
 A Study on the Comparison between HTML5 and OpenGL in 

Rendering Fractal Tree 

 

 

by 

 

 

Mehbuba Zerin Khan 

 

 

A project submitted in partial fulfilment of the requirements for the degree of  

Masters of Science in Computer Science & Engineering 

 

 

 

 

 

Department of Computer Science and Engineering 

Khulna University of Engineering & technology 

Khulna 9203, Bangladesh 

 

March 2019 

 



Declaration

This is to certify that the project work entitled "A Srud."" on the Comparison befween

HTML5 and OpenGL in Rendering Fractal Tree" has been carried out by Mehbuba Zerin

Khan in the Deparlment of Computer Science and Engineering. Khulna University of

Engineering & Technology, Khulna, Bangladesh. The above project work or any part of

this work has not been submitted anywhere for the award of an1' degree or diploma.

Candidate

12.o3 . 2oty
Prof. Dr. M.M.A. Hashem Mehbuba Zerin Khan

Roll: 1407502

'h,ry



Appror.al

Tllis is to certit-t that the project u'ork submitteii br \lehtrLrLra Zerin Kh4ir entitled "A Stucir,

olt the Conrparisott betu,een HTN,{I-5 anci OpenCiL in Rencle,',ng t,, r.taFtfib..,, u,f.ot.,
by'the hoard of exatuinels for tire parlial tirlf-ihncnt olrh.. rcrlr-Li'er-nentffur tlre clegree of
N.4asters of Seience in Computcr Science & F.ngrnecrinc in the Department of Computer

Scieuce and Engineering. Khulna Llr-riversitl of Enginec-ring & feclmology. Khulna.

Bangladesh in N{arch 2019.

80,\RI ) 0F LIXAN{INIrRS

i. Superr,isor
(Chairman)

Prof-essor
Departrirent of Cor-nputer Science and Engineeritrg
K hulna Universitt, o f En-uir.reerin g & Technolo g,v" KliLr ln a-91 0 3

u

_ fi'rniffLl,,l tgolt:_
D;.'N L,\*inrt n,,.1r.- AkIo;
Flead & Prof"essor
Departnrr.nt ol Compr:ter Scienee and [_" ngineering
Khulna llnirersit) of Elgileering & Technologr'. Klulna-920j

2.

j" &,,_-r4,g,\q
Dr" K." N{" Azharr-rl Hasan
Profbsstlr

Department of Contpnter Science ancl Enuineering
Khulna I Inir ersit-r' of Engineering & T'ecirnoro_uy." K-irulna-g j0j

+ @'dy--
Dr Pirrru Chundr-l Slrill
Profbssor
Department of- Computer Science and Engineerir-ig
Khr-rlna I Iniversity of Engrinee'ring &'rechnologr,. KhLrlna-r)203

,'--) C_r'/\-i ' *11 rr-{:irl
Dr. Kanrrr-ri Hasan Talukder
Prtr tc sscl r
C tllllpttter Science alrd Fitrgineerirrg
KliLrlir;r I'nir ersitr,. Khulna

N4entber

lV{embc-r

N4ernbu:r

IVfember
(l-irtenralt

\



iii 
 

Abstract 

 

This is the era of web applications as for each desktop application, there is a corresponding 

web application being developed. Each web application consists of interactive graphical 

user interface and some of them requires in-browser rendering.  In this period, it’s high 

time to study the abilities of modern-day web applications on handling graphical 

operations. As both HTML5 and OpenGL are strong tools for graphical operation and both 

depicts rendering capabilities on different platforms, in this project, they have been 

compared thoroughly. To measure the effectiveness and compare the results from HTML5 

and OpenGL, Fractals are considered to be drawn on web platform and on desktop 

graphical program. In this project, A simple HTML5 web page is implemented along with 

a C++ based command line program is also implemented to render fractal trees. HTML5 

and OpenGL both performed significantly well in case of rendering fractal trees where 

HTML5 fell a little bit short in case of rendering time in case of large number of iterations. 

As the number of iterations increased rapidly, the rendering time required by the HTML5 

increased but it performed on par with OpenGL in rendering quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

 

First of all, I would like to express my grateful thanks to the almighty to complete my task. 

