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Abstract 

 

Multidimensional arrays are greatly used for handling large amount of data in scientific or 

engineering, and Database applications. Most of the on hand data structures are static in 

nature. We describe a novel implementation idea of multidimensional array for handling 

such large scale datasets. The scheme implements a dynamic multidimensional extendible 

array employing a set of two dimensional extendible arrays. The Traditional 

Multidimensional Array (TMA) or Extended Karnaugh Map Represented (EKMR) array 

is an efficient structure in terms of accessing the element of the array by straight 

computation of the addressing function, but they are not extendible during run time. But 

real world data grows in incremental fashion. So, there is strong demand of data structure 

that is dynamically extendible during run time. Three are some extendible array models, 

most of which uses a concept of extension subarray. For n-dimensional array the subarrays 

are n-1 dimensional. But, if the length of dimension and/or number of dimension of a 

multidimensional array is large then the address space, even for the subarray, overflows 

the machine limit very soon. Another issue for representing the real life data by 

multidimensional arrays is that it creates a problem of high degree of sparsity and need to 

be compressed. It is therefore desirable to develop techniques that can access the data in 

their compressed form and can perform logical operations directly on the compressed data. 

In this research work we propose a data structure using the idea of EKMR and Traditional 

Extendible Array, namely Extendible Karnaugh Array (EKA) to represent the 

multidimensional data. The scheme has the intuitive propensity against the essential 

problem of address space overflow as well as it can be extended in any direction during 

run time. Moreover, we present a compression scheme for EKA to facilitate data access in 

compressed form. We evaluate our proposed scheme by comparing for different retrieval 

and extension operations with the Traditional Multidimensional Array (TMA). Our 

experimental result shows that the EKA scheme has a significant delay on the occurrence 

of address space overflow without any performance penalty. Furthermore, we find that 

range of usability of the compression scheme is independent of length or number of 

dimension. And it is better to use compressed EKA rather than uncompressed EKA for 

representing sparse data sets which needs range retrieval frequently. 
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CHAPTER I 

 

Introduction 

 

 

1.1  Introduction 

There are few classes of data structures which are as well understood or as extensively 

used as arrays. It is quite often for scientific, statistical and engineering applications to 

have computation on large multidimensional arrays for modeling and analyzing scientific 

phenomena [1,2]. The strong need to handle large scale data proficiently has been 

promoting comprehensive research themes on organization or implementation schemes for 

multidimensional arrays on computer memory or secondary storage.  

The fast random accessing capability of multidimensional arrays is a fascinating 

characteristic that enables various statistical computations including aggregation to be 

performed efficiently [3,4,5]. But this capability depends on the fact that the size of each 

dimension should be fixed so that a simple addressing function can be used to access an 

arbitrary element of the array. However, in many of the Multidimensional Online 

Analytical Processing (MOLAP) application data size grows incrementally. To represent 

those data, such kind of multidimensional arrays go through a serious problem namely 

extendibility; when a new data value is added, size extension along the corresponding 

dimension is necessary and this implies reorganization of the entire array elements. An 

array includes the necessity of dynamic extension of - 

• Adding a new value to an existing dimension, for example a new product or a new 

city. This corresponds to adding a row/column in the corresponding dimension in 

the hierarchy. 

• Giving a new level of aggregation for MOLAP, for example adding the 

aggregation on quarters to the time hierarchy. 

• Addition of a totally fresh dimension such as age of customers. 

• Modification of the definition of particular elements in the hierarchy. This usually 

happens when a different classification method is applied. For example age groups 

are defined in intervals of 5 years instead of 10 years. 
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The problem suffered by conventional array can be solved using extendible array model. 

An extendible array can be extended in any dimension without any repositioning of 

formerly stored data [6,7]. Such advantage makes it possible for an extendible array to be 

applied into wide application area where required array size cannot be predicted before 

and / or can vary dynamically during operating time of the system. The range in which the 

linearized array elements map is called address space – which depends on the length or 

number of dimension of array. When both the parameters are large, the address space 

becomes so large that it overflows conventional data types [8,9]. In this research work, we 

are going to propose a basic extendible data structure for handling large multidimensional 

data sets having the facility of managing the address space overflow. 

1.2  Problem Statement 

There are many existing array systems to represent multidimensional data such as 

Traditional Multidimensional Array (TMA) [10,11,12], Extended Karnaugh Map 

Representation (EKMR) [11,13], Traditional Extendible multidimensional Array (TEA) 

[7,14,15], Axial Vector Extendible array[16,17]. Besides these, there are some other 

extendible arrays such as Flexible Resizable Array [18,19] or Index Tree Extendible 

Array[20]. 

TMA or EKMR is a good storage for storing multidimensional data but one serious 

drawback is that they are not dynamically extendible. To insert a new column value in the 

TMA or in EKMR the total reorganization of the data in array is necessary. The idea of 

extendible array solves the problem of extendibility. However, extendible arrays use a 

concept of subarray. Extendible arrays, in fact, are combination of subarrays. If the array 

is n dimensional then the subarray is n-1 dimensional in many of the extendible array like 

TEA, Axial Vector array or Flexible resizable array. Even the subarray is n-dimensional in 

Index Tree array. 

An n dimensional Array ],..,,[ 21 n
lllA  is an association between n-tuples of integer indices 

and the elements of a set of E, whatever the domain of E. The set of continuous memory 

locations into which the array maps is denoted by A[0 : D], where D = (∏ ��
�
��� ) − 1 and 

the size of the array is  denoted by  S = D×k, where k is the size of each cell. One more 

problem that suffered by all these above mentioned multidimensional array models is 

address space requirement. To allocate memory, consecutive memory location is required 
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for multidimensional array. But when the length of dimension li and number of dimension 

n of a multidimensional array is large then the address space overflows soon of the 

existing data types even for large configuration machines such as 64 bit machines. Hence 

it is impossible to allocate such a large size multidimensional array 

Multidimensional arrays are good to store dense data, but most datasets are sparse which 

wastes huge memory because a large number of array cells are empty and thus are very 

hard to use in actual implementation. In particular, the sparsity problem increases when 

the number of dimensions increases. This is because the number of all possible 

combinations of dimension values exponentially increases, whereas the number of actual 

data values would not increase at such a rate. Many of the compression schemes like 

Compressed Row/Column Storage [21,22] or Chunk-offset Compression [23,24] already 

exist, but they are not suitable for extendible array models. So, efficient compression 

schemes are a strong requirement to store such sparse, incremental data for 

multidimensional data sets [25,26].  

In brief, we are going to propose and evaluate a new and efficient implementation scheme 

of multidimensional extendible array model based on Karnaugh map [27], namely, 

Extendible Karnaugh Array (EKA), to manage the problem of extendibility without 

reorganization of data, overcome the address space overflow problem, and apply a suitable 

compression scheme on the model to have good compression ratio. 

1.3  Scope  

The basic operations of a standard data structure such as insertion, deletion, update and 

different categories of retrieval operations like existence check of record or item or entity, 

single key query, range key query are important and evaluated for traditional system 

implementations. Other important recent operations associated with multi-dimensional 

model of data under these domains are [17]: 

• The data can incrementally grow over time by appending new data elements 

causing the length of dimension to be incremented dynamically.  

• The datasets are mainly read-only for large amount of data. However, they may be 

subject to expansions in the bounds of the dimensions. 

• The number of dimensions of the array may be increased or decreased. The array 

may grow (or shrink) by appending data for new time-steps. 
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The above scenarios are implemented in incremental update operation [3]. The increment 

operation, what we call extension, is efficient in the model because it increments without 

reorganizing the previous data. The increment operation will be analyzed along with the 

basic operations.  

1.4  Objectives  

MOLAP or various scientific applications use multidimensional array as a basic data 

structure to represent high dimensional data. This is because multidimensional array has 

an inherent facility to compute aggregation operation. Extendibility is an important 

requirement of those applications since data grows over time. Hence, an array model or 

realization scheme which can be extended over time is strong requirement of current era.  

Therefore main objective of this research topic can be summarized as – 

• Devise an implementation scheme for basic multidimensional array operations and 

to support incremental update operations. 

• The TMA, TEA and EKMR suffer from the address space overflow problem. That 

is if the length of dimension and number of dimension become large then the 

coefficient values reaches the machine limits very quickly and overflows.  Design 

will ensure the delay of overflow situation because of the division of subarrays. 

• Provide the quick random accessing capability for different element search queries. 

• Maintain the superiority of various array operations like point key, single key or 

range key query over TMA or other extendible array. 

• Analyze performance of the proposed scheme on sparse array. 

• Devise a suitable compression technique based on the proposed implementation 

model for representing a sparse array. And also analyze the performance and 

usability of the compression method. 

1.5  Organization of the Thesis 

• Chapter II presents Literature Review that describes some of the prominent array 

organization and realization scheme that are already exists. Here some of the on 

hand high dimensional data compression methods will be described. 
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• Chapter III proposes a new extendible array model based on Karnaugh map 

called as Extendible Karnaugh Array (EKA). It also explains the basic array 

operations like insertion, deletion, retrieval, extension etc. over the proposed EKA 

model. 

• Chapter IV illustrates the details of compression method applied over proposed 

scheme. 

• The experimental outcomes of different array operations over the EKA are 

discussed in Chapter V. It also presents the compression performance applied 

over EKA. 

• The future direction of work on the proposed model and the conclusive words 

about the model are outlined in Chapter VI. 
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CHAPTER II 

 

Literature Review 

 

 

2.1 Introduction 

Recently, multidimensional arrays are becoming important data structures for storing large 

scale multidimensional data; e.g., in statistical databases or MOLAP databases [20,28]. 

For analyzing purpose, scientific applications very often use multidimensional arrays to 

model high dimensional data. The solid demand of those applications leads novel 

researches on organization or implementation schemes for multidimensional arrays on 

computer memory or secondary storage.  

2.2 Basic Terms and Notations 

Multidimensional Array 

An Array A[l1,l2,…,ln] is an association between n-tuples of integer indices 

〈��, ��, … , ��〉	and the elements of a set of E such that, to each n-tuples given by the ranges 

110 lj <≤ , 220 lj <≤ ,…, nn lj <≤0  there corresponds an element of E. The domain from 

which the elements are chosen is immaterial and we make the assumption that only one 

memory location need be assigned to each n-tuples. Each array may be visualized as the 

lattice points in a rectangular region of n-space. The set of continuous memory locations 

into which the array maps is denoted by A[0:D] where � = 
∏ �

�

�� � − 1. 

Addressing Function 

Any element in the multidimensional array is determined by an addressing function as 

follows, 

 12112211211221 .........),,...,,,( xxlxlllxlllxxxxxf nnnnnnn ++++=
−−−−−    ……… (2.1) 

Conventional storage of multidimensional arrays is done by linearization. In the two 

dimensional case, the linearization may be done by rows or by columns. But in general, 
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for n-dimensional array there are n! possible linearization orders according to the possible 

ordering of the dimensions.  

Coefficient Vector 

The coefficients of the addressing function namely ( 1221121  ..., ,... ,... lllllll nn −− ) is referred to 

as coefficient vector and stored during the construction time. Hence the addressing 

function can be computed very fast at the element access time. 

Length of Dimension 

Each of li (1 ni ≤≤ ) is determined as length of dimension i of a multidimensional array. 

Subarray 

A subarray SA[l1,l2,…,ln−1] is an association between n−1 tuples of integer indices 

〈��, ��, … , ����〉	 and the elements of a set of E such that, to each n-1 tuples given by the 

ranges 110 lj <≤ , 220 lj <≤ ,…, 110
−−

<≤ nn lj  there corresponds an element of E. The set 

of continuous memory locations into which the array maps is denoted by ]:0[ DSA  where 

� = 
∏ �

���

�� � − 1. 

