=0

 (20) 

  

 

By using [78] equation (20) can be written as [77] 

ˉPD=   𝑒
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑖

i!

𝑢−1

𝑖=0

 +𝑒−
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)
𝑛

n!

∞

𝑛=𝑢

(1 − (
𝑚

m+γˉ
)
m
∑ (

γˉ

m+γˉ
)
c   (m+c−1)!

𝛤(𝑚)c!

𝑛−𝑢

𝑐=0
  (21) 

 

3.2.3 Rician Fading Channel 

Some types of scattering environments have a specular or LOS (Line of Sight) component. In this 
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case, the amplitude of received signals has a ricianfading channel where the PDF of SNR(γ) will 
follow an exponential distribution given in [5] 

 fy(x)= 
𝑘+1

γˉ
exp (−𝑘

k+1)γ

γˉ
)*I0(2√

k+1)

γˉ
), γ ≥ 0     (22) 

wherek is the Rician factor. The average detection probability PD over Rician fading channels 

isderived by averaging equation (15) over equation (22) 

ˉPD= 𝑒
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑖

i!

𝑁−1

𝑖=0

 +𝑒−
𝜆𝐸
2 ∑

(
𝜆𝐸
2
)𝑛

n!

∞

𝑛=𝑁

(1 −
(𝑘+1)𝑒−𝑘

γˉ
∑

∫ e
−
(k+1+γˉ)γ

γˉ γc I0(2√
k(k+1)γ

γˉ
)dγ

∞
0

c!

𝑛−𝑁

𝑐=0

  (23) 

  

3.3 Cyclostationary  Feature  Detection  

 

A cyclostationary process has statistical properties that vary periodically over time. 

Cyclostationary feature detection method deals with the inherent cyclostationary properties or 

features of the signal. Such features have a periodic statistics and spectral correlation that cannot 

be found in any interference signal or stationary noise. It exploits this periodicity in the received 

primary signal to identify the presence of primary users, and that is why the cyclostationary 

feature detection method possesses high noise immunity than any other spectrum sensing method. 

In this method, the cyclic spectral correlation function (SCF) is the parameter that is used for 

detecting the primary user signals. The block diagram of cyclostationary feature detection is as 

follows: 

 

 

          Sampling Decide PU status 

 

S(t) 

  

Figure 3.2: Spectrum Sensing of Cyclostationary Feature Detection 

 

 

 Cyclostationary spectrum sensing method performs better than energy detection method in low 

SNR regions, because of its noise rejection capability. This occurs because noise is totally random 

and does not exhibit any periodic form of behavior. When we have no prior knowledge about 

primary user’s waveform, which is the scenario in real life, then best technique to be adopted is 

cyclostationary feature detection. As an advantage, the cyclostationary spectrum sensing method 

can be used to find out the type of modulation scheme used by the primary user signal. At the 

same time, the cyclostationary method has some disadvantages too. These include spectral 

leakage of high amplitude signals, their non-linearity etc. The method is computationally complex 

and hence requires significantly longer observation time and also costs high [1]. Also, when an 

insufficient number of samples are used, the detection performance will degrade due to the poor 

estimate of the cyclic spectral density. 
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3.3.1 Spectral Correlation Function (SCF) 

  

Two dimensional spectral correlations is the way to extract the periodic features of the primary 

user signal. These signals are cyclostationary processes that are periodic in time t.They also 

possess a periodic autocorrelation function. 
 

Ry(t+)=Ry(t+T0, )        (24) 

 
 

The Fourier transform of the cyclic autocorrelation function is given as follows: 
 

Ry
α(f) = lim

𝑛→∞

1

𝑇
∫ 𝑦𝑇 (𝑡 +



2
) 𝑦ˉ (𝑡 −



2
) 𝑒−𝑗2𝜋𝛼𝑡𝑑𝑡    (25) 

 

In the above equation, α is the fundamental cyclic frequency and  Ry
α  is the cyclic autocorrelation 

function.  If cyclostationary with period T then cycle autocorrelation has component at =1/T. 

The spectrum correlation density function is obtained by cyclic autocorrelation function and can 

separate the Wide-Sense Stationary noise from the primary signal. When the parameter α =0, the 

SCF becomes power spectral density.  

The cyclic spectral density (CSD) function of a received signal can be calculated as [29]. 