I would like to express my deepest sense of gratitude and sincere thanks to my respected 

supervisor Dr. M.M.A. Hashem, Professor, Department of Computer Science and 

Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh for 

providing me the opportunity of working under his kind supervision. For his proper 

guidance, co-operation, invaluable suggestions and constant encouragement throughout 

this research work it is easy to find the right way to fulfil the desire research. I will 

remember his inspiring guidance and cordial behaviour forever in my future life. 

 

I should take this opportunity to express my sincere thanks to all the teachers and stuffs of 

this department for their valuable advice and moral support in my research work. I wish to 

convey my hearty thanks to all my friends and class fellows for helping me according to 

their ability. 

 

I wish to thank my parents and husband for their great understanding and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Contents 

 

Declaration            i 

Approval                     ii 

Abstract                    iii 

Acknowledgements                   iv 

List of Figures                    vi 

CHAPTER I  Introduction        1 

  1.1  Background       1 

  1.2  Motivation       1 

  1.3  Problem Statement      2 

  1.4  Specific Objective      3 

  1.5  Methodology       3 

  1.6  Organization of the Project     5 

 

CHAPTER II  Literature Review       6 

  2.1  HTML5        6 

   2.1.1 Canvas         6 

  2.2  OpenGL        8 

   

CHAPTER III  System Architecture       9 

   3.1  System Model       9 

   3.2 Fractal Tree                12 

CHAPTER IV  Implementation                12 

  4.1  Preparing HTML File               12 

  4.2  Drawing Fractal in HTML5              12 

  4.3  Drawing Fractal in OpenGL              14 

CHAPTER V  Experimental Analysis               15 

   5.1  Experimental Setup               15 

   5.2  Experimental Results               15 

 

CHAPTER VI 6.1 Conclusions                18 

   6.2 Future Work                18 

References                   19  

Appendix-A                   22 



vi 
 

LIST OF FIGURES 

 

Figure No Description Page 

1.1 Fractal drawing of a tree leaf. 2 

1.2 Proposed system for comparison of performance between HTML5 and 

OpenGL. 

5 

3.1 Structure of the system. 9 

3.2 SVG image before zoom 10 

3.3 SVG image after zooming 11 

3.4 Fractal Drawing Techniques 12 

4.1 Flowchart of Fractal Tree drawing 13 

4.2 Fractal Tree drawn by HTML5 14 

4.2 Fractal Tree drawn by OpenGL 16 

5.1 Rendering Time on multiple web browsers 17 

5.2 Comparison of execution time on different web-browsers 18 

5.3 Comparison of HTML5 and OpenGL on rendering time with respect to 

number of iterations in fractal trees 

19 

 

  



i 
 

 

 

 

 

 

 

 

Dedicated to my son, parents, husband and 

Honourable supervisor sir. . .

vii 



1 
 

CHAPTER I 

Introduction 

1.1  Background 

With the advancement of internet and technologies, web applications are rapidly becoming 

more complex and sophisticated. Once, desktop computers were considered as the sole 

platform for the development and deployment of applications. Now, people are more 

intrigued about using web applications instead of desktop applications.  

Web applications now provide various intricate features to the users which were 

previously only available to desktop applications. Rendering of 3D graphics is one of the 

complex and intensive work for any platform. Web applications these days have earned the 

ability to render these intensive 3D graphics on the go. As the number of devices with 

graphics processing units (GPUs) are increasing in number, the web developers can 

harness the power of these GPUs more accurately than ever to produce wonderful 

graphical environments for general users. 

1.2  Motivation 

The World Wide Web Consortium (W3C) introduced the world a new era of web 

through HTML5 in 2014 [1, 2]. The earlier versions of HTML could only perform simple 

tasks such as creating static pages and manipulating static data, lacking the ability to 

handle dynamic data. Moreover, the web interface were not rich and interactive enough in 

earlier versions of HTML. To handle these shortcomings, W3C released HTML5. It 

provides a lot of advanced features to the general users as well as to web developers such 

as local file handling, image operations over pixels and support for complex 2D & 3D 

graphics. The features of HTML5 are supported in most of the popular browsers such as 

Chrome, Safari, and Mozilla Firefox etc. 