Segment 

For an n−1 dimensional subarray, segment is a part of subarray of dimension n−2. That is 

a subarray SA[l1,l2,…,ln−1] can have ln−1 segments each which size is l1×l2×…×ln−2. 

2.3 The Realization of Multidimensional Array 

Multidimensional array has an inherent facility of random accessing – the reason of 

becoming the most popular. But capability demands the length, and number of dimension 

to be fixed – which leads problem of dynamic extension. There are many data structures 

already exist to represent multidimensional data. Some of them are static in nature and 

some are dynamic – i.e. resizable without reorganizing the already allocated data. Some of 

the well-known and prominent data structures are discussed in this section.  

2.3.1  Traditional Multidimensional Array (TMA) [10,11,12] 

Traditional Multidimensional Array (TMA) is a scheme for representing multidimensional 

data. The TMA represents n dimensional data by an n dimensional array. The key to the 

structure of arrays resides in the familiar coordinate system, which pictures an n-
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dimensional array as being imbedded in the positive orthant of n-dimensional space, with 

array positions lay on the lattice points. An illustration of 3 dimensional TMA of 

dimension length 3×4×5 is given in Figure 2.1. 

 

Figure 2.1: A three dimensional TMA with length of dimension 3×4×5. 

In the TMA scheme, a three dimensional array of size 3×4×5 can be viewed as three 4×5 

two-dimensional arrays. An element (xn, xn−1, …, x1) in an n dimensional Traditional 

Multidimensional Array of size [ln ,ln-1, …, l1] is allocated on memory using an addressing 

function like  eq. ( 2.1) 

We already know from the definition of addressing function that there are n! possible 

linearization orders for an n-dimensional array. Storage by linearization allows extension 

without any movement of existing elements only in one of the dimensions. For example 

we can readily extend the 3D TMA of Figure 2.1 only in third dimension, but in other case 

reorganization is necessary for already allocated cell. 

2.3.2  Extended Karnaugh Map Representation (EKMR) 

A basic array representation scheme named Extended Karnaugh Map Representation 

(EKMR) is proposed in [11,13].  In this scheme, an n-dimensional array is represented by 

a set of 2 dimensional arrays.  The idea of the EKMR scheme is based on the Karnaugh 

map (K-map). Consider a 3 input K-map and its corresponding EKMR(3) in Figure 2.2. 

The analogy between the EKMR(3) and the 3-input Karnaugh map is that the index 

variables i, j, and k correspond to the variables X, Y, and Z respectively. Here, index 

variable i is used to indicate the row direction and the index variable j is used to indicate 

the column direction. When n = 1 and 2, the TMA and the EKMR schemes are the same. 
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Figure 2.2:   EKMR representation of a 3 dimensional array, EKMR(3). 

Let A[s][r][p][q] be a 4-dimensional array based on TMA with size s×r×p×q. A′[u][v] be 

the corresponding EKMR(4) of size (s×p)×(r×q). Let A and A′ are presented as row major 

order, so location of a cell for given subscripts in A and A′ can be calculated as 

LA(l, k, i, j) = p×q×r×l + p×q×k + q×i + j 

LA′(i′, j′) = r×q×i′ +  j′ 

And the mapping function from LA to LA′ can be defined as follows: 

LA(l, k, i, j) → LA′(i′, j′), 





+×=′

+×=′

krjj

lsii
  where  

 

Figure 2.3:   EKMR representation of a 4 dimensional array, EKMR(4). 

Consider an array A[2][3][4][5] represented as a TMA(4). The corresponding EKMR(4) 

of array A is shown in Figure 2.3. The EKMR(4) is represented by a (2×4) ×(3×5) = 8 × 

15 two-dimensional array. The basic difference between TMA(4) and  the EKMR(4) is the 

placement of elements along the direction indexed by k, and l. The relative position makes 

the fundamental difference when using EKMR as array representations. 

i =   0

1

2

3

     j =  0    1   2    3       4 

l =   0
1 

0 

1 

0 

1 

0 

1 

k =  0    1    2    0    1     2   0    1    2    0    1    2    0    1    2 

i′′′′ 

j′′′′ 

i =   0

1

2

3

     j =  0                  1    2     3       4 

k =  0    1    2    0    1     2    0    1    2    0    1   2    0    1    2 

 



10 

 

Based on the EKMR(4), the EKMR(n) can be represented by m
n−4

 EKMR(4) and a one-

dimensional array X with a size of m
n−4

 are used to link these EKMR(4).  

2.3.3  Traditional Extendible Array (TEA) [7,14,15] 

The Traditional Extendible Array (TEA) is another representation of multidimensional 

array. It has the property that the indices of the respective dimensions can be arbitrarily 

extended without reorganizing previously allocated elements. Following is a short 

description of TEA.   

Extendible arrays are combination of subarrays. If the array is n dimensional then the 

subarray is n-1 dimensional. It has three types of auxiliary tables namely history table, 

coefficient table and address table. For each dimension these tables exist. There is a 

history counter that counts the construction history of the sub arrays. Address table 

contains the first address of the subarray, history table contains the construction history of 

the subarrays. Coefficient table holds the coefficient of the n-1 dimensional subarrays. The 

coefficient vector is n-2 dimensional. The extendible array can be extended in any 

direction in any dimension only by the cost of these three auxiliary tables. 

 

Figure 2.4:  A Three dimensional Traditional Extendible Array. 
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The accessing of the elements of an extendible array is completely different from the 

conventional multidimensional array. Using these three kinds of auxiliary tables, the 

address of an array element can be computed as follows. Consider the element 〈4, 2, 0〉 in 

Figure 2.4. Compare H1[4] = 11, H2[2] = 5 and H3[0] = 0. Since H1[4] > H2[2], H1[4] > 

H3[0], it can be proved that the element 〈4, 2, 0〉 is involved in the extended subarray S 

beginning from the address L1[4] = 72. From the coefficient vector of C1[4] = 3, the offset 

of element 〈4, 2, 0〉 from the first address of S is computed by 3×2 + 0 = 6, the address of 

the element is determined as 72 + 6 = 78. 

Storage costs of the history tables and the address tables of an n dimensional extendible 

array are both O(n). On the other hand, the storage cost of the coefficient tables is O(n
2
), 

because a coefficient vector consists of n−2 constants and the total size of the coefficient 

tables is proportional to n(n−2). In an environment where both of n and the dimension 

sizes are large, to suppress the size of these auxiliary tables is very important in order to 

place them on main memory and make them work as an index for the array elements 

placed on secondary storage. 

2.3.4  Axial Vector Array [16,17] 

In axial vector method there is record for each dimension called axis vector. Each element 

of the vector stores necessary information (starting index of the dimension, starting 

address of the subarray, multiplicative coefficients, and memory pointers) to retrieve an 

element correctly.  

In this approach the sequence of the two consecutive extensions along the same 

dimension, although occurring at two different instances, is considered as an uninterrupted 

extension of that dimension and handled by only one expansion record entry in the axial-

vector. Therefore number of element in an axial vector is always less than or equal to the 

number of indices of the corresponding dimension. 

Figure 2.5 shows the extension of a three dimensional array A of initial size 4×3×1, and 

corresponding axial vectors. At the very first, the array extended twice in third dimension 

d3, then extended in d2, d1, and finally in d3 again. 

To correctly compute the linear address of k-dimensional index 〈i1, i2, . . . , ik〉,  determine 

which of the records in axial vector Γ1(z1), Γ2(z2). . . Γk(zk), has the maximum starting 
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address. Here, the index zj is the highest index of the axial-vector where the expansion 

record has a starting index less than or equal to ij . 

 

Figure 2.5: A 3-dimensional extendible array along with axial vectors. 

For example, suppose we desire the linear address of the element A[5,2,1], we first note 

that z1 = 1, z2 = 0, and, z3 = 1. Now max(Γ1(1), Γ2(0), Γ3(1)) = max(48, 0, 12) = 48, 

maximum dimension is d1, and starting index of d1 is 4. So linear address is = 48 + (5-

4)*12 + 2*3 + 1*1 = 67 (encircled), where 12, 3, and 1 are multiplicative coefficients. 
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A single array that can be divided into chunk is known as chunking that can be stored 

contiguously on disk by storing the chunks of the array according to a predefined ordering 

on the chunks. The chunk number can be used to compute the correct offset of the chunk 

from the beginning of the array at run time. A single array may have chunks of different 

sizes, since real-world problems come in a variety of sizes that do not guarantee an even 

distribution of the processor. The chunks can be stored on disk in a packed or unpacked 

fashion. In the unpacked case we can assume all array chunks on disk occupy the same 

number of bytes as the largest chunk, to simplify the calculation of the offset of a chunk. 

With this approach, the smaller chunks result in unused space on disk. Chunks can be 

stored on disk packed together with no waste space if additional computations at run time 

are performed to calculate precise offsets to packed chunks, or by using a directory 

structure of points that can be persistent or created on demand.  

 

Figure 2.6: A 3-dimensional array partitioned into chunks. 

When an application has multiple arrays that are logically related to each other and are 

accessed together, it is common to assign corresponding chunks the same area. The 

equivalent concept from the database community is that of clustering data that is used 

together should be placed together on disk. This is referring to as physical schema as 

interleaving chunks. Figure 2.7 shows how the 16 chunks of each array X and Y are 

ordered on disk using an interleaved strategy.  Note that it is not necessary that this array 

all be of the same data type or even the same size. 
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Figure 2.7: Arrays X and Y are stored using interleaved chunks. 

2.3.6  Flexible Resizable Array [18,19] 

This is a variant of TEA. Unlike a TEA, in this organization it is possible to insert in the 

midst of the array. However such insertion would influence the logical location of other 

array elements; for example the location of the element (A) in Figure 2.8 changes from 〈1, 

1〉 to 〈2, 1〉. Note that the logical locations of the array elements would be changed by 

these insertions, but their physical locations would not be changed. Therefore the offset 

computation described in Section 2.3.3 cannot be applied as it is. Here, the errors in offset 

calculation are compensated to get the correct physical location by an efficient mapping 

mechanism. 

 

Figure 2.8: Insertion of a subarray in the midst of a 2-dimensional TEA. 
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Along with auxiliary tables of TEA, this scheme uses bitmap table for each dimension that 

consists of a set of pairs (history value, bit sequence). Each history value in this set is used 

for selecting the bit sequence to be used in calculating the extension compensation. The bit 

sequence holds information of insertion positions of the dimension and is used for 

determining the number of positions to be taken into account for compensation. And bit 1 

denotes that the position should be compensated. 

 

Figure 2.9: A 2-dimensional Flexible Array with revised subscript and bitmap table. 

Figure 2.9 shows the bitmap of the second dimension. For the element A(3, 5) in Figure 

2.9, the process to obtain the extension compensation value of the second dimension is 

presented here. The principal subarray of the element A has the history value 6 of the 

dimension 1. Compensations for the other dimensions, in this case dimension 2, are 

necessary. So the specified subscript 5 of the dimension 2 should be compensated and this 

is done as follows: 

• Find the least value in bitmap table that exceeds the history of principal subarray, 

namely 6. In this case, the history value 8 would be found. Hence the bit sequence 

0010100 will be used. 

• Since the revised subscript of the subordinate subarray of A in the dimension 2 is 

5, the total number of set bits is counted up to the bit 5 of the bit sequence 

0010100; the right most bit being the bit 0. The total number is 2, so the extension 

compensation value of the second dimension is concluded to be 2. 
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In this way, for n-dimensional array compensation value δk is calculated, and the 

compensated coordinate niii ′′′ ,...,, 21  of an element e will be computed as ki′ = ik  − δk for 

each dimension k (1 ≤ k ≤ n). The user-specified coordinate of subscripts before 

compensation is used to determine the maximum history value, hence the principal 

subarray of e, and the compensated coordinate is used to determine the correct offset in the 

principal subarray. 