 Sy
α(f) = ∫ Ry

α∞

−∞
() exp(−j2𝜋𝑓) d       (26) 

Where Ry
∝(τ) = E[y(n + τ)y∗(n − r)ej2παn       (27) 

is the cyclic autocorrelation function(CAF) and  is is the clic frequency. The CSD in (26) is a 

function of the frequency f and the cyclic frequency  and any cyclostationary features can be 

detected in the cyclic frequency domain a property that is exploited to be used as a spectrum 

sensing technique. Cycle autocorrelation is time domain transforms, its frequency domain 

equivalent spectral correlation function (SCF) can be expressed as follows: 

 

 

Sy
α(f) = lim

⊿𝑡→𝛼
 lim
𝑇→𝛼

1

⊿𝑡

1

𝑇
∫ 𝑌𝑇

⊿𝑡

2

−
⊿𝑡

2

(𝑡, 𝑓 +
α

2
)𝑌∗𝑇 (𝑡, 𝑓 −

α

2
)𝑑𝑡    (28) 

 
 

Sy
α(f)is a two dimensional complex transform on a support set(f,α). Spectral correlation function 

can be used for feature detection. Autocorrelation function is also quadratic transform thus feature 

of modulated signals that are function of symbol rate, carrier, etc. can be detected.The probability 

of detection and probability of false alarm in a cyclostationary feature detection can be expressed 

as [79]: 
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 PD = PR(√
2𝛾

𝛿
,
𝜆𝐸

𝛿
)         (29) 

 PF = exp[
–(2𝑁+1)𝜆𝐸

2

2𝛿4
]         (30) 

Whereγ representsSNR,𝛿 represents average energy of received signal and N is number of 

samples. CSD is computed and averaging over a sufficient number of samples. The received 

signal is compared with the decision threshold and we can get the probability of detection and 

probability of false alarm of cyclostationary feature detection over different fading channel. The 

correlation and averaging also done to get cyclic spectrum (Equation (18), (21), (23), (29) & (30) 

refers). 

When SCF is plotted, the occupancy status of the spectrum can be found out. If a primary user 

signal is present in the operating frequency range, the SCF gives a peak at its centre. The peak 

will not be present in the case when there is no primary user signal present in the concerned 

frequency range. In addition to this, the SCF can be used to find out the type of modulation scheme 

used by the primary user signal. This can be achieved by counting the number of secondary peaks 

at the double frequencies. If the modulation scheme involved is BPSK, there will be single 

secondary peaks at the double of operating frequency. Instead if the modulation scheme involved 

is QPSK, there will be two such secondary peaks at the double of operating frequency.  

 

3.3.2 Simulation Model of Proposed System 

 

Some random signal is taken as the primary user signal. The signal from primary user is 

modulated and then relayed by multiple cognitive relays and the data is send to the fusion center. 

The relaying method involved here is amplifying and forward relaying. At the fusion center, either 

hard or soft combination schemes or any of the majority combining rules, AND, OR rules etc can 

be used.  
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Figure 3.3:  Power Spectrum Density   Spectrum Correlation Function 

 

 

Then after passing through the wireless channel (here AWGN is used as the channel) it reaches 

the cyclostationary feature detector (CFD) section. This section involves a band pass filter, an 

analog to digital convertor, finding the fast Fourier transform, correlating averaging and feature 

detection. Final output of the CFD section is the estimated cyclic SCF. This spectral correlation 

function is analyzed to detect he signals in the cyclostationary -based spectrum sensing method. 

CFD output is demodulated using an appropriate scheme before it reaches the primary user’s 

receiver.  

          (SCF) 

       Channel 

  

     

Figure 3.4:   Block Diagram of SCF 

The CSD function outputs peak values when the click frequency is equal to the fundamental 

frequencies of transmitted signal x (t). Cyclic frequencies can be assumed to be known [20], [22] 

or they can be extracted and used as features for identifying transmitted signals [2]. As a result 

cyclostationary feature detector can overcome the energy detector limits in detecting signals in 

low SNR environments. In fact, signals with overlapping features in the power spectrum, can have 

non overlapping features in the cyclic spectrum. The cyclic spectrum is a much comfortable 

domain for signal detection than typical power spectral density. 

Thus cyclostationary feature detection is robust to noise uncertainties and performs better than 

energy detection in low SNR region. The detection method is improving the overall CR through 

its cooperative sensing method. 

 

3.4 Matched Filter Based Detection  

Matched-filtering is known as the optimum method for detection of primary users when the 

transmitted signal is known [39]. The main advantage of matched filtering is the short time to 

achieve a certain probability of false alarm or probability of missdetection[49] as compared to 

other methods. In fact, the required number of samples grows as O(1/SNR) for a target probability 

of false alarm at low SNRs for matched-filtering [49]. However, matched-filtering requires 

cognitive radio to demodulate received signals. Hence, it requires perfect knowledge of the 

primary users signaling features such as bandwidth, operating frequency, modulation type and 

order, pulse shaping, and frame format which maximizes signal to noise ratio. The primary users 

signaling can be obtained by using CR devices with carrier synchronization and timing devices 

that leads enhanced implementation complexity [1],[4]. 
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3.4.1 System Modeling 

The matched filter detection based sensing is exactly the same as the traditional matched filter 

detection technique deployed in digital receivers of the primary user signal is required (such as 

the modulation format data rate, carrier frequency, pulse shape, etc). It is a system of linear filter 

used in the framework of the digital signal processing. It is used to optimize the SNR in presence 

of the additive noise stochastic. 
 