On the other hand, OpenGL is the most popular development environment for 

producing eye popping 2D and 3D graphics applications in current industry. In 1992, it 

was first introduced to the developers. Since then, it helped the graphics developers to 

achieve astonishing results in rendering complex graphical structures and produced 

numerous number of applications both in desktop platform and application programming 

interfaces (API) [3]. OpenGL provides the necessary graphics processing functions such as 



2 
 

rendering, texture mapping and other visualization tools that helps the speedy development 

of graphical applications. Developers can easily harness the raw power of GPUs through 

these various functions of OpenGL in most of the popular platforms such as desktop and 

workstations environment. 

1.3  Problem Statement 

A fractal is an endless pattern. Fractals are vastly mind-boggling design patterns that are 

self-comparable crosswise over various scales. They are made by rehashing a 

straightforward procedure again and again in a progressive feedback circuit. Driven by 

recursion, fractals are pictures of great dynamic. Geometrically, they exist in our known 

dimensions. Fractal designs are to a great degree, well-known, since nature is brimming 

with fractals. For example: trees, streams, coastlines, mountains, mists, seashells, sea 

tempests, and so forth. Fig. 1.1 shows the fractal drawing of a tree leaf [4]. Theoretical 

fractals, for example, the Mandelbrot Set – can be produced by a PC figuring a 

straightforward condition again and again. Both HTML5 and OpenGL have the 

capabilities to render fractals in modern day platforms. 

HTML5 is being considered in case of browser-based rendering with respect to 

other rendering platforms such as CSS3, WebGL etc. However, OpenGL is used in 

rendering in most of the desktop environments and its rather useful for heavy graphics-

based operations. For simple object rendering, browser rendering can be a new area of 

 

 

Fig 1.1: Fractal drawing of a tree leaf [4]. 

 

 



3 
 

study that requires light weight computations from the user which can be performed by a 

CPU rather than having a GPU to handle these operations in case of using OpenGL. 

Developing an application as a web application can allow it to run on wider array of 

platforms than what would have been possible if it had been written as a normal desktop 

application. 

1.4  Specific Objective 

The key objective of this project is to study the comparison of HTML5 and OpenGL in 

case of simple object rendering. To reach the goal the study is carried out with the 

following specific objectives: 

 Investigate HTML5 for better understanding of its features. 

 Investigate OpenGL for its underlying structure and features. 

 Investigate the effect of HTML5 on rendering simple objects (i.e fractal tree) in 

web browsers.  

 Investigate the effect of OpenGL on rendering simple objects (i.e fractal tree) in 

desktop environment. 

 Performance comparison between the rendering ability of HTML5 & OpenGL on 

simple fractal tree. 

1.5  Methodology 

As the web evolves, so do its underlying technologies. Browsers continuously gain new 

features while deprecating old ones, fix bugs, and implement newer versions of 

technologies such as HTML, JavaScript, HTTP and CSS. HTML5 is not just the new 

version of the web's markup language, but a collection of new features for a more modern 

web. These new features enable users to interact with web sites in different ways, while 

helping developers have an easier time delivering content to users. HTML5 includes new 

CSS features that allow developers to style a web page differently, new JavaScript features 

that bring new capabilities to a web page, and new markup that allows for a semantic web. 

New semantic elements give developers a way to better structure web pages through 

HTML tags that better describe the content. It has been possible to render images in a web 

page since the beginning on HTML. This is done through the use of the <img> tag, but this 

is solely for rendering an image and is not a new feature. We are instead concerned with 

more elaborate graphic technologies. 



4 
 

To properly draw or render an item in a browser, HTML5 uses ‘Canvas’, a raster-

based technology that renders pixels to a screen. <canvas> element is used to draw 

graphics, on the fly, via JavaScript. The <canvas> element is only a container for graphics. 

Thus, JavaScript will be used to actually draw the graphics. An HTML file is maintained 

which contains three sections such as HTML, CSS, JavaScript sections respectively. The 

HTML section is used to declare the necessary tags in order to create a web page with a 

canvas container. The CSS section is used to properly decorate the environment on the 

web page. JavaScript sections contains the necessary function and variables to draw the 

simple objects (i.e fractal tree) in the selected canvas area of the web page. 

Similarly, a C++ based OpenGL program is written in CodeBlocks IDE in Microsoft 

windows environment to draw the similar simple objects (i.e fractal tree) drawn in web 

browser. The proposed system is depicted in fig. 1.2. 

 

Fig 1.2: Proposed system for comparison of performance between HTML5 and OpenGL. 