2.3.7  Index Tree Extendible Array [20] 

In this approach  a tree-based  index  is used to  keep track  of  the  growth  of  the  array  

in  any  dimension  and even  allow  adding  of  new  dimensions.  An  extension  of  a  k-

dimensional array  A  along  dimension  i is viewed as appending  a k-dimensional 

subarray  A
S
  to  it  along  the  ith  dimension.  The  ranges of  A

S
  are  identical  to  those  

of  A  along  each  dimension except  for  dimension  i  whose  range  depends  on  the  

size of  the  extension.  The length li, of dimension i is called as the range of dimension i. 

The  index  is  a  search  tree  (can be implemented  as a  B-tree)  based  on a  compound  

key  (D,  L)  where  D represents  the  dimension  number  and  L  the  new  range that  

this  dimension  achieves  after  extension.  Each key points to an associated record 

containing some information about the extension as described below.  

Each  time the  array  is  extended,  a  new  key  will  be inserted  into  the  search  tree  

indicating  the  dimension that  has  grown  and  the  new  range  value  for  that  

dimension.  The  general  structure  of  the  associated  record  is R  =  (r0,  r1,  r2,  ..,  rk-1)  

where  r0  is  the  starting  address of the extension subarray, and  the  other  ri-s  indicate  

the  maximum  lengths  along the  non-extended (other k-1) dimensions at the time of 

extension.  When  an  extension  along dimension  i  is  performed,  the  value  of  rj  for  

j<i  indicates  the  maximum  range  along  dimension  j,  and  for j ≥  i  it  indicates  the  

range  for  dimension  j  +  1.  

In  general,  for a k-dimensional array, an  extension  along  dimension  j  with  extension  

size  s   causes  an  insertion  of  a  key K, and associated record R can be summarized as 

below shown in Table 2.1. 
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Table 2.1. Summary of insertion key and associated record of B-tree. 

 Key, K Associated Record, R 

If j ≤ k, i.e. extension on any existing 

dimension 
( j, lj + s) (∑ =

k
i il1 , l1, l2, ..lj-1, lj+1 ,.., lk) 

If j > k, i.e. a new dimension is 

introduced 
( k+1,  s) (∑ =

k
i il1 , l1, l2, ..,lk) 

 

Figure 2.10: Realization of 3-dimensional Index Tree extendible array. 

Consider  a  two  dimensional  array of  3  rows  and 1  column,  starting at address  0.  

Assume the rows are dimension 1 and the columns dimension 2.  The  initial  insertion  

includes  the  key  K  =  (1,3)  and associated  record  R  =  (0, l).  The first extension is on 

dimension  2  to  5 columns,  key  inserted  is  K  =  (2,5)  and the  record  is  R  =  (3,3)  
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indicating  the  starting  address  of  the  extension  subarray  is  3 and  the  non-extending 

dimension  range  is  also  3.  After  that  the  array  is  extended  to  8  columns,  so the 

tree will have  a  key  K  =  (2,8)  and record  R  =  (15,3). Next  extension is  to  5  rows 

with K  =  (1,5)  and  R  =  (24,8).  Then extension is made to 12  columns  causes  the  

insertion  of  K  =  (2,12)  and R  =  (40,5).  Extension  to  9  rows  causes  insertion  of K  

=  (1,9)  and  R  =  (60,12).  Suppose,  now  a new  dimension  to  the  array added so  it  

becomes  a  three  dimensional  array  and  extend  this  new  dimension  to  a range  value  

of 4,  the  key  inserted  in this  case  will  be K  =  (3,4)  and  R  =  (108,9,12).  The  K  

and  R  entries for  the  extendible  array  are  illustrated  in  Figure  2.10.  The B-tree  in  

that  example  can  hold  a maximum  of  2  keys per  node. 

To find an element e of index (4, 9, 3) iteratively search the B-tree of Figure 2.10 until 

desired information is found.  Start with a search for  the  key  (1,4),  the  first  key  found 

in  the  B-tree  larger  or  equal  to  it  is  (1,5) having associated  record  (24, 8) - means  

the  range  of  dimension  2  is  only 8,  smaller  than  the  required  9.  The  search  

continues along  dimension  2,  the  key  searched  for  is  (2, 9)  and the  key  found  is  

(2,12)  with  associated  record  of  (40, 5) is  corrected  to  (40, 5, 1)  due  to  a  missing  

component for 3
rd

 dimension. The  range  for  dimension  3  is  still  too  small  than  the 

required  3.  Finally,  for  dimension  3,  the  key  searched for  is  (3, 3)  and  the  key  

found  is  (3,4)  with  an  associated record  (108,9,12).  All  components  are  larger  than  

the corresponding  ones,  so  we  conclude  that  the  element  e is  found  in  the  extension  

subarray  represented  by  (3, 4). 

2.4 Compression Schemes for High Dimensional Data 

Multidimensional array are the basic data structure used in many applications such as 

MOLAP. But in many cases, they are found to be sparse in nature – i.e. many of the array 

cells contain null values and consume unnecessary space. So it is important to design a 

technique, “The Compression”, to store such arrays. Some common compression methods 

are reviewed here. 

2.4.1  CRS/CCS Schemes [21,22] 

Let, a two-dimensional sparse array is given. The Compressed Row/Column Storage (CRS 

/ CCS) scheme using one one-dimensional floating point array VL and two one-
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dimensional integer arrays RO and CO to compress all of the nonzero array elements 

along the rows (columns for CCS) of the sparse array. Array RO stores information about 

the nonzero array elements of each row (column for CCS). The number of nonzero array 

elements in the ith row (jth column for CCS) can be obtained by subtracting the value of 

RO[i] from RO[i+1]. Array CO stores the column (row for CCS) indices of nonzero array 

elements of each row (column for CCS). Array VL stores the values of nonzero array 

elements. The base of these three arrays is 0.  

An example of the CRS/CCS schemes for a two-dimensional sparse array is given in 

Figure 2.11(a) that shows a 3×4 two-dimensional sparse array. Figure 2.11(b) and Figure 

2.11(c) show the CRS/CCS schemes, respectively.  For four or higher dimensional sparse 

arrays based on the TMR scheme, more one-dimensional integer arrays are needed. 

 

Figure 2.11: The CRS/CCS schemes for a two-dimensional sparse TMA. 

2.4.2  Chunk Offset Compression  [23,24] 

In this scheme the large multidimensional arrays are broken into chunks for storage and 
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or disk arrangement of that chunk. Note that the chunks which have no nonempty elements 

are not physically allocated in the secondary storage.  

 

Figure 2.12: A 3-dimensional array stored as chunk-offset compression. 
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Bit Map Compression [30,31] 

A  bit  map  compression  scheme  consists  of  a bit  map  and a  physical  database which  

stores  the  non-constant  values.  The bit  map  is  employed  to  indicate  the presence  or  

absence  of non-constant  data.  The  following  example  shows  how  the  bit map  

compression  scheme  can  be  employed  to  implement  a  version  of  constant  

suppression.  

Original data string  

d1, c, c, d2, c, c, c, d3 

Compressed data string  

Bit map:  10010001. 

Physical database: dl, d2, d3.  

For  the  bit  map  compression  method,  the  mapping  mechanism  must  search  the  

whole  bit  map  for  both  forward and  backward  mapping.  And  thus,  the  access  time  

for  both  forward  and  backward  mapping  is O(N), where  N  is  the  number  of bits  in  

the  bit  map  or  equivalently  the  number  of  elements  in the  database. 

Header Compression [32] 

The header compression scheme is shown below.  The  vector  L, represents  the  

uncompressed  form  of  a database,  in  which the  0’s are  the  constant  to  be  

suppressed  and  the  V’s  are  the unsuppressed  values.  Beneath  the  vector  L  is  the  

list  of  counts which  comprise  the  compression  header,  H.  The odd-positioned counts 

hold accumulations of unsuppressed values; and the even-positioned counts hold the 

accumulations of zeros.  The physical, compressed form of the data is represented by P. 

L: V1V2000000000V3V4V5V6V700V8V9V10000  

H:  2, 9, 7,11,10,14  

P:  V1 V2 V3 V4 V5 V6 V7 V8 V9 V1O  

For  the  header  compression  method,  the  forward  and backward  mapping  can  be  

processed by  binary  searching  on  the header,  H.  Both  of  them  require  O(log s)  time  

where  s  is  the size of  the  header. 
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2.5 Discussion 

All the array models presented in this chapter have some pros and cons. Since TMA and 

EKMR have pre-specified length and dimension, they are good for random accessing. But 

they suffer in case of dynamic extension. The TEA, Axial Vector array, and Flexible 

resizable array are good for dynamic extension. TEA and Axial Vector array provides 

extension at the boundary where as Flexible array allows even in the middle of the array. 

But they all have a concept of subarray which is always n−1 dimensional. For large value 

of length for each dimension or for large number of dimension value of offset grows 

exponentially and overflows the address space. In case of Chunking of Array or Index 

Tree array the subarray is n dimensional, so they also suffer from address space problem. 

Classical compression schemes have some limitations in compressing data. Like Bitmap 

and its derivatives such as Header compression provide good performance in terms of 

removing long runs of constants, but they have a poor forward and backward mapping 

capability. Also, these methods can’t be used on dynamic database environment where 

additions and deletions may be required. The scheme Compressed Row Storage (CRS) or 

Chunk Offset compression are effective for compressing large sparse arrays. But still they 

cannot be applied on extendible databases. So, it is important to design a compression 

technique that will be better than these classical compression techniques. The scheme 

should be efficient enough so that operation can be done over the compressed data.  

Though, there are a lot of research has been done on array model, but only a few 

researches have been made on dynamic array organization even hardly any on overflow 

situation. Hence we propose a dynamic array model which will outperform over TMA as 

well as overcome the overflow scenario. The detail of the proposed scheme is presented in 

the next chapter. 
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CHAPTER III 

 

The Extendible Array Representation using Karnaugh Map  

 

 

3.1 Introduction 

Conventional schemes for storing arrays do not support easy dynamic extension of an 

array. The conventional storage allocation scheme for arrays is either row major or column 

major ordering. Though the allocation technique provides optimal storage utilization but 

the extension of the dimensions lacks in all except single dimension. Such asymmetry in 

extendibility is not inevitable. However, such kind of multidimensional arrays go through 

following two important problems: 

(i) The size of the multidimensional array is not dynamically extendible; when a new 

data value is added, size extension along the corresponding dimension is necessary 

and this implies reorganization of the entire array elements.  

(ii) Another problem with the multidimensional array is address space requirement. To 

allocate memory, consecutive memory location is required for multidimensional 

array. But when the length and number of dimension of a multidimensional array is 

large then the address space overflows soon.   

It is devised schemes for multi dimensional storing arrays, which are readily extendible in 

all directions. An extendible array, however, does not store an individual array; rather, it is 

storing an array and all its potential extensions. The scheme is an n dimensional 

rectangular array that grows by adjoining blocks, which are subarrays of dimension n-1. 

Within which each subarray storage allocation is in row-major or Lexicographic order. 

3.2 The Realization of Extendible Karnaugh Array 

The idea of the proposed scheme, what is named is Extendible Karnaugh Array (EKA), is 

based on Karnaugh Map (K-map) [27]. Karnaugh maps are used to facilitate the 

simplification of Boolean algebra functions usually aided by mapping values for all 

possible combinations. Input values are arranged in Grey Code. Figure 3.1 (a) shows a 4 
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variable K-map to represent possible 2
4
 combinations of a Boolean function. The variables 

(w, x) represent the row and the variables (y, z) represent the column to indicate the 

possible combinations in a two dimensional array. 

 

Figure 3.1: Realization of Boolean function using K-map. 

The 4 variable K-map can be easily drawn plane as a two dimensional array which is 

shown in Fig. 1(b). Here each of the boundary line directs a dimension. The length of each 

of the dimensions is 2 for both Figure 3.1(a) and (b). This is because the Boolean variables 

are binary that causes the length to be 2.  