   

 

 r(t)  

 

                               t = T 

 

 

Figure 3.5:  Matched filter based spectrum sensing and detection of primary users. 

 
 

The matched filter detection techniqueis a very well-treated topic in literature, and therefore, we 

just present the fundamental results on matched filter detection in this section. Given a real 
transmit signal waveform s(t) defined over 0 ≤ t ≤ T the corresponding matched filter maximizing 

the signal to noise ratio at the output of the filter sampler is given by 

 

 

h(t) = {
𝑠(T − t);         0 ⩽ t ⩽ T 

0;   elsewhere
      (31) 

 

  

r(t)  x(t) y(t) 

  

                 Figure 3.6:  Block diagram of matched filtering based sensing 

The fig 3.5depicts matched filter based spectrum sensing method for primary user detection. 

Considering that complete signal information of the primary user signal is required in this case 

the matched filter method is not really recommended by the system designers to suit our purpose 

here unless when the complete signal information is known to the secondary user. Then based on 

the test statistic 𝜉( 𝑛𝑇) at the poyput of the filter sampled every t=nT seconds, the detector is 

given by 

 

D(nT) ={

0;        𝜉 (𝑛𝑇)˂𝜆𝐸

1;      𝜉( 𝑛𝑇) ≥ 𝜆𝐸

}      (32) 
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The matched filter-based detector gives better detection probability compared to the previously 

discussed methods using the energy detector and the cyclostationary feature based detector; 

however as mentioned, it requires complete signal information and needs to perform the entire 

receiver operations (such as synchronization, demodulation, etc.) in order to detect the signal. 

Obviously for match filter based spectrum sensing a complete knowledge. 

 

3.4.2 The Key Parameters of Performance for Matched Filter 

The decision test statistics T(X) of the MF detector decides H1 if; 

 T(X) = ∑ x[n]𝑁−1
𝑛=0 s[n] > 𝜆𝐸        (33) 

whereH0: x[n] = w[n],   n= 0, 1 ….N-1 

 H1: x[n] = s[n] + w[n],   n= 0, 1 ….N-1 and 

λE is decisionthreshold .  

The distribution of the test statistics under either hypotheses, H and H1 respectively 

 T ~ {
𝑁(0,𝜎2𝜀)     𝑢𝑛𝑑𝑒𝑟 H0  

𝑁(𝜀,𝜎2𝜀)     𝑢𝑛𝑑𝑒𝑟 H1  
    

The performance of the MF detector is based on the following two parameters: the probability of 

detection (PD) and the probability of false alarm (PF). The probability of false alarm is when there 

is no signal, i.e. just the noise, and we detect signal, from the distribution H1 of the test static T 

under hypothesis H0 we have: 

  𝑃𝐹 = 𝑃𝑟(𝑇 > 𝜆𝐸|𝐻0)  

 = 𝑃𝑟(𝑇′ >
𝜆𝐸

√𝜎2𝜀
|𝐻0),  𝑇 ′(𝑋) =

𝑇(𝑋)

√𝜎2𝜀
 

 𝑃𝐹 = 𝑄
𝜆𝐸

√𝜎2𝜀
or𝜆𝐸 = 𝑄

−1(𝑃𝐹) √𝜎2𝜀     (34) 

Where T(X) is the Gaussian random variables, Q (.) is the standard Gaussian 

complementary Cumulative Distribution Function (CDF) and 𝑄−1(.) is considered as the 

inverse standard Gaussian complementary CDF and 

ε is the energy of the  signal source s[n]. During the presence of signal, the probability 

of detection (PD) under hypothesis H1 is: 

 𝑃𝐷 = 𝑃𝑟(𝑇 > 𝜆𝐸|𝐻1)  

 = 𝑄
𝜆𝐸−𝜀

√𝜎2𝜀
 =𝑄(𝑄−1(𝑃𝐹) −

𝜀

√𝜎2
      (35) 
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From the equation (34) and (35) (over (18), (19) and (22))we can get the probability of detection 

and probability of false alarm of matched filter detection over different fading channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV 
 

 

 

Performance Analysis and Simulation 
 

4.0  Introduction 

In the previous chapter we have discussed about the mathematical model of classical spectrum 

sensing. In this chapter, this work the performance of the different classical narrowband sensing 

methods will be compared in order and analyzed for better application.  