1.6  Organization of the Project 

The rest of this project is organized in five chapters, which are as follows: 

  Chapter 2 Provides literature review related to graphical rendering technologies 

such as HTML5 and OpenGL and a brief overview on fractal tree. 

  Chapter 3 Specifies problem formulation that are essential to implement the 

project. 

  Chapter 4 Introduces the implementation of the project. Contains all codes and 

functions related to HTML5 and OpenGL. 

  Chapter 5 Contains experimental studies details, result analysis, discussion for 

Rendering Fractal 

Tree 
 

 

 

Web Browser 

HTML 

JavaScript 

CSS 

Comparison of 

Performance. 

OpenGL Desktop 

Program 

 



5 
 

future work. 

  Chapter 6 Conclude the project work and recommendation some future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

CHAPTER II 

Literature Review 

Introduction 

Web is the fastest growing resource that is rapidly and constantly used across almost every 

platform. To this day, some research work has been performed on the evaluation of 3D 

graphics technologies in the field of web applications [5]. Among them, various 

technologies and techniques has been measured for effectiveness in case of rendering 

graphical objects and their shortcomings has been studied thoroughly.  

2.1  HTML5 

As HTML5 is the newer version of HTML, it helps us creating interactive and rich 

webpages. HTML has grown drastically from simply emphasizing on production of audio, 

video and animations to providing offline functionality, local storage and geo location on 

any client-side database.  

The development of HTML5 gives rise to a wide variety of multimedia applications. 

Without any help of proprietary techniques from the browser it supports animations and 

can play audio and video. For web developer and web designer the new features provided 

by the HTML5 would add up new values. HTML5 provides cross platform, which is 

designed to display webpages on Smart TV, Tablet, PC, Smartphone etc. So many 

websites as well as browser designers are adopting HTML5 elements. The main temptation 

for the web developers and browsers is that someone can create rich web pages, web-based 

applications and enhanced forms without mastering or licensing multiple proprietary 

techniques. 

2.1.1  Canvas 

One of the most interesting new elements in HTML5, <canvas> provides an area of the 

screen which can be drawn upon programmatically. It enjoys widespread support, being 

available in the most recent versions of Chrome, Firefox, Internet Explorer, Opera, and 

Safari as well as Mobile Safari and Android Browser. The basic approach to drawing on a 

canvas is simple: acquire a graphics context, and use the context's API to affect your 

changes. In the current HTML5 specification, the only defined context is “2d”. The 2d 

context provides basic drawing primitives such as fillRect, lineTo, and arc, as well as more 



7 
 

complicated features such as Bezier curves, color gradients, and copying in an existing 

image. 

To combine video and animations on webpages HTML5 uses <canvas> element for 

drawing graphics using java script. To present 2D/3D graphics script is used and graphics 

is contained in the canvas. To make graphics heavy pages render fast, various types of 

methods for boxes, texts, drawing paths, images are being used. 

The role of Graphics Processing Units (GPUs) in mobile devices has been getting wide 

attention, as they provide huge acceleration benefits for compute-intensive apps that 

require fast rendering or 3D gaming. GPUs utilize low power and are far more efficient 

than CPUs for performing the complex mathematical calculations needed for graphics 

rendering (fewer compute cycles). 

Web Graphics Library (WebGL), based on HTML5 and OpenGL ES 2.0 standards, is a 

JavaScript API for rendering rich and interactive 3D graphics without installing any 

additional software [6,7]. It is designed to efficiently utilize the GPU to perform the 

intensive rendering computations that enables the creation of real-time interactive data 

visualizations. With the availability of GPUs on almost every modern mobile devices, 

combined with the emergence of industry standards such as WebGL, it has opened up 

enormous opportunities in developing visually appealing and rich experience apps, and are 

expected to play a significant role in mobile computing.  

WebGL is also used in some geographical applications where it is being used as a tool for 

visualization [8]. As WebGL is a variation of OpenGL and shares some of its capabilities 

on the web platform, it also shares some features with HTML5. Both HTML5 and WebGL 

have been considered to be used in medical image rendering [9]. 