Definition 3.1 (Adjacent Dimension): In array representation, the dimensions (or index 

variables) that are placed together in the Boolean function representation of K-map are 

termed as adjacent dimensions (written as adj(i) = j ). The dimensions (w, x) are the 

adjacent dimensions in Fig. 1,  i.e. adj(w) = x or vice versa.    

3.3 The 4-Dimensional EKA Scheme 

EKA represents the array as the combination of subarrays.  Besides, it has three types of 

auxiliary tables namely history table, coefficient table, and address table. For each of the 

four dimensions these tables exist. These tables store the extension information and help 

the elements of the EKA to be accessed very fast. 

The extension subarrays are further sub divided into number of segments. The number of 

segments determines the number of entries in the address table and is calculated from the 

length of adjacent dimension. When extension along a dimension is in progress, the 

extension subarrays are three dimensional, therefore segmented subarrays are always two 

dimensional for an EKA(4). We write EKA(n) to mean an n dimensional EKA.  
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There is a history counter that counts the construction history of the subarrays. History 

table contains the construction history of the subarrays. For each history, the address table 

contains the first address of the extended subarrays for the corresponding dimension. Since 

for each extension the subarrays are broken into segments, the address table, in fact, stores 

the first addresses of each segments of the subarray. Hence for a single subarray (or 

history value) the address table entry can be more than one.  

Since EKA is a dynamic array, the coefficient vectors for different subarrays are distinct. 

So, to retrieve the array elements accurately these coefficient vectors are stored in 

Coefficient table. As each segment of the subarray is 2 dimensional hence in our model the 

coefficient vector becomes 〈l1〉 only. The EKA can be extended along any dimension 

dynamically during runtime only by the cost of these three auxiliary tables. 

 

Figure 3.2: Logical extension of 4-dimensional EKA. 

Figure 3.2 represents a four dimensional EKA, EKA(4). The dimensions are d1, d2, d3 and 

d4 and the size of the array is [l1, l2, l3, l4] where li indicates the length of dimension di and 

subscripts varies from 0 to li −1. In the current example li = 2. The dimension (d1, d3) and 

(d2, d4) are adjacent dimensions respectively. The logical extension in d1 is shown in 
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Figure 3.2(b). The size of the extended subarray which is allocated dynamically is 

determined by l2×l3×l4 (i.e. other 3 dimensions). The number of segments is the length of 

the adjacent dimension, adj(d1) = d3 ;  In this case it is l3 = 2. The size of each segmented 

subarray extended along dimension d1 is determined by l2×l4. After extending along 

dimension d1, the length of that dimension is incremented by 1. For each extension the 

corresponding auxiliary tables are maintained accordingly. Figure 3.2(c), 3.2(d) and 3.2(e) 

shows the extension realization along dimension d2, d3 and d4 respectively. 

3.3.1  Illustrative Example of EKA(4) 

We have taken an EKA(4) as an example that is shown in Figure 3.3. We are going to 

extend it in different dimensions in the following way. 

Figure 3.3(a) illustrates the initial setup of the scheme. The history counter is zero and the 

history tables contain one entry namely 0. The address tables contain first address which 

zero here. Each of the coefficient table entry is 1 since length of each dimension is 1. 

During the extension of d1 and d3 dimension size of the segment is l2×l4 which is a two 

dimensional array, and so coefficient vector is one dimensional. Hence, for our example 

we use l2 as coefficient vector for d1 and d3 dimensions. Similarly, l3 is used as coefficient 

vector for d2 and d4 dimension and coefficient table is maintained. When an extension 

along d2 direction is done as shown in Figure 3.3(b), the history counter is increased by 1. 

The value of history counter is stored in the history table Hd2. The subarray size [l1, l3, l4] 

is calculated and dynamically allocated; the values of first address are stored in address 

table Ad2; since l3=1, Cd2 stores this value. Figure 3.3(c) shows an extension along d3 

direction. Here the history counter incremented by 1 and this is stored in history table Hd3. 

The size of the subarray [l1, l2, l4] is calculated and the first address for this subarray is 

stored in the address table Ad3. In Figure 3.3(d) an extension along dimension d4 is done. 

As a result of the extension history counter becomes 3, segmented subarray size becomes 

l1×l3 = 1×2 = 2, and number of segments are l2 = 2; since number of segments depends on 

the length of adjacent dimension. Therefore, Hd4 memorizes the history value 3, and Ad4 

has two entries. And Cd4[2]= 2, since current length of dimension 3, l3=2. Similarly, the 

extension along direction d1 is shown Figure 3.3(e) and finally Figure 3.3(f) shows one 

more extension along dimension d3. 
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Figure 3.3 : Extension realization of EKA(4). 

 

    0 1       

H
d

1
 

C
d

1
 

A
d

1
 

 1 1       

 0 1       

 0 1 0 1     

0 1 0 
0 

0 1 4 6 0 0 1 0 

4 2 
8 2 3 5 7 1 2 2 2 

12 
1 

8 9 10 11 0    

   12 13 14 15 1    

    0 1     

    0 4 6      

    1 2      

    0 3      
 

(e) Extension Along d1 dimension  

    0 1        

    1 1        

    0 1        

    0 1 0 1      

0 1 0 
0 

0 1 4 6 0 0 1 0 0 

4 2 
8 2 3 5 7 1 2 2 2 1 

12 
1 

8 9 10 11 0 16 
2 5 

2 

   12 13 14 15 1 20  

   0 16 17 18 19 
2 

A
d

3  

C
d

3  

H
d

3  

 

   1 20 21 22 23  

    0 1   

    0 4 6       

    1 2       

    0 3       
 

(f) Extension Along d3 dimension  

    0 1     

    1 1     

    0 1     

    0 1     

0 1 0 
0 

0 1 0 0 1 0 

   2 3 1 2 2 2 

    0  A
d

3  

C
d

3  

H
d

3      0   

    1      

    0      

 

    0 1       

    1 1       

    0 1       

    0 1 0 1     

0 1 0 
0 

0 1 4 6 0 0 1 0 

   2 3 5 7 1 2 2 2 

    0 1     

  Ad4 0 4 6      

  Cd4 1 2      

  Hd4 0 3      
 

(c) Extension Along d3 dimension  (d) Extension Along d4 dimension  

    0  Hd2  d2 

H
d

1
 

C
d

1
 

A
d

1
 

 1  Cd2   

 0  Ad2   

 0     

0 1 0 0 0 0 0 1 0 

    0  

A
d

3  

C
d

3  

H
d

3  

  Ad4 0  

d1  Cd4 1    d3

  Hd4 0  d4   

 

    0 1  Hd2   

    1 1  Cd2   

    0 1  Ad2   

    0 1     

0 1 0 0 0 1  0 0 1 0 

    0     

    0      

    1      

    0      

 

(b) Extension Along d2 dimension  (a)  Initial setup 



28 

 

3.4 Generalization of EKA to Higher Dimensions  

The EKA scheme can be generalized to n dimensions using a set of EKA(4)s – that is an 

EKA(n) is a collection of EKA(4) which is represented a hierarchical tree like structure. 

The highest or nth dimension will be the root of the tree, the subsequent dimensions up to 

dimension 5 are the internal node of the tree, and the lowest 4 dimensions presented as 

EKA(4) and act as leaf in the tree. Figure 3.4(a) shows the logical structure and Figure 

3.4(b) shows the physical implementation of a EKA(5) where the length of dimension d5 is 

2. Figure 3.5 shows an EKA(6) represented by a set of EKA(4) in two level. If the current 

length of dimension d5, and d6 is 3 and 2 respectively, then the EKA(6) is represented by 

the two level structure as shown in Figure 3.5. Each higher dimensions (d5 and d6) are 

represented as one dimensional array of pointers that points to the next lower dimension 

and each cell of d5 points to each of the EKA(4). So each EKA(4) can be accessed simply 

by using the subscripts of higher dimensions. For the case of EKA(n), similar hierarchical 

structure will be needed. The set of EKA(4)s stores the actual data values and the 

hierarchical arrays are indexes to EKA(4)s and used to locate the appropriate EKA(4). 

Hence the EKA(n) is a set of EKA(4)s and a set of pointer is used for indexing purpose 

only. At this stage (Figure 3.5), if dimension d1 (or d2, d3, d4) is extended dynamically, all 

the EKA(4)s will be extended along that dimension and the auxiliary tables are 

maintained. 

 

Figure 3.4: Realization of 5-dimensional EKA 
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Figure 3.5: Realization of 6-dimensional EKA 

3.5 Basic Operations on EKA 

The basic operations on any data structure are insertion or update of an array cell, extend 

the length of any dimension, reduction of length for any dimension, and more importantly 

retrieval of array element from a particular cell, or from a range of cells [33]. For insertion 

or update, and retrieval of an element from a cell, some subscript for all dimension are 

given – and we have to locate the exact array cell to do the required operation. When 

subscripts for all known dimension are given to locate the cell, this type of query is called 

point key query. When subscript of only one dimension is given with a single value - the 

query is called single key query, or given a range of values - the query is called range key 

query. First we describe how to perform these types of query which is given beneath. Later 

length extension or reduction is described. 

3.5.1 Point Query  

In an n-dimensional array, point key query can be defined as – there should be given 

subscripts for all n dimensions, e.g. 〈x1, x2, ..., xn−1, xn〉. How this type of query can be 

performed on EKA is described here in two stage, firstly on EKA(4), then on EKA(n) with 

n > 4. 

Point Query on EKA(4) 

Let the value to be retrieved is indicated by the subscript 〈x1, x2, x3, x4〉. The maximum 

history value among the subscripts hmax= max(Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4]) and the  

dimension (say dmax) that corresponds to history value hmax is determined. hmax is the 
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subarray that contains the desired element. This is because; the history values are linear 

numbers, therefore subarray having maximum history value was constructed at last.  

Hence the desired element remains in the segment that makes the subarray having history 

value hmax. Now the first address and offset from the first address is to be found out. The 

adjacent dimension adj(dmax) = dadj (say) and its subscript xadj is found. Now the first 

address of the segment is found from Admax[xmax][xadj]. The offset from the first address is 

computed using the addressing function (described in Section 3.1); the coefficient vectors 

are stored in Cdmax. Then adding the offset with the first address, the desired array cell (x1, 

x2, x3, x4) is found.   More concretely we can write it as follows: 

hmax= max(Hd1[x1], Hd2[x2], Hd3[x3], Hd4[x4]) 

dmax = dimension corresponding to hmax 

xmax = given subscript corresponding to dmax 

dadj = adj(dmax) 

xadj = given subscript corresponding to dadj 

xoth = given subscripts of dimensions other than xmax and xadj 

firstAddress = Admax[xmax][xadj] 

offset = Cdmax[xmax]*xoth1 + xoth2 

cellPos = firstAddress + offset 

Example 3.1: Let four subscripts 〈1, 0, 2, 1〉 for dimension d1, d2, d3, and d4 is given (see 

Figure 3.3(f)). Here hmax = max( Hd1[1], Hd2[0], Hd3[2], Hd4[1])= max(4, 0, 5, 3) =5, and 

dimension corresponding to hmax i.e. dmax = d3 whose subscript xmax = 2 and adj(dmax) = 

adj(d3) = d1 = dadj and xadj = 1. So the firstAddress = Ad3[2][1] = 20, and offset is 

calculated using the coefficient vector stored in coefficient table Cd3 which is 2. Here, 

offset = Cd3[2]*x4 + x2 = 2*1 + 0 = 2. Finally adding the offset with the first address the 

desired location 20 + 2 = 22 is found (encircled in Figure 3.3(f)). 