An extensive set of simulations have been conducted using the system model as described in the 

previous section. The emphasis is to analyze the comparative performance of classical spectrum 

sensing techniques. The results are conducted on the basis of probability of false alarm and 
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probability of false alarm detection under different SNR in different channels namely AWGN, 

Rayleigh fading and Rician fading. All simulation was done on MATLAB version R2011a under 

AWGN, Raleigh and Rician fading channel. We have used receiver characteristics (ROC) 

analysis for the signal detection theory to study the performance of the energy detector. ROC has 

been widely used in the signal detection theory due to the fact that it is an ideal technique to 

quantify the tradeoff between the probability of detection (Pd) and the probability of false alarm 

(Pf). 

4.1 Performance Analysis and Simulation of Fading Channels 

 

Figure 4.1:  

From the Figure 4.1, it is observed that with varying fading channel the performance of 

misdetection and false alarm varies. At Nakagami factor m=0, the channel become AWGN, at 

m=1, channel become Rayleigh channel and m>.5 it become Rician channel. The performance 

also varies with the varying SNR value. 

4.2 Performance Analysis and Simulation of ED based Detection  

Theoretically with the increase of SNR values γ and decision threshold 𝜆𝐸, the detection 

probability of Energy Detection under AWGN will increase. Simulation of Energy Detection has 

been performed on MATLAB over different fading channels and what interests us in this 
simulation is the receiver performance. The receiver operating characteristics (ROC) curves (PF 

VS PD) of the said detection system for one CR are plotted for different SNR values according to 

the above mentioned equations. A ROC curve allows exploring the relationship between the 

sensitivity and specificity of a sensing method for a verity of different thresholds, thus allowing 

the determination of an optimal threshold. 
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Figure 4.2:  

 

 

Figure 4.3: ROC curve under AWGN and Rician Channel  

The ROC Curve represents the comparative performance analysis of energy detection under 

AWGN channels in different SNR values. The curve of figure 4.3,shows that with the increase 

of SNR value, the probability of detection increases and the probability of false alarm decrease 

and the AWGN have the minimum false detection as compared to the Rician fading channel.          
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Figure 4.4: Energy Detection ROC Curve under Rician and Rayleigh Channel 

 

Through Rayleigh fading channel large number of signal scattered and the signal amplitudes 

follows a Rayleigh distribution and the SNR γ follows an exponential PDF. Fig 4.4shows the 

ROC curves for ED in Rayleigh and Rician fading scenarios. From the figure it is observed that 

the Rayleigh fading performance degrades significantly when it uses energy detector under fading 

conditions for different SNRs. By observing the graphs it is clear that detection probability is less 

in Rayleigh fading when compared to AWGN and Rician fading. This performance indicates that, 

spectrum utilization is less when fading is considered.  Theoretical results which are obtained are 

perfectly matched with our simulation results.   

 

4.3 Performance Analysis and Simulation of Cyclostationary Features Based Detection  

Cyclostationary Features Detection is a medium accuracy medium complex sensing method. In 

the absence of Rayleigh fading channel and Rician fading channel it performance better. But with 

the increase of noise level the performance of this method degrades. 
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Figure 4.5:  

 

4.4 Performance Analysis and Simulation of Matched Filtered based Detection 

This sensing method is the robust methods among all classical sensing methods. But with the 

decrease of SNR the performance of the sensing methods decreases as shown in the graphs. 

The figure 4.6 shows that with the increase of SNR values the detection probability increases in 

Matched filtered based sensing 

 

Figure 4.6:   
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The Fig 5.7 Shows that the performance of matched filter under AWGN channel is better than 

Rayleigh channel in all SNR conditions 

 

Figure 4.7  

4.5 Performance Comparison among Different Classical Narrowband based Sensing 

A basic comparison of the sensing methods given in this section is presented in Fig. 4.8 and Fig 

4.9 

 
 

Figure 4.8  
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The ROC curve shows that in general the performance of Energy Detection based sensing are 

limited comparing with the three classical based spectrum sensing techniques. Its performance is 

the simplest one when the noise is not stationary and its variance may not be known. But the 

signals completely lost during the presence of White Stationary Gaussian Noise and when its 

variance is not known. Other problems with the with the energy detector include base band filter 

effects and spurious tones [59].   

In general Cyclostationarity-based sensing perfoms better than ED based sensing because in the 

presence of co-channel and adjacent channel the noise became stationary for cyclostationarybased 

sensing. However, the cyclostationary-based methods perform worse than energy detector based 

sensing methods when the noise is stationary. Cyclostationary features may be completely lost 

due to channel fading [61], [62]. The model uncertainties cause an SNR wall for cyclostationary 

based feature detectors similar to energy detectors [63]. Furthermore, cyclostationarity based 

sensing is known to be vulnerable to sampling clock offsets [64].  
 