In this project, HTML5 is being considered in case of browser-based rendering with 

respect to other rendering platforms such as CSS3, WebGL etc. [10]. However, OpenGL is 

used in rendering in most of the desktop environments and its rather useful for heavy 

graphics-based operations. For simple object rendering, browser rendering can be a new 

area of study that requires light weight computations from the user which can be 

performed by a CPU rather than having a GPU to handle these operations in case of using 

OpenGL. Developers are now preferring web version of applications to develop which 



8 
 

gives them an opportunity to reach a large number of users rather than developing desktop-

based applications [11]. 

2.2  OpenGL 

OpenGL is the premier environment for developing portable, interactive 2D and 3D 

graphics applications [12]. Since its introduction in 1992, OpenGL has become the 

industry's most widely used and supported 2D and 3D graphics application programming 

interface (API), bringing thousands of applications to a wide variety of computer 

platforms. OpenGL fosters innovation and speeds application development by 

incorporating a broad set of rendering, texture mapping, special effects, and other powerful 

visualization functions. Developers can leverage the power of OpenGL across all popular 

desktop and workstation platforms, ensuring wide application deployment. 

HTML5 and OpenGL, both possess rendering capabilities of objects and they 

produce marvellous graphical contents. Still, HTML5 works better in web architecture, 

whereas OpenGL is developed only considering desktop and workstations, and it utilizes 

the Graphical processing resources of those platforms completely.   

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

CHAPTER III 

System Architecture 

Introduction 

In this chapter, the architecture of the graphic system is described as well as the features of 

HTML5 and OpenGL will be discussed. 

3.1  System Model 

As the web evolves, so do its underlying technologies. Browsers continuously gain new 

features while deprecating old ones, fix bugs, and implement newer versions of 

technologies such as HTML, JavaScript, HTTP and CSS.  HTML5 is not just the new 

version of the web's markup language, but a collection of new features for a more modern 

web. These new features enable users to interact with web sites in different ways, while 

helping developers have an easier time delivering content to users. HTML5 includes new 

CSS features that allow developers to style a web page differently, new JavaScript features 

that bring new capabilities to a web page, and new markup that allows for a semantic web. 

New semantic elements give developers a way to better structure web pages through 

HTML tags that better describe the content. It has been possible to render images in a web 

page since the beginning on HTML. This is done through the use of the <img> tag, but this 

is solely for rendering an image and is not a new feature. We are instead concerned with 

more elaborate graphic technologies. We want to render fractal trees with the help of 

HTML5 and also OpenGL to compare the outcome on the basis of graphics rendering 

capabilities of these platforms. 

 

Fig 3.1: Structure of the system. 



10 
 

In Fig. 3.1, the structure of the system is shown. The experiment is divided into two 

sections, developing an OpenGL desktop program and creating a HTML file with CSS and 

JavaScript in order to draw fractal trees. The resultant fractal trees will be compared 

between the competing platforms. There are certain features which the web technologies 

and desktop environment that are used in our experiment holds. HTML5 provides 

advanced set of features for its users such as unique ways to render graphics to produce 

interactive and animated graphical elements in web browsers. HTML5 achieves this 

through CSS3, Canvas [13], Scalar Vector Graphics (SVG) [14,15], and WebGL. 

To properly show videos and animations on web browsers [13], HTML5 utilizes <canvas> 

element. It draws different sort of things in a webpage by the help of java script. The 

2D/3D elements in the webpage is contained within <canvas>. CSS3 provides rich outlook 

to the webpage by designing menus, buttons and other basic elements. For faster loading 

speed of intense graphical elements in a web page, various forms of methods are used.  

One of them is SVG. The prominent feature of SVG is that the quality of the images 

remains unchanged even after compression or enlargement of it. As can be seen in Fig. 3.2, 

the SVG image of a butterfly remains unchanged even after continuous zooming. The 

zoomed image, circled in red, in Fig. 3.3 shows that SVG remain undistorted and 

unchanged after manipulation of its size. 

 

 

Fig 3.2: SVG image before zoom. 



11 
 

 

Fig 3.3: SVG image after zooming. 

On the other hand, WebGL is based on OpenGL ES which lacks many of the features 

that regular OpenGL has [15]. There are a number of other features that OpenGL has that 

WebGL does not have such as 3D textures, vertex array objects [16].  