Point Query on EKA(n), n > 4 

Let the value to be retrieved is indicated by the subscript 〈xn, xn−1, …, x2, x1〉. Each of the 

higher dimensions (n > 4) is the set of one dimensional pointer arrays that points to next 

lower dimensions (see Figure 3.5). Hence using subscripts xk (k > 4) the pointer arrays are 
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searched to locate the appropriate EKA(4). Then using the computation technique 

described in section 3.6.1 for lower four subscripts the exact cell location in EKA(4) can 

be found.  

3.5.2 Range Query  

A range key query [34,35] has a single predicate of the form (column subscript < value) or 

(column subscript > value) or (column subscript between value1 and value2). On the other 

hand, for a single key query predicate has the form column subscript = value. So we can 

say that single key query is a special case of range key query with only a single range 

subscript.  

Range Query on EKA(4) 

Let the specified range involve in the known column has subscripts xk1, xk2, …, xkNRQ of 

dimension dk (k = 1, 2, 3, 4). Let h1, h2, … hNRQ 
 be the history values that correspond to 

the subscripts and the minimum history value be hmin = min(h1, h2, … hNRQ).  

Definition 3.2 (Major and Minor subarray) All the elements of the subarrays 

corresponding to the history values h1, h2, … hNRQ are called Major subarray. The 

subarrays that have history values greater than hmin and belong to the adjacent dimension 

adj(dk) are called Minor subarray. The candidate subarrays are those which are sufficient 

to be searched and these subarrays have history values greater than or equal to hmin.  

For Range key query all the major subarrays and one or more segments of the minor 

subarrays are candidate subarrays. The subarrays do not belong to the known dimension dk 

or adj(dk) and have history values greater than hmin are also candidate subarray, but from 

here the desired element is extracted by point key query. 

For single key query only one major subarray and exactly one segment of minor subarrays 

are candidate subarrays and the rest are same as range key query. 

Example 3.2:  Figure 3.6, which is obtained by extending the Figure 3.3(f) in d2 

dimension, shows the candidate range (bold dotted line) of a range key query for a 

EKA(4). Assume that the candidate range of the subscripts of the corresponding 

dimension d1 has NRQ subscripts from 1 to 2. 

In Figure 3.6, since known subscripts are x11 = 1 and x12 = 2 of dimension d1, i.e. the query 

is  〈1-2, *, *, *〉, the subarray having history values 4 and 7 ( as Hd1[1] = 4, and Hd1[2] = 7) 
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are the major subarray. On the other hand, the subarray having history values 5 is the 

minor subarray. Hence all the elements of subarray 4 and 7 are candidate for retrieval and 

one segment of subarray 5 are candidate for retrieval. Here, subarray 6 is the only 

remaining candidate subarray, since it has history value greater than 4 (definition 3.2) and 

the elements inside the subarray are found by calculating the offsets and adding the first 

address as described in section 3.5.1  

 

Figure 3.6: Range query on EKA(4).  

Range Query on EKA(n), n > 4 

Let the specified range involve in the known dimension has subscripts xk1, xk2, …, xkNRQ of 
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dimensional index pointers arrays to find the appropriate EKA(4). In this case, all the 

elements of the searched EKA(4) are candidate for retrieval, so simply retrieve them. 

Again if known subscripts xk1, xk2, …, xkNRQ of dimension dk (k = 1, 2, 3, 4), then all the 
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Example 3.3: Let we have NRQ subscripts 1 – 2 of dimension d5, then all the elements of 

the desired EKA to be retrieved are shown in rectangle in Figure 3.7. Again, if those NRQ 

subscripts were for dimension d3, elements to be retrieved from all the EKA(4)s shown in 

Figure 3.7 as left-upward shading. 

 

Figure 3.7: Range query on EKA(6). 

3.5.3  Increment Operation 

The increment operation can be defined as extending the size of the array by extending 

any length of arbitrary dimension or introducing a new dimension. We call this operation 

as extension. The presented EKA is an extendible array, where the length of each 

dimension can be extended to any length with the condition that extension is made on the 

boundary of that dimension. That is there is no facility to insert a subarray midst of any 

dimension. This seems problematic, but most of the real world applications need 

incremental extension only. So we allowed dynamic extension only at the boundary of 

each dimension in proposed EKA. The detail of extension process, how the auxiliary 

tables are maintained are explained is section 3.4 for EKA(4) and in section 3.5 for 

EKA(n).  

3.5.4  Reduction Operation 

The reduction of size of the array EKA is possible with the prerequisite that the deletion or 

reduction of length is made only at the perimeter of the array. Moreover, it is not possible 

to reduce the length of any arbitrary dimension, whereas we can only reduce the most 

recently extended dimension. That is for deletion one has to go through the reverse way of 
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how the extension is made. For this purpose we can maintain a stack which is populated 

during each extension and points to the extended subarray. So when deletion is necessary, 

simply pop the link from stack, free the storage and update necessary parameters in 

auxiliary table. 

3.6 Theoretical Analysis 

In this section, we model the processes of retrievals and extensions for multidimensional 

array under two different implementation strategies namely Traditional Multidimensional 

Arrays (TMA) and our proposed Extendible Karnaugh Arrays (EKA). The TMA 

reorganizes the array whenever there is an extension to it. That is, the whole array will be 

relinearized on disk to accommodate the new data due to the extension of length of 

dimension. Here, we show that the EKA strategy can reduce the cost of array extensions 

significantly. We will derive the cost functions for both extensions and retrievals in the 

following. All the array schemes are assumed to be stored in secondary storage and 

performed the operations.  

3.6.1  Parameters 

The cost functions are represented as the number of array cells required to access. The 

parameters that are assumed are described in Table 3.1. All the lengths are in bytes. Some 

parameters are provided as input while others are derived from input parameters.  

Table 3.1: Parameters for cost function for TMA and EKA 

Parameter Description 

n Number of dimension both for TMA and EKA 

EKA(n) An n dimensional Extendible Karnaugh Array 

TMA(n) An n dimensional Traditional Multidimensional Array 

di Dimension i,  1 ≤ i ≤ n  

li Length of dimension di  

V Initial volume of  both TMA and EKA,� = ∏ ��
�
���   

s Number of segments in a subarray for EKA 

λ Length of extension 

SEdi Size of extension along dimension di 
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EKA(n)
λ

EC  
Extension cost of n dimensional EKA with extension length  

λ in each dimension 

TMA(n)
λ

EC  
Extension cost of n dimensional TMA with extension length  

λ in each dimension 

FCTMA Read (Face) cost of TMA 

RCTMA Relocation cost of TMA 

EGn,λ 
Extension gain of EKA(n) over TMA(n) for λ extension in 

each dimension 

Assumptions: 

To simplify the cost model we make a number of assumptions. 

(i) The length of dimensions extends in round robin manner of the dimensions for 

both TMA and EKA.  

(ii) The length of each dimension is equal and when extension occurs each of the 

dimensions are extended by equal length. We denote the length of dimension after 

ith extension as li.  

(iii) All the basic CPU operations are executed in constant time. 

3.6.2  Retrieval Cost 

In TMA, the array is linearized in a single data stream using the addressing function 

described in section 2.2 and all offset values of the array elements are consecutive. Hence 

the range of candidate offset values for a query can be determined uniquely. But for EKA, 

the same data stream is distributed over different subarrays (See Figure 3.6).  

Cost for TMA 

The retrieval on TMA is dependent on the known dimension (i.e. the specified dimension) 

of query dimension. We use the term known dimension (or known subscript) to indicate 

the specified dimension of the query operation. For example dimension 2 is the known or 

specified (i.e. subscript x2 is known) dimension in Figure 3.6.     

In an n dimensional TMA, if the query is along dimension n (i.e. subscript in is known) 

then all the candidate offsets are consecutive and the volume of the range of the query is 

��
�	�. This is explained with an example in the following. For a 4-dimensional array with 
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length of each dimension �� = � the addressing function can be written from equation 2.1 

as follows. 

f(x4, x3, x2, x1)= l
3
x4 + l

2
x3+ lx2 + x1 

If l=6 and x4 is known (say,  x4 = 0, and xj =0,…,l-1 for j=1,…,3 ) then the candidate offset 

values in the query are consecutive in the range 0 to 215 (total 216 offsets) out of 1296  

offsets which is l
3
 (i.e. 6

3
 ). If x1 is known (say, x1=0) then the candidate offset values in 

the query are in the range 0 to 1290 (total 1291 offsets) out of 1296 offsets. Hence the 

volume of the candidate range of target elements are determined by �
 − (� − 1). If the 

subscript x2 is known then the volume of the candidate range of offsets is �
 − �(� − 1). In 

general, if the subscript xk ( nk ≤≤1 ) is known then the volume of the target elements are 

determined by �� − ��	�(� − 1).  For the range key query in the range of known subscripts 

NRQ along the dimension k, the volume of the target elements are determined by ��� ×

(�� − ��	�(� − 1)). 

From the above discussion, we can conclude that the retrieval in TMA is largely depends 

on the known dimension k and when k = n then the retrieval time will be minimum and 

when k = 1 then the retrieval time will be maximum. 

Example: Consider a 3D array of size 3×3×4 stored as row major order shown in Figure 

3.8(a). If we consider the known dimension is 1, and the known subscript x1 = 0  then, the 

candidate values to be retrieved are shown in Figure 3.8(b), or if x1 = 1  then, the candidate 

values can be as in Figure 3.8(c), and so on. So for a retrieval considering the first 

dimension as known dimension, each of the candidate values are totally discrete and 

spread over the entire range. If the known dimension is 2, and x2 = 0 or 1, then the 

candidate values can be in Figure 3.8(d) and 3.8(e) respectively, and so on.  Here some of 

the candidate values are grouped together, though it can cover the entire range. If the 

known dimension is 3, and x3 = 0, then the candidate values can be in Figure 3.8 (f), and 

so on.  Here many of the candidate values are contiguous in nature and needs only single 

read since it is the highest dimension. 

Cost for EKA  

In EKA scheme, the target elements are distributed in different subarrays which are further 

divided into segments. So for retrieval operations, EKA will take more CPU operation to 

be performed for accessing different streams in secondary memory. But on the other hand 
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each of the segments of the subarray is two dimensional and candidate and non candidate 

items can be separated in EKA. And thus retrieval cost will be lower. As the segments are 

2 dimensional then the maximum volume of the target elements for a query in a segment is 

determined by ��� × (�� − (� − 1)). If the number of segment is s then the maximum 

volume of the target elements are determined by � × ��� × (�� − ��	�(� − 1)), where s 

depends on the size of the subarray. 

 

(a) 

                                                                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

(b) 

                                                                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

(c) 

                                                                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

(d) 

                                                                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

(e) 

                                                                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

(f) 

Figure 3.8: A 3-dimensional TMA and its retrieval candidates. 
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3.6.3  Extension Cost 

Cost for EKA 

Figure 3.9 shows the pictorial view of λ unit extension of EKA(4), EKA(5), and EKA(6). 

By λ unit extension we mean that all dimensions of each EKA are extended a value λ. 

Each pair in Figure 3.9 shows the before and after view of extension. 

 

Figure 3.9: Extension cost analysis of EKA. 