The matched filtered based sensing is more robust than energy detector and cyclostationarity 

based methods because of the coherent processing that comes from using deterministic signal 

component [Arslan48]. However, there should be a priori information about the primary user’s 

characteristics and primary users should transmit known patterns or pilots.      
 

Based on the ROC analysis it is observed that the matched filtering sensing is more robust than 

other transmitter based methods because of the coherent processing [65]. However, there should 

be prior information about the primary user’s characteristics.  
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4.6 Limitations of Classical Based Spectrum Sensing Method 

The ED based approach is the common way of spectrum sensing because of its low computational 

and implementation complexities. In this technique signal is detected by comparing the output of 

the energy detector with a threshold which depends on the noise floor. The challenges with energy 

detector based sensing include selection of the threshold for detecting primary users, inability to 

differentiate interference from Pus and noise, and poor performance under low signal to  noise 

ratio(SNR) values. Moreover, ED does not work efficiently for detecting spread spectrum signals. 

The performance of ED degrades considerably under Rayleigh Fading. The performance of ED 

based sensing is limited when two common assumptions do not hold [24].  The noise may not be 

stationary and its variance may not be known. Other problems with the ED include baseband filter 

effects and spurious tones [68]. With all these disadvantages, the most advantages of ED are it 

does not require any prior knowledge about the transmission signal to be received.  

It is medium accuracy and medium complex sensing method where the periodicity in the signal 

or in its statistics like mean and autocorrelation feature is used to identify the signal from noise. 

Noise is a wide sense stationary (WSS) with no correlation while modulated signals are 

cyclostationary periodicities. However, this comes at the expense of increased overhead and 

bandwidth loss. Cyclostationary based methods perform worse than energy detector based sensing 

methods when the noise is stationary. However, in the presence of co-channel or adjacent channel 

interference, noise becomes non-stationary. Hence, ED based schemes faile while cyclostationary 

based algorithoms are not affected [69]. On the other hand, cyclostationary features may be 

completely lost due to channel fading [100]. It is shown in [100] that model uncertaineties cause 

an SNR wall for cyclostationary based feature detectors similar to energy detectors [A 92]. 

Furthermore, cyclostationary based sensing is known to be vulnearable to sampling clock offsets 

[85]. 

Matched filtering is known as the optimum method for detection of primary users when the 

transmitted signal is known i.e. The primary users signalling features such as bandwidth, 

operating frequency, modulation type and order, pulse shaping and frame format etc. It correlate 

the received signal with a template for detecting the presence of a known received signal. It is of 

two types i.e. narrow band matched filtering and wideband matched filtering. In narrowband 

matched filtering normally the sampling rate is at the Nyquest rate. In widwband matched filtering 

the sampling rate is sub-Nyquest rate. The matched filtering based sensing method is more robust 

than other sensing methods because of it coherent processing that comes from using deterministic 

signal component [A 48]. However, there should be prior information about the primary user’s 

characteristics and primary users should transmit known patterns or pilots. 
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4.7 The Problem of Stand Alone Transmitter 

Till now, we have discussed about The problems of a stand-alone transmitter to sense the 

neighboring radio environment are it suffers in multipath fading and shadowing environments 

where deep and fast fades of the received signal strength  and make the spectrum less reliable. 

Through the standalone sensing method the improvement in SNR cannot be made by higher 

transmit power or additional bandwidth. Hidden terminal problem can lead to incorrect spectrum 

utilization which must be overcome to ensure that primary users of a band are protected from 

interference. It also leads to less accurate signal detection, increased false alarm probability and 

decreased in agility. In the single radio architecture, only a specific time slot is allocated for 

spectrum sensing. Due to limited sensing duration, only certain accuracy can be guaranteed for 

spectrum sensing results. Moreover, the spectrum efficiency is decreased as some portion of the 

available time slot is used for sensing instead of data transmission. 

However, the probability of detection can be improved by using multiple antennas (diversity) 

methods for energy detection based systems like equal gain combining (EGC), selection 

combining (SC), maximal ratio combining (MRC) etc.  Cyclostationarity based algorithms works 

better than ED in presence of cochannel or adjacent channel interference [64]. During the presence 

of multiple obstacles like high rice building, Rician fading channel may be used instead of 

Rayleigh fading. Cyclostationarity features may be completely lost due to the Rayleigh channel 

fading [62], [64]. In situations also, AGWN and Rician channel is better than Rayleigh channel 

fading. 

4.8 Cooperative/ Compressive Sensing to Solve the Stand Alone Terminal Problem 

The solution of the hidden terminal problem is cooperative spectrum sensing techniques. 