OpenGL, another way to say "Open Graphics Library," is an application programming 

interface (API) intended for rendering 2D and 3D designs [17]. It gives a typical 

arrangement of directions that can be utilized to oversee designs in various applications 

and on different stages. OpenGL code is generally cross platform, giving the graphics 

developers the flexibility to develop and publish features rich graphical content 

simultaneously in Windows, Mac or cell phones. Current GPUs are specifically optimized 

for OpenGL to perform better in intense graphics operation. Features of OpenGL includes 

illustration of polygons, colouring different shapes, texture mapping and transformation of 

polygons and controlling the movement of them. 

This is an important area of research since web browsers are evolving rapidly, as are 

graphics in general. It is also an important area of study because many applications that 

were previously standalone applications that ran natively on desktops and laptops are 

moving into the web. For example, Microsoft's popular Office suite is now available 

completely inside a browser with no installation necessary. Adobe has also done the same 

with their Creative Cloud software as an alternative to installing photoshop on one's 

computer that renders SVG. 

 



12 
 

3.2  Fractal Tree 

A fractal tree is defined recursively by symmetric binary branching. The trunk of length 1 

splits into two branches of length r, each making an angle q with the direction of the trunk. 

Both of these branches divide into two branches of length r2, each making an angle q with 

the direction of its parent branch. Continuing in this way for infinitely many branching, the 

tree is the set of branches, together with their limit points, called branch tips [18]. The 

steps [19] to draw a simple fractal tree are given below: 

 

In Fig. 3.4, each branch is determined by a string of symbols L and R specifying the choice 

of direction taken along the tree to reach the branch. A branch determined by a string 

of n symbols has length rn; a branch tip is determined by an infinite string of symbols. 

Most of the analysis in results from converting eventually periodic symbol strings of 

branch tips into geometric series for the x and y coordinates of the branch tips, and making 

appropriate interpretations. 

 

Fig 3.4: Fractal Drawing Techniques. 



13 
 

CHAPTER IV 

Implementation 

Introduction 

In this chapter, the implementation of the graphic system architecture is discussed and the 

rendering factors are also being addressed thoroughly.  

 

Fig 4.1: Flowchart of Fractal Tree drawing. 

To prepare the system, we need a HTML file for implementing HTML5 along with a C++ 

coded program for OpenGL program implementation which can be seen in Fig. 4.1. The 

details of the functions involved in rendering, are discussed in their corresponding 

subsections. 

4.1  Preparing HTML File 

To properly draw or render an item in a browser, HTML5 uses ‘Canvas’, a raster-based 

technology that renders pixels to a screen. <canvas> element is used to draw graphics, on 

the fly, via JavaScript. The <canvas> element is only a container for graphics. Thus, 

JavaScript will be used to actually draw the graphics. An HTML file will contain three 

sections such as 

 HTML 

 CSS 



14 
 

 JavaScript 

 The HTML section is used to declare the necessary tags in order to create a web page with 

a canvas container. The CSS section will be used to properly decorate the environment on 

the web page. JavaScript sections will contain the necessary function and variables to draw 

the simple objects (i.e. fractal tree) in the selected canvas area of the web page. 

4.2  Drawing Fractal in HTML5 

To draw the fractal in HTML5, canvas element is first called by 

<canvas id="canvas"></canvas> 

We set the margin and padding to zero as we don’t want to obstruct the view of the user 

while rendering fractal trees. Canvas variables and elements are at first initialized in the 

<script> element.  

 
 

Fig 4.2: Fractal Tree drawn by HTML5. 

 

Three user functions are created namely init(), branches() and get_endpoint(). These 

functions are declared and defined in the JavaScript block of the HTML file. In init() 

function, the basic parameters are initialized such as length of the trunk, divergence angle, 

reduction rate etc. Also, the beginning co-ordinate of the fractal drawing is initialized in 

this function. In branches() function, the drawing co-ordinate of the branches of the fractal 

tree is calculated. This function is called recursively to continuously draw shapes in the 

canvas. The get_endpoint() function continuously checks up the endpoints of the branches 



15 
 

by using vector formulae.  

 

The time() functions calculates the operation time of these functions and the duration of 

the CPU process. It is invoked to properly calculate the timing of drawing fractal tree in 

the system.  

Fig. 4.2 depicts the outcome of the HTML file in a browser. If we zoom into the depth of 

the leaf in the generated tree, we will find the same fractal pattern all along. It’s the basic 

characteristic of fractal and it proves the successful run of the implemented program. 