Let us consider EKA(4) with length of each dimension li = l. So, initial volume of the 
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Now in general, extending a λ unit along dimension di, the size of extension SEi can be 

written as 

SE1= λ×l2×l3×l4
 
= λl

3
 , and  due to extension l1 = l + λ 

SE2= λ×l1×l3×l4
 
= λ(l + λ)l

2
, and due to extension l2 = l + λ 

SE3= λ×l1×l2×l4
 
= λ(l + λ)

2
l, and due to extension l3 = l + λ 

SE4= λ×l1×l2×l3
 
= λ(l + λ)

3
, and due to extension l4 = l + λ 

So, Total Extension Cost for EKA(4), λ unit extension in each dimension, becomes 

EKA(4)
λ

EC = SE1 + SE2 + SE3 + SE4   

= i
k

i

ik ll )(
0

λλ∑
=

−
+ ,where k = 3 

Now Consider EKA(5), with initial volume of the array before extension V =  l
5
 

(considering length of each dimension li =  l ) 

Extending a λ unit along dimension di, the size of extension SEi is 

SE1= λ×l2×l3×l4×l5
 
= λl

4
 , and  due to extension l1 = l + λ 

SE2= λ×l1×l3×l4×l5= λ(l + λ)l
3
, and due to extension l2 = l + λ 

SE3= λ×l1×l2×l4×l5= λ(l + λ)
2
l
2
, and due to extension l3 = l + λ 

SE4= λ×l1×l2×l3×l5= λ(l + λ)
3
l, and due to extension l4 = l + λ 

SE5= λ×l1×l2×l3×l4= λ(l + λ)
4
, and due to extension l5 = l + λ 

Total Extension Cost for EKA(5), λ unit extension in each dimension, becomes 

EKA(5)
λ

EC = SE1 + SE2 + SE3 + SE4  + SE5   

   = i
k

i

ik ll )(
0

λλ∑
=

−
+ ,where k = 4 

Similarly for EKA(n) Total Extension Cost, for λ unit extension in each dimension, can be 

written as 

EKA(n)
λ

EC = SE1 + SE2 + SE3 + ….+ SEn−1  + SEn   

= i
k

i

ik ll )(
0

λλ∑
=

−
+ ,where k = n−1 

 

 

…………………………… (3.1) 



40 

 

If we expand the summation, then 
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Putting the above value in equation (3.1), we get 

 EKA(n)
λ

EC =  
i

k

i

ik ll )(
0

λλ∑
=

−
+ ,where k = n−1 
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Cost for TMA 

Consider the Figure 3.10(a), which shows a 2D TMA of size 3×4. Let its cell values 

represent the location of each cell after linearization. From Figure 3.10(a) we find that the 

location of cell 〈1,2〉 is 6. Now let we want to extend the array one unit in d2. Figure 3.10(b) 

shows the array after extension, from where we see that location of cell 〈1,2〉 is now 7. 

………………………………………………… (3.2) 
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That is if we simply append the extension subarray at the end, we will get wrong value of 

cell 〈1,2〉. To get the correct one we first need to read the previously allocated data and 

then reorganize the array.  

 

Figure 3.10: A 2D TMA and its extension. 

Let us now consider a TMA(n), with each dimension length li = l 

So initial volume V =  l1× l2× l3×…× ln = l
n
 

We already seen that for extending TMA, it requires to reorganize the array and rewrite 

both existing and new data elements. The existing elements of the initial array need to be 

faced and recalculate the new offsets due to the extension for TMA.  

Hence the cost of facing (FC) the existing array elements becomes  

FCTMA = V = l
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If a TMA is extended by λ then a new TMA of length l + λ is to be reallocated, Hence 
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Extension Gain  

The difference of extension cost between the TMA and EKA schemes is referred to as 

Extension Gain (EG) 

EGn,λ = 
TMA(n)
λ

EC
 
− 

EKA(n)
λ

EC = eq. (3.3) −  eq. (3.2)  = 2l
n 

= 2V. 
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That is the extension gain is constant (twice of the initial volume) for any values of λ with 

a fixed initial volume. But it is worth mentioning that this gain is in theoretical aspect. 

Practically, EG would be little less, because there will some cost increase due to 

populating those auxiliary tables we have used. 
 

3.6.4  Overflow Cost 

In multidimensional array, the location of an element is calculated using the addressing 

function described in Section 2.2.1. For an n dimensional array with each dimension 

length = l, maximum value of the coefficient vector can be l
n-1

 which is again multiplied 

by subscript value (maximum l-1). So the resulted value can be written approximately as 

l
n
.  This value quickly reaches the machine limit for TMA (e.g. for 32 bit machine 

maximum value can be 2
32

) and thus overflows. But in EKA since each of the segments 

are two dimensional, this maximum value will be l
2
, which greatly delays the overflow.  

For example, theoretically for a 32bit address space with TMA(4) the maximum length of 

each dimension can be 256 but for EKA(4) it can be 65536 which is far greater then 

TMA’s length. For TMA(5) and TMA(6) this maximum length will be much less, but for 

EKA it remains same. The exact calculation is shown below considering that the length of 

each dimension is l. 

l
4
 = 2

32
 

=> 4log2l=log2(2
32

) = 32 

=> log2l = 8 

=> l = 2
8
 =256 

For TMA(4) 

l
2 

= 2
32

 

=> 2log2l = log2(2
32

) = 32
 

=> log2l = 16
 

=> l  = 65536 

For EKA 

One more practical reason is that TMA requires consecutive memory locations up to l
n
 

during implementation and hence it overflows soon when l and n is large. On the other 

hand, in EKA the segments of the subarrays are always two dimensional and distributed. 

Hence consecutive memory location requirement is less in EKA than TMA. Therefore 

EKA delays the overflow situation even for large values of l. 

3.7 Conclusion 

In this chapter we present our proposed model in detail, that is, how the model can be 

realized or implemented with the facility of dynamic extension but excluding the already 
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stored data reorganization. We present a concept of segment to limit the address space 

overflow. The EKA doesn’t prevent overflow to occur, rather it holds up the occurrence of 

address space overflow. How the most basic array operations can be performed on EKA 

are also manifested here. In the next chapter we are going to present a compression 

scheme which is based over EKA. 
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CHAPTER IV 

 

A Compression Scheme Based on Extendible Karnaugh Array 

 

 

4.1  Introduction 

Many statistical applications use set of multidimensional arrays to allow the efficient and 

convenient storage and retrieval of large volumes of data that is closely related, viewed 

and analyzed from different perspectives. For these applications, data compression is 

important because performance strongly depends on the amount of available memory. The 

most obvious outcome of data compression is that it reduces storage cost by storing more 

logical data per unit of physical capacity [36,37]. Performance is improved because there 

is less physical data to retrieve during scan-oriented queries. Performance is further 

enhanced since data remains compressed in memory. More importantly, however, the 

application of data compression in reducing the cost of data communication in distributed 

networks. In some other applications like some index structures, it is possible through 

compression to pack more keys into each index block [38,39,40]. When the database is 

searched for a given key value, the key is first compressed and the search over the index 

blocks. The ultimate effect is that fewer blocks have to be retrieved and thus the average 

search cost is improved. 

The compression techniques usually provide two mappings [32,41]. One is forward 

mapping, computing the location in the compressed dataset given a position in the original 

dataset. The other one is backward mapping, computing the position in the original dataset 

given a location in the compressed dataset. A compression method is called mapping-

complete if it provides forward mapping and backward mapping. The term logical 

database and physical database is used to refer to the uncompressed and compressed 

database respectively. The multidimensional arrays that are linearized to store 

multidimensional datasets normally have high degree of sparsity and need to be 

compressed [42,43]. It is therefore desirable to develop techniques that can access the data 

in their compressed form and can perform logical operations directly on the compressed 

data. In Chapter II we have already presented some existing and well understood data 
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compression methods, most of which are not suitable for extendible array. Here we are 

presenting a compression scheme suitable for our proposed EKA. 

4.2  The History Segment-Offset Compression 

The History Offset Compression scheme is essentially suitable for Traditional Extendible 

Array[6,44,45]. The basic scheme is presented in chapter II. Though EKA has different 

logical structure from Traditional Extendible Array, History Offset Compression can 

easily be incorporated over EKA with some modification. Since EKA has already a 

history counter that points an extended subarray which is further divided into segments, if 

the segments are sparse we can store the value as well as the offset from the starting of the 

segment in the physical array. As because the offsets are within a segment, we call the 

scheme as History Segment-Offset Compression (HSOC).   

4.2.1 Realization of HSOC on EKA(4) 

In addition to the auxiliary tables of EKA mentioned in chapter III, there is also an 

auxiliary array named Element needed for all dimension to store the number of elements in 

the segment. Though there may be several segments in an extended subarray, only one 

entry in Element array for each subarray is sufficient to retrieve the value accurately. 

Element will store the number of elements in the last segment or the one and only segment 

of the extended subarray. All these auxiliary tables are sufficient for EKA(4) to be 

mapping complete, but for higher dimensional EKA we need some other auxiliary tables 

that is explained in next section. 

Consider the following logical structure of EKA(4) in Figure 4.1(a) which is actually the 

real array of Figure 3.6. Here the cell values represent the value as well as the offset of 

that cell in physical array. Now let us consider that only shaded squares represent that 

there is a valid value on the cell and other cells are empty. The history offset compressed 

representation of the array is shown in Figure 4.1 (b).  Here, the History tables, and 

Coefficient tables are as before, Address table points to the starting physical address of the 

segment if there is some elements in the segment otherwise it is null. Element table 

maintain the number of elements in a subarray. For example Ed1[2] = 3, because subarray 

7 has three segments, one of which is empty and the last segment has 3 elements. In the 

centre of Figure 4.1(c), the physical array is placed. Here we will see that, each of the non-
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empty array value is placed along with its offset - i.e. displacement of that value in the 

segment. For example array value 13, 14 have offset 1, 2 respectively which are stored in 

the physical array. Here, the values are stored in sorted fashion according to their offsets 

for efficient retrieval. 

Forward Mapping on Compressed EKA(4) 

Let the value to be retrieved is indicated by the subscript 〈x1, x2, x3, x4〉. We have to 

calculate hmax, offset, and firstAddress in similar way described in section 4.3.1. Now if the 

firstAddress is null, the element doesn’t exist at all. Otherwise determine the number of 

elements in the segment, which may be found in Element table if it is the only segment or 

the last segment, else number can be calculated from the difference of firstAddresses of 

the current and next available segment. If each of the array cells consumes k bytes in 

memory or disk, then for exact calculation of number of elements, we have to divide the 

difference by k. And then load the segment from disk to memory and do a binary search to 

find the offset. If offset is found the corresponding value is the desired one, otherwise 

there is no such value for those subscripts. 

 

Figure 4.1: History Segment-Offset representation of EKA(4). 
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Example: Let four subscripts 〈2, 2, 0, 1〉 for dimension d1, d2, d3, and d4 is given (see 

Figure 5.1). Here hmax = max( Hd1[2], Hd2[2], Hd3[0], Hd4[1])= max(7, 6, 0, 3) =7, and 

dimension corresponding to hmax ie. dmax = d1 whose subscript xmax = 2 and adj(dmax) = 

adj(d1) = d3 = dadj and xadj = 0. So the firstAddress = Ad1[2][0] = 36, and offset is 

calculated using the coefficient vector stored in coefficient table Cd1 which is 3. Here, 

offset = Cd1[2] * x4 + x2 = 3*1 + 2 = 5. Now the segment is loaded into memory (Figure 

4.1(b)), and binary search finds the offset 5, therefore the desired value is 41 (encircled in 

Figure. 4.1 (b), (c)). 

Backward Mapping on Compressed EKA(4) 

Let we are given 〈h, s, o〉 that represents history value, the segment number, and an offset 

position respectively in a Compressed EKA(4). We have to determine the subscripts of 

each dimension. The history values are monotonically increasing and placed sequentially 

in history table, so we can apply binary search to each of the history table to find the given 

h. Let we found the value in history table of dimension i (Hdi) at position x, then subscript 

of dimension i is xi. Let adj(di) = dj, then xj equals to the provided segment number s. Let 

the coefficient table entry in dimension i at x is c ie. Cdi[x] = c, then two other dimensional 

subscripts xu, xv (say) can be found by following formula 

 xu = offset % c  

 xv = offset \ c 

where % is a modulus or remainder operator, and \ is a integer division operator. 

Example: let the given values are 〈6, 1, 4〉 that is history = 6, segment number = 1, offset 

= 4. Now applying binary search on each history table, we found that Hd2 [2] = 6, so x2 = 

2. Here adj(d2) = d4, so x4 = 1 (the segment number). Again, we see that Cd2 [2] = 3 = c, 

which was the length of dimension 3 during extension. So x3 = offset % 3 = 4 % 3 = 1, and 

x1 = offset \ 3 = 4 \ 3 = 1. Hence the subscripts are 〈1, 2, 1, 1〉 (encircled in Figure. 4.1 (a)). 