Cognitive radio co-operative spectrum sensing occurs when network of cognitive radios share the 

sensing information with each other and combining results from various measurements is a 

challenging task. The shared information can be soft or hard decisions made by each cognitive 

device [66]. The operation of this technique can be performed as follows: 

Step1:   Every cognitive radio performs local spectrum measurements independently and 

then makes a binary decision. 

Step 2:   All the cognitive radios forward their binary decisions to a common receiver 

which is an access point (AP) in a wireless LAN or a base station (BS) in a cellular 

network.    

Step 3:    The common receiver combines those binary decisions and makes a final 

decision to infer absence or presence of the primary users in the observed band. 

In the above mentioned process number of sensing nodes use to do the data fusion and decision 

fusion process as mentioned below: 
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4.8.1. Data Fusion 

Data fusion is a process of combining data or information to estimate or predict entity states. The 

estimates and assessments are incremental and the evolution of the need for additional sources 

modification is performed to improve the quality of the output.  

4.8.2 Decision Fusion 

Decision fusion is a special case of data fusion which is known to be a means for improving 

quality of pattern recognition and analysis. The class of decision function systems, as defined in 

is a subclass of data fusion system. 

The optimum fusion rule for combining sensing information is the Chair-Vershney rule which is 

based on log-likelihood ratio test [67]. The following statistics, termed as the Chair-Vershney 

fusion statistics been shown to be a high SNR approximation to Ʌ 

 Ʌ1 = ∑ Log𝑠𝑖𝑔𝑛(𝑦𝑘)=1
𝑃dk

Pfk
 + ∑ Log𝑠𝑖𝑔𝑛(𝑦𝑘)= −1

1−𝑃dk

1−Pfk
 

Here, Pfk and 𝑃dk are the fading channel and local channel performance indicates respectively. 

Ʌ1does not requires any knowledge regarding the channel gain, but does requires values of Pfk 

and 𝑃dkfor all k. This approach suffers significant performance loss at low to moderate channel 

SNR. It turns out that the sufficient statistics for the various sensors with weights that are functions 

of the individual probabilities of false alarm Pf and the probabilities of detection Pd. The 

information fusion at the AP is made by considering credibility which is transmitted by CR along 

with their decisions. The credibility of channel condition depends upon channel conditions and 

their distance from a license user. When hard decision are used AND, OR or M out of N methods 

can be used for combining information from different cognitive radios. 

4.9 Compressive Sensing    

Compressive Sensing (CS) becomes promising approach to recover the wideband signal 

expending only partial measurements. In the CS framework a real valued, finite-length, one 

dimensional time-variant signal x(t), 0 ≤  t ≤  x, can be denoted as a finite weighted sum if 

orthonormal basis functions 

 x(t) = ∑ biΨi
N
i=1 (t) = Ψb Where bi is basis coefficient  

4.9.1 Basis Pursuit(BP) 

The Time-Frequency and Time-scale communities have recently developed a large number of 

over complete waveform dictionaries i.e stationary wavelets, wavelet packets, consine packets, 

chirplets and warplets etc. Decomposition into over-complete systems is not unique and several 

methods for decomposition have been proposed, including the Methods of frames 
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(NOF),Matching Pursuit (MP) and for special dictionaries, the Best Orthogonal Basis (BOB). The 

Basis Pursuit (BP) is a principle for decomposing a signal into an optimal superposition of 

dictionary elements, where optimal means having the smallest l1normof coefficients among all 

such decompositions [Phd20]. BP finds signal representation in ober-complete dictionaries by 

convex optimization: it obtains the decomposition that minimizes the l1 norm of the coefficients 

occurring in the representation. 

4.9.2 Matching pursuit (MP) 

 

Matching pursuit is a sparse approximation algorithm which involves finding the "best 

matching" projections of multidimensional data onto the span of an over-complete (i.e., 

redundant) dictionary. The basic idea is to approximately represent a signal  from Hilbert 

space  as a weighted sum of finitely many functions  (called atoms) taken from. An 

approximation with atoms has the form where  is the scalar weighting factor (amplitude) for the 

atom . Normally, not every atom in  will be used in this sum. Instead, matching pursuit chooses 

the atoms one at a time in order to maximally (greedily) reduce the approximation error. This is 

achieved by finding the atom that has the biggest inner product with the signal (assuming the 

atoms are normalized), subtracting from the signal an approximation that uses only that one 

atom, and repeating the process until the signal is satisfactorily decomposed, i.e., the norm of 

the residual is small,  

 

4.9.3 Modulated Wideband Converter 

Conventional sub-Nyquist sampling methods for analog signals exploit prior information about 

the spectral support. In future the available spectrum for secondary user will be reduced and option 

will be more challenging task to sense spectrum blindly using sub-Nyquist sampling of multiband 

signals. The modulated wideband converter (MWC) is the first system for sub-Nyquist sampling, 

which can be realized with existing devices and handle wideband analog signals. 