4.3  Drawing Fractal in OpenGL 

A C++ based OpenGL program is written in CodeBlocks IDE in Microsoft Windows 

environment to draw similar fractal tree drawn in web browser in Fig. 4.2. 

Along with the functions already implemented in JavaScript, some new methods are also 

defined in the program such as reshape(), display(), maketree() etc. The maketree() 

function repeatedly draw the branches on the tree trunks. The trunks are drawn into the 

init() function [20], same as HTML5. The reshape() function is invoked into the 

maketree() function in order to reduce or extend the size of each tree brunch.  

To properly draw the tree on the window, the display() function plays a significant role. It 

utilizes both COLOR_BUFFER_BIT and DEPTH_BUFFER_BIT [21] to flush the 

drawing window pane at the beginning of the program. The resultant tree drawn by 

OpenGL can be seen in Fig. 4.3.  

 
 

Fig 4.3: Fractal Tree drawn by OpenGL. 



16 
 

As the generated image shows the repeated nature of fractal patterns, it intuitively proves 

the effectiveness and correctness of the OpenGL program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

CHAPTER V 

Experimental Analysis 

Introduction 

In this chapter, we evaluate the performance of the implemented programs. The 

performance comparison of HTML5 and OpenGL over rendering fractals are briefly 

discussed in this chapter. 

5.1  Experimental Setup 

The project was implemented on a desktop computer with the following configuration  

Intel(R) CoreTM i5-4130 CPU @ 3.40 GHz 

 RAM 8 GB 

 CodeBlocks 17.12 

 OpenGL Glut 

5.2  Experimental Results 

This study consists of two major portions: study of HTML5 and standard OpenGL features 

and performing rendering of fractal tree on both technology. Outcomes and expected 

results of this study are discussed in this section. 

 

Fig 5.1: Rendering Time of fractal tree on multiple web browsers. 



18 
 

In Fig. 5.1, the comparison of rendering time of HTML5 on different web-browsers can be 

seen. If we run the HTML5 program in Firefox browser in windows, the corresponding 

rendering time is 33ms. Chrome in windows perform relatively better than other web-

browsers yielding a rendering time of about 25ms. On Mac, both the Firefox and Chrome 

requires a little bit more time to render fractal trees [22]. Safari performs comparatively 

better with respect to Chrome and Firefox in Mac. The slowest performer among the web-

browsers is Microsoft Edge with a rendering time of 55ms. 

 

Fig 5.2: Comparison of execution time on different web-browsers. 

In Fig. 5.2, the execution time of HTML files takes a little jump from the rendering time 

on different web-browsers. The total execution time is calculated from the beginning of the 

rendering process to the end of the program. The results show that Chrome on windows 

takes the lead with 28ms, 3ms extra to the rendering time. On the other hand, Safari and 

Chrome, both performs similarly in Mac environment with 35ms and 36ms respectively 

[23]. Again, the slowest of them all is Microsoft Edge browser with a 65ms execution 

time. 

 

 

38

28

65

49

36

35

0 10 20 30 40 50 60 70

Firefox (Win)

Chrome (Win)

MS Edge (Win)

Firefox (Mac)

Chrome (Mac)

Safari (Mac)

Milliseconds

W
eb

 B
ro

w
se

rs

Execution time on Different Web-
browsers



19 
 

 

Fig 5.3: Comparison of HTML5 and OpenGL on rendering time with respect to number of 

iterations in fractal trees. 

The rendering time of HTML5 and OpenGL differs with the increasing number of 

iterations performed in building fractal trees which can be observed in Fig. 5.3. For 100 

iterations, both HTML5 and OpenGL performs similarly with a rendering time of 0.28s & 

0.25s respectively [23]. As the number of iterations increases rapidly, the rendering time 

required by the HTML5 increases. Whereas, OpenGL performs faster with respect to 

increasing number of iterations. Till 2000 iteration, HTML5 maintained a healthy 

competition with OpenGL needing 3.12s and 2.5s respectively. After 5000 iterations, 

HTML5 lags behind the functional capability of OpenGL with a huge margin. 

 The web programmers or Graphic intensive program developers or game 

developers face a hard time to choose the right tool for their right task. The results of both 

HTML5 and OpenGL shows that, in any platform, let that be web browser-based 

application or desktop-based application development, if the amount of graphical