4.2.2 Realization of HSOC on EKA(n) 

We only compress each EKA(4) and upper pointer arrays remains as usual. Since an n-

dimensional EKA is collection of EKA(4)s, so we can individually apply the HSOC over 

each EKA(4)s on a iterative manner. Forward mapping described above (section 4.2.1) can 

be applied on each of those EKA(4) after reaching there by using the higher dimensional 
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pointer arrays. But for backward mapping we need some additional tables, since the EKA 

scheme loses the higher dimensional subscripts. So, each EKA(4) and higher dimensional 

pointer arrays will maintain a tiny (length = 2) Uppersubscripts array. It will contain the 

index of immediate next higher dimension and a pointer back to that higher n−4 

dimensions pointer array. Again, each EKA(4) have their own history tables, so to find the 

desired EKA(4) where the given history value lies we need to apply binary search all of 

them. For an EKA(n) with each dimensions’ length l, binary search is needed to be applied 

on l
n-4

 arrays. And in worst case it will demand   4l
n-4

 log2l comparison. So, we can make 

the search faster by giving a memory penalty for a bitmap array of length 4l
n-3

. The 

bitmap array will be a two dimensional array, whose index will represent the history 

counter value, and one of its entry j (j=1, 2, 3, 4), that will mean dimension of extension 

and another is a pointer to the EKA(4). 

 

Figure 4.2: Arrangement of HSOC EKA(n) for backward mapping. 

Backward Mapping on Compressed EKA(n) 

Let, given values are 〈h,s,o〉. So, we first look at the bitmap array at index h and found the 

entry j and the exact EKA(4) where the h resides. Now apply binary search only over the 

history table of dimension j Hdj to locate the position of h. Now we can determine the 
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found from there by going back to root and by collecting uppersubscripts array entry. 

Figure 4.2 shows the logical arrangement of an HSOC EKA(n) along with necessary 

auxiliary tables required for backward mapping. 

4.3  Theoretical Analysis 

Now we measure the proposed compression scheme on EKA. Before that we present some 

definitions of basic terms used here as well as some assumptions.  

4.3.1  Basic Terms 

Density of Array ( ρρρρ): it is a parameter to measure the sparsity of an array. It is the ratio 

of non-empty array cells with total number of cells. Maximum value the density can be 

one. Formally we can write,  

cellsarray  ofnumber  Total

 valuesnullnon  having cell ofnumber  Total
=ρ  

Compression Ratio (ηηηη): it is defined as the proportionate size of the compressed array 

with that of uncompressed one, formally  

Compression ratio, η = 
Array of size edUncompress

Array of size Compressed

 

Compression ratio value less than one is preferable.

 

Range of Usability (υυυυ): Range of usability of a compression scheme is defined as the 

maximum range of data density up to which the compression ratio is less than 1. 

4.3.2  Assumptions 

All the parameters used in the analysis are given in Table 4.1. in each case, we first 

present the analysis for EKA(4) and then for EKA(n). To make the theoretical analysis 

simple and tractable, let us consider  

• The compressed EKA is extended by a length of one unit in each dimension in 

round robin manner. 

• The length of each dimension is equal i.e. li = l, for all i. 

• All lengths and sizes are in bytes. 
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Table 4.1: Parameters for compressed EKA. 

Hi History table of dimension i 

Ci Coefficient table of dimension i 

Ei Element table of dimension i 

Ai Address table of dimension i 

N(.) Function that returns number elements in an array 

S(.) Function that returns size of an array 

li Length of each dimension i 

α Size of each offset or auxiliary table cell 

β Size of each cell of the EKA  

ρ Density  of the array, 0 ≤ ρ  ≤ 1 

υ Range of Usability of the array 

nEcell Non empty array cell 

Aux All the auxiliary tables of EKA 

P Higher dimensional pointer arrays 

4.3.3  Range of Usability Analysis 

For EKA(4)  

Number of cell in a History table of dimension i (i = 1, 2, 3, 4), N(Hi) = l,  

Similarly, N(Ci) = l,  and 

     N(Ei) = l, 

Since we consider round robin extension, it can be found that number of cell in a Address 

table,  

N(A1  or A2) = 1 + 1 + 2 + 3 + …  + l -1 = 1
2

)1(
+

−ll
 

N(A3  or A4) =  1 + 2 + 3 + …  + l = 
2

)1( +ll
 

Size of History table, S(H) = α Σ���
� ��H�� = 4�α 

Similarly, S(C) =α  Σ���
� ��C�� = 4�α 

    S(E) = α  Σ���
� ��E�� = 4�α 
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   S(A) = α  Σ���
� ��A�� = α(l(l -1) + 2 + l (l +1)) = α(2l

 2
 + 2) 

Therefore, size of auxiliary tables, S(Aux) = S(H) + S(C) + S(E) + S(A)  

         = α (2l
 2

 + 12l + 2) 

So, total number of non empty cells in the EKA(4) are, N(nEcell) = density × array size  

          = ρl
 4

  

And total number of offset are,  N(Off) = ρ l
 4

 . 

Then, S(nEcell) = β N(nEcell) = βρ l
 4

  

          S(Off) = α N(Off)  =αρ l
 4

  

Physical size of the compressed EKA(4),  

HSOCEKA(4) =  S(Aux) +  S(Val) + S(Off)    = α(2 l
 2

 + 12l + 2) + (α + β) ρ l
 4

 

If we would represent the array as traditional representation like TMA, the total number of 

array cell would be l
4
, since array is 4 dimensional and each dimension has a length l. 

Therefore, physical size of uncompressed Array as TMA, UCTMA(4) = l
 4β 

Compression ratio η = 
β

αα
4

42
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To determine Range of Usability, from its definition we can write: 
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Rather than length of dimension, the range of usability depends on the data type used for 

the array cell and that of auxiliary tables and offset.  

For EKA(n) 

In EKA(n), we have some higher dimensional pointer arrays whose number of cell,  

N(P) = nllO
l

l
l n

nn

i

i   and  , largefor  ),(1
1

1 4
34

1

−
−−

=

≅−
−

−
=∑ .  

Each of these pointer points to an EKA(4). 

So, S(Aux) = α (2l
2
 + 12l + 2) l

n−4  
+  αl

n−4  
= α (2l

n−2
 + 12l

n−3
 + 3l

n−4
) 

Physical size of the compressed EKA(n),  

HSOCEKA(n) = α(2l
n-2

 + 12l
n-3

 + 3l
n-4

)  +(α + β) ρl
n
 

Physical size of uncompressed Array as TMA, UCTMA(n) = l
nβ 

Compression ratio η = 
βl

ρlβ αl + l + l α

UC

HSOC

n

nnnn

nTMA

nEKA )()3122( 432

)(

)( ++
=

−−−

….  (4.2)

 

For EKA(n), we can again find that
βα +

≤
β

υ , calculation shown below, which is same as 

EKA(4). So we can conclude that range of usability is independent of length as well as 

number of dimension. 
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It is worth to mention that, above computation excludes the size of auxiliary tables needed 

for backward mapping. If we consider them then 

 S(bitmap) = α( 2×4×l × l
n−4

) = 8α l
n-3 
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[Since bitmap array is 2 dimensional, each EKA(4) can have maximum 4l 

history values, and there can be l
n−4

 EKA(4)s. ] 

 S(uppersubscripts) = nlll n
n

i

i , largefor  ,22 4
4

1

−
−

=

≅∑ αα  

So we can determine that these sizes do not contribute much on auxiliary tables and hence 

range of usability remains same. 

4.3.4  Retrieval Time Analysis 

In uncompress EKA the forward mapping time is almost constant, but for a point query in 

compressed EKA needs O(log2l
2
) = O(2log2l) additional time for binary search in a 2-

dimensional segment of length l. However, overall range query performance will be better 

if a sparse array is represented as HSOC EKA rather than straight or uncompressed EKA. 

This is because in uncompressed form after loading a segment from disk to memory we 

have to make a linear search to determine the non empty cells. On the other hand in HSOC 

EKA, we can simply put the segment to display or to any process. 

4.4  Conclusion 

In this chapter we have presented a compression scheme suitable for EKA. We have also 

shown that, if we use α = β, i.e. same data type for the auxiliary tables and the physical 

array, the scheme can store an array having 50% approximate density. Here it is also 

presented that usability of the compression scheme doesn’t depend on length or number of 

dimension of the sparse array represented as EKA. In the next chapter we will show the 

details experimental results that confirm the theoretical analysis presented here as well as 

in chapter 3. 
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CHAPTER V 

 

Experimental Analysis 

 

 

5.1  Experimental Setup 

In this chapter, we simulate the retrieval operation for range key query for both TMA and 

EKA. All lengths or sizes of storage areas are in bytes. Some parameters are provided as 

input while others are derived from input parameters. We have constructed the TMA and 

EKA systems having the parameter values shown in Table 5.1 placing the TMA and EKA 

in secondary storage. The auxiliary tables of EKA are placed in main memory since the 

sizes of the auxiliary tables are negligible comparing to the main array. The test results for 

retrieval and extension operations are analyzed in this Section. All the tests are run on a 

machine (Dell Optiplex 380) of 2.93 GHz processor and 2 GB of main memory having 

disk page size of 4KByte. We will show that the overall retrieval time has advantages for 

EKA than TMA. We also show that without any retrieval penalty we can extend the length 

of dimension of a multidimensional array effectively if implemented using EKA. 

Table 5.1. Assumed parameters for constructed prototypes 

n λ max(li) Initial V = l
n
 NRQ Subscripts 

4 10 100 (30)
4 

(l−λ)/2 to (l+λ)/2 5 5 45 (20)
5
 

6 2 22 (10)
6
 

 

5.2  Experimental Results 

5.2.1  Retrieval Cost 

In TMA, the array is linearized in a single data stream using the addressing function; 

therefore all the offset values of the array elements are consecutive. Hence the range of 

candidate offset values for a query can be determined uniquely. But for EKA; the same 

data stream is distributed over different subarrays.  
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(a)  Retrieval Time for EKA(4) (b)  Retrieval Time for TMA(4) 

(c)  Retrieval Time for EKA(5) (d)  Retrieval Time for TMA(5) 

(e)  Average retrieval time for EKA(4) and TMA(4) (f)  Average retrieval time for EKA(5) and TMA(5) 
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Figure 5.1: Retrieval cost analysis for EKA and TMA. 

The retrieval performance depends on the known dimension (i.e. the specified dimension) 

of query dimension. We use the term known dimension (or known subscript) to indicate 

the specified dimension of the query operation. For example if dimension 2 is the known 

or specified then we write subscript x2 is known.     

Figure 5.1 shows the retrieval performance for range key query of TMA and EKA for the 

parameter values shown in Table 5.1. In Figure 5.1(a) the retrieval performance for 

EKA(4) for different known dimension is shown. It shows that, the retrieval time is higher 

when x2 and x4 are known. The retrieval time is lower when the x1 and x3 is known. This is 

(g)  Retrieval Time for EKA(6) (h)  Retrieval Time for TMA(6) 

(i)  Average retrieval time for EKA(6) and TMA(6) 
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because the segments of the subarrays of EKA(4) are two dimensional hence the element 

inside the subarrays can be organized as row major order or column major order. If the 

elements are organized in one order (say row major) then it is searched in column order; 

the target elements for the query are not consecutively organized. Therefore that known 

subscript takes longer time. Hence two known subscripts will take higher time than other 

two known subscripts. Please be noted a two dimension array is used as four dimensional 

(see Figure 3.1) array. When number of dimension n increases for EKA then it (see Figure 

5.1(c) and 5.1(g)) shows that retrieval from EKA takes higher time for the known 

subscripts of only two values. Figure 5.1 (b) shows the retrieval time for TMA for n = 4. It 

shows that for the known dimension of x1 takes higher time than other known dimensions. 