4.9.3.1 System Model: The Fourier transform of wideband signals often occupies only a small 

portion of a wide spectrum, with unknown frequency support. For example: in wideband 

communication, the receiver sees the sum of several radio-frequency transmissions. Each signal 

is modulated around an unknown and different carrier frequency. 

 

Figure: 4.10:  The Multiband Spectrum 

With an efficient hardware implementation and low computational load on the supporting digital 

processing, the modulated wideband converter (MWC) can blindly sample multiband analog 

https://en.wikipedia.org/wiki/Sparse_approximation
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Hilbert_space
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signals at a low sub-Nyquist rate. The MWC first multiplies the analog signal by a bank of 

periodic waveforms. Then the product is lowpass filtered and sampled uniformly at a low rate. 

The waveform period and the uniform rate can be made as low as the expected width of each 

band, which is orders of magnitude smaller than the Nyquist rate. Reconstruction relies on recent 

ideas developed in the context of analog compressed sensing, and is comprised of a digital step 

which recovers the spectral support. The MWC enables baseband processing, namely generating 

a low rate sequence corresponding to any information band of interest from the given samples, 

without going through the high Nyquist rate. In the broader context of Nyquist sampling, the 

MWC scheme has the potential to break through the bandwidth barrier of state-of-the-art analog 

conversion technologies such as interleaved converters. 

  

4.10 Potential Solution 

Cognitive Radios utilize and handle the spectrum through spectrum sensing, spectrum 

management, spectrums mobility and spectrum sharing which leads to many challenges in CRN 

development and boost up. Security concern and local of computing power are among a list of 

critical issues to boost the CK user performance. Most of the challenges are related to frequency 

agility and computational power and those two abilities are physically constrained. Due to the 

nature of optimistic spectrum access, multichannel option is required to be consideration for the 

secondary user to maintain reliableconnectors. RF of a CR has to have relatively wide bandwidth 

and be able to switch between frequency bands. The increased frequency band has to be coupled 

with increased linearity range in order to present the desired signal from being distorted. The radio 

communications signals are emitted in electromagnetic format and achieving wireless security is 

every difficult by stopping the signal leakages. Reducing signal leakage enhances overall security. 

Encryption and authentication based security techniques have seen proceed effective, but all of 

them need to consume additional radio resources, Additional security means, there are some 

physical-Laser techniques to strengthen security by reducing radio signal leakage. 

Orthogonal frequency Division Multiplexing can be applied so each sub channel can be viewed 

as a flat fading channel.The intelligence of a true CRN relies heavily on the implementation of 

computational intelligence and machine earning. We need to seek solutions to provide increased 

computing power.For instant, some physical-Layer techniques may be used to enhance CRN 

security, collaborative sensing can be considered to increase spectrum sensing performance, and 

off-board computing resources may join with on-board computing resources to handle 

computational burden. 

1. Enhancement of Security: The characteristic of a wideband frequency electric 

channel is location dependent, which can be utilized to offer certain security enhancement. 

2. Wideband Transmit, Wave Form Design to Minimize Information Leakage:   Wideband 

communication systems can be benefited by spectrum shaping via transmit wave form design, 

With the ability of programmable transmit were fonts, and advanced spectrum sending, the 

interferences generated by secondary users in the CRN can be well controlled. 

3. Enhancement of Computing Power: A practically solution Impelling added feathers 

requires additional signal processing and computing power, but the fact is that onboard 
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computing power is very limited. Nowa day’s many electronic devices are highly networked 

and it is likely a cognitive radio transreceiver can take advantage of surrounding computing 

resources. For other words, time critical tasks like modulation/demodulation are handled by 

the onboard real-time processors, and delay tolerable tasks like knowledge database updating 

are taken care of by the off by the off-board networked computing engines in a collaborative 

fashion. 

. 

  

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

 



63 
 

 

Concluding Remarks & Future Work 

 

5.1 Concluding Remarks 

Spectrum sensing is a very valuable resource in wireless communication systems, and it has been 

a focal point for research and development efforts over the last several decades. The recent interest 

cognitive radio related research has attracted a great deal of interest in spectrum sensing and 

detection of radio users in the environment. The key objective behind spectrum sensing and 

detection is to see how reliably one could detect the radio users given a particular scenario with 

an acceptable payoff or trade-off. In other words, the main objective is to maximize the probability 

of detection without losing much on the probability of false alarm while minimizing the 

complexity and time to sense/detect the radio. 