This is because when known dimension is x1 then the entire array needs to be scanned as 

explained in section 3.6.2.  

When n = 5, 6 for TMA, the same situation i.e. for one known subscript TMA takes higher 

time than others as shown in Figure 5.1(d) and 5.1(h). Figure 5.1(e) and 5.3(f) shows the 

average retrieval cost for EKA and TMA for n = 4 and 5. It shows that EKA has better 

performance than TMA and the average retrieval cost is almost same for both EKA and 

TMA when n = 6 (Figure 5.1(i)). It can be concluded that, on average, the retrieval 

performance for EKA is better and there is no retrieval penalty for EKA over TMA. This 

conclusion is valid up to n = 6, up to which experiment is conducted. For n > 6 the 

performance may or may not deteriorate. We’ve carried out the experiment up to n = 6, 

since we found it sufficient enough for many practical systems, like MOLAP. 

5.2.2  Extension Cost 

Figure 5.2 shows the extension cost for TMA and EKA .The TMA reorganizes the array 

whenever there is an extension to it. That is, the whole array will be relinearized on disk to 

accommodate the new data due to the extension of length of dimension. The TMA scheme 

needs to face the existing elements then reorganize for the extension. On the other hand, 

the EKA extends the initial array with segment of subarrays containing the new data as 

described in Section 3. Hence the EKA strategy can reduce the cost of array extensions 

significantly. 

In Figure 5.2(a), 5.2(b), and 5.2(c) the extension times are shown with n = 4, 5, 6, where 

we find that the extension times for TMA are much higher than EKA. Extension gain is 
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the difference between the extension time of TMA and EKA which is shown in Figure 

5.2(d) and 5.2(e). From the theoretical aspects described in section 3.6.3 that the extension 

is constant with a fixed initial volume for any value of λ. But from Figure 5.2(e) we find 

that this is almost true for n = 4, but not for others. This is because we made some 

assumption to make theoretical analysis simple. But in practice we need to populate the 

auxiliary tables that took some time what we excluded in theory. And populating time 

increases with large n which affects the extension gain. One other reason is, since λ is 

variable here, therefore the length of dimension is variable which also affects the lengths 

of the auxiliary tables as well as the populating time. 
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(e) Extension gain with constant  v 

Figure 5.2: Extension cost comparison for EKA and TMA. 

The extension cost as well as extension gain depends on the initial volume of the array i.e. 

the values of n and l before the array is extended. Hence, if n and l increase, then EKA 

needs less data to store than TMA without any reorganization of data. So TMA needs 

higher times than EKA and thus gain increases. We can conclude that if the initial volume 

is large then the extension cost for TMA is higher. It will be expensive to extend a large 

array even for small values of λ.  

5.2.3  Overflow Analysis 

Figure 5.3 shows the maximum length of dimension that causes the EKA and TMA to 

overflow the address space for varying number of dimensions. From Figure 5.3, it is found 

that, EKA and TMA reaches a length of 180 and 120 respectively in each dimension 

where for n = 4. Actually EKA doesn’t overflow due to memory allocation, it stops 

allocating secondary storage since the maximum allowable file size is around 4GB for a 

32 bit compiler.  

Figure 5.4 (a) shows the total storage requirement for EKA and TMA on different number 

of dimensions varying the length of dimension. From Figure 5.4 (a), it is found that both 

EKA and TMA need almost same amount of storage up to a particular length of 

dimension. In practice EKA needs slightly higher amount of storage due to its auxiliary 

tables, but this is very negligible compared to the total requirement. So we can conclude 

0 10 20 30 40 50 60 70 80 90

0

10000

20000

30000

40000

50000

T
im

e
 (

m
S

e
c
)

Lambda

 EG(4) with V = 30
4

 EG(5) with V = 20
5

 EG(6) with V = 10
6



60 

 

that the nature of storage requirement is almost same for EKA and TMA. Figure 5.4 (b) 

shows the maximum storage allocated for EKA and TMA on different number of 

dimension before reaching to overflow situation. From Figure 5.4 (b), we find that in all 

cases EKA allocates storage around 4GB where as TMA allocates around 850 MB. This is 

because EKA stops on maximum allowable file size, but TMA stops on consecutive 

memory requirement and/or address space overflow. Though we have 2GB memory TMA 

can grow only a size of 850MB, this is because - during extension TMA needs almost 

twice memory space, one space to store the old TMA after reading the data, and another 

space to allocate for the new TMA after extension.  
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Figure 5.3. Maximum length reached before the occurrence of overflow. 
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(a) Total storage requirement 



61 

 

4 5 6
0

1000

2000

3000

4000

S
to

ra
g
e

 (
M

B
)

No. of Dimension

 EKA

 TMA

  

 
Figure 5.4: Storage allocation of EKA and TMA. 

5.2.4  Compression Results 

The experimental outcome of compressed EKA is presented in this section. All the 

simulation is made considering the parameter α = 4 bytes, and β = 8 bytes. 

Compression Ratio  

It is an important metric to determine the usability of the compression scheme. Figure 5.5 

show the compression ratio found by experimental result of the compression scheme 

applied on EKA. Figure 5.5(a) shows that compression ratio is almost constant for 

different length of dimension and density over EKA(4). From Figure 5.5(b) we found the 

same thing that is compression ratio is independent of different number of dimension, 

length of dimension and density. In Figure 5.5(b) the line connecting the top of the bars 

are average compression ratio for different density and it crosses the value one at an 

approximate density 0.66. Hence range of usability is approximately 0.66 and thus the 

experimental results proves the theory in section 4.3 (since α = 4, and β = 8). 

Extension Time for Compressed EKA 

It is another important metric to measure how much time it takes to be extended. Figure 

5.6 shows the average extension time measured for ρ = 0.4, 0.5, and 0.6 for EKA(4, 5, 6). 

It shows that extension time exponentially grows with length of dimension, and the growth 

rate is high for higher number of dimension. This is because for a n-dimensional array, we 

know the subarray size is l
n-1

, where l is the length of dimension. 

(b) Maximum storage allocated before the occurrence of overflow 
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Figure 5.5: Compression Ratio for EKA. 
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Figure 5.6: Average extension time of compressed EKA. 
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Figure 5.7 shows the extension time of compressed and uncompressed EKA(4) for 

different density. For compressed version (Figure 5.7(a)) the extension time varies on 

density. On the other hand uncompressed EKA(4) always takes almost same amount of 

time shown in Figure 5.7(b). This is because, in uncompressed version density of real data 

does not affect the total size of the extension subarray, hence disk I/O is almost constant. 

In both case the time increases exponentially because the size extension subarray is l
n-1

 

which is exponential. 
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Figure 5.7: Extension Time of Compressed and Uncompressed EKA(4). 
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(b) 
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Figure 5.8 shows the average extension time for compressed and uncompressed 

EKA(4,5,6). From figure we find that in every case compressed version of the array takes 

less time then uncompressed array. The reason is subtle, compressed array needs less data 

to write hence fewer disks I/O is required and therefore time is less. 

Retrieval Time for Compressed EKA 

Figure 5.9 shows the average range key retrieval time of NRQ subscripts on both 

compressed and uncompressed EKA(4) with different density. Retrieval is made 

considering each dimension as known dimension and then averaged. From 5.9(a), we find 

that retrieval time varies with density in compressed EKA(4). However there is no effect 

of density in uncompressed one, the retrieval time is almost constant for a particular length 

of dimension (see Figure 5.9(b)). This is because in uncompressed EKA(4) whatever the 

density, the segment or subarray sizes remain same, hence retrieval time is constant. 

Though we have presented only EKA(4), we found same phenomena for EKA(5) and 

EKA(6) also. 

Figure 5.8: Comparison between compressed and uncompressed extension times. 
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Figure 5.9: Average range key retrieval on compressed and uncompressed EKA(4). 

The retrieval time linearly increases with the change of density considering a constant 

length of EKA. Figure 5.10 exhibits this feature on EKA(5) with different length. The 

reason is, for an n-dimensional array with a particular length l and density ρ the number of 

non empty cell is ρl
n
. So if ρ changes the total number changes linearly and hence the 

retrieval time. 

 

(a) 

(b) 
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Figure 5.10: Change of retrieval time with density in compressed EKA(5). 
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Figure 5.11: Average retrieval time comparison between compressed and uncompressed EKA. 
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Figure 5.11(a), 5.11(b), and 5.11(c) show the comparison of range key retrieval time of 

NRQ subscripts in compressed and uncompressed EKA(4), EKA(5), and EKA(6) 

respectively. Here given retrieval time is the average of retrieval time with density ρ = 0.4, 

0.5, and 0.6. However the retrieval time with a density is, in fact, an average retrieval time 

considering each dimension as known dimension. In every case the compressed EKA 

needs much less time than uncompressed one, which is depicted in Figure 5.11. The 

reason is, for a range key query we have to determine major and minor subarray and then 

load the subarray or segment from disk to memory. In uncompressed EKA whatever the 

density segment size is always same and maximum. Furthermore if density is less than 1, 

we need a linear search to be made for determining the non empty cells. But in 

compressed EKA the segments are compact and their size varies with density. Since the 

segments contain only the non empty cells of the logical array there is no need of any 

search. Simply read the segment from disk and present them, which require much less 

time. The same thing is true for segments other than major or minor subarray. Therefore 

overall retrieval time in compressed EKA is better than uncompressed EKA. 

5.3  Discussion 

In this chapter we present the experimental outcomes of the proposed scheme. We 

compare the various operations on proposed scheme with that of TMA. We also make 

comparison between compressed and uncompressed version of the proposed model. In 

each case we found relevancy with the theoretical analysis what we made in Chapter III 

and IV. We find that EKA outperform TMA for retrieval and extension operation, and 

furthermore compressed EKA is better than that of uncompressed EKA. 
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CHAPTER VI 

 

Conclusion 

 

 

6.1  Summary 

Many scientific applications extensively use multidimensional array to represent their data for 

efficient processing purpose. However in many cases the total number of data or dimension 

cannot be predicted beforehand. Besides this, representing the real world data in 

multidimensional array creates a very sparse array. In this research work, we managed three 

practical problem of multidimensional data representation namely (i) extending the length or size 

of the array dynamically, (ii) address space overflow, and (iii) sparsity of array. 

We proposed a new scheme namely Extendible Karnaugh Array (EKA) for multidimensional 

array representation. The main idea of the proposed model is to represent multidimensional array 

by a set of two dimensional extendible arrays. To extend the TMA re-linearization is necessary 

but this is very costly when the array is large. Therefore we need an array system to extend in all 

dimensions without costly shuffling of the existing data. Our proposed EKA model serves this 

purpose efficiently. Most of array systems do not consider the address space overflow problem, 

but proposed scheme manages the problem effectively. Sparsity creates a new direction of data 

representation, so to handle it we also presented a suitable compression scheme for the proposed 

model.  

We evaluated the proposed EKA and its variant i.e. the compressed EKA by theory and 

experiment. The experimental results confirm the theory for various array operations. Again we 

compared the EKA with traditional array representation and found better results for the proposed 

model. 

6.2 Future Scope of Work  

Though the overall effect will very little, but there is still a scope to minimize the auxiliary tables 

maintained in proposed EKA. Since the proposed model is a multidimensional array 



69 

 

representation scheme, any application or system that uses multidimensional array to represent 

data can use the scheme. More specifically – 

• This scheme can be successfully applied to database applications especially for 

multidimensional database or multidimensional data warehousing system.  

• One important future direction of the work is that, the scheme can be easily implemented 

in parallel platform.  

• Because most of the operations described here is independent to each other. Hence it will 

be very efficient to apply this scheme in parallel and multiprocessor environment.  
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