Cognitive Radio which can change its parameters based on interaction with environment in which 

it operates, became one of the efficient dimension for sensing the available spectrum 

opportunities. In this work, initially we have discussed the requirement of opportunistic spectrum 

sensing, preliminaries of cognitive radio, their features, capability and challenge to develop a 

viable futuristic CRN system. Thereafter in the state of the art and literature reviews chapter we 

have discussed about the basic architecture of CR & SDR, its attributes, cognitive cycle and 

different sensing techniques. 

 

 In chapter 3 we have developed the problem formulation and system modeling of three classical 

transmitter based sensing methodologies namely ED, Cyclostationary feature detection and 

Matched Filter (MF). ED is the easiest one but it suffers multipath fading and completely loses 

the signal during low SNR values. Cyclostationary feature detection medium complex and works 

based on co-relation function. MF is the optimal detection method when the transmission signal 

is known. Thereafter, have simulated the receiver operating characteristics (ROC) of all the 

classical transmitter based sensing over AWGN, Rayleigh Fading Channel and Rician Fading 

Channel with an aim to compare the performance of the sensing techniques among them and 

suggest the best sensing technique at different environment. 

The simplest form of detection technique is energy detection. It has been observe that with the 

increase of probability of false alarm in ED, the probability of detection has also increased. The 

probability of detection also increases with the increase of signal to noise ratio. The decision 

threshold can be selected for finding an optimum balance between probability of detection and 

probability of false alarm. In practice, the threshold is chosen to obtain a certain false alarm rate. 

Hence, knowledge of noise variance is sufficient for selection of a threshold.  

The cyclostationarity based detection lies between ED and matched filter detection. The 

Cyclostationary based detection algorithms can differentiate noise from primary user’s signals. 

Because noise is wide sense stationary with no correlation while modulated signals are 

Cyclostationary with spectral correlation due to the redundancy of signal periodicity. The cyclic 

frequencies can be extracted and used as features for identifying transmitted signals.  
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The performance of matched filter is more robust when the prior information of the sensing 

signals is available. However, MF requires CR to demodulate received signals. Hence, it requires 

perfect knowledge of the primary users signaling features like bandwidth, operating frequency, 

modulation type and order, pulse shape, frame format etc. The implementation complexity of 

sensing unit is impractically large. 

 

5.2 Future Work 

 

Cognitive radios utilizes and handle the spectrum through spectrum sensing, spectrum 

management, spectrum mobility and spectrum sharing which leads to many challenges in CRN 

development and boosting up. In  real  cognitive  network  scenario,  spectrum  access  

management  is  a  major  challenge for   SUs   competing   for   the   channel. The received PU 

signal at a single CR terminal may be severely degraded, basically due to hidden terminal 

problems, multipath fading or shadowing problems, lead to sensing performances in a challenge. 

In future the available spectrum for secondary user will be reduced and it will be difficult to use 

the spectrum for secondary users by sensing only narrow band spectrum. 

To get rid of from the hidden terminal problem and multipath fading problems and obtain highly 

reliable detection performance, cooperative sensing strategies may be employed. Broadband 

compressive sensing may be obtained for highly reliable detection performance. This leads to 

more challenging task to sense spectrum blindly using sub-Nyquist sampling of multiband signals 

by modulated wideband converter (MWC) which can blindly sample multiband analog signals at 

a low sub-Nyquist rate which can be good option for future spectrum sensing. This leads to further 

future challenges in respect of computational complexity and hardware constraint, information 

leakage etc. Usually, control channels can be employed using suitable methodologies to share 

common spectrum sensing outcomes. Thus, challenges for future work are to integrate the 

proposed combining schemes with spectrum access management and investigate the optimal 

performance of these schemes.Spectrum sensing is a challenging problem in signal processing 

and estimation in view of the complexity of observed spectrum signatures from multiple devices, 

along with noise and channel impairments.  

Review of spectrum sensing methods remains an important area of investigation by the wireless 

research community. Methods under consideration include:  

 Simple energy detectors which are independent of known signal properties  

 Matched filter detection of known signals such as 802.11x, Bluetooth or cellular 

 Cyclostationary detectors which employ second-order signal structure for improved 

detection  

 Collaborative (networked) sensing by multiple radios in which multiple spatial 

observations are combined to form an improved signal estimate.  
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Each of these methods needs to be studied in terms of performance (both static and dynamic), 

complexity, implement ability, and real-world prototyping experience on available cognitive 

radio platforms. For example, a recent study of cooperative sensing algorithms applied to a shared 

unlicensed band environment with overlapping 802.11b and Bluetooth signals showed that 

significant performance gains can be achieved with collaborative networked methods. As the next 

step, it is important to evaluate these sensing methods in real-world environments. Researchers 

on this topic need large scale open CR network deployments with flexible radios, multiple types 

of services and real-end users in order to further evaluate and compare the performance of 

different sensing technologies.  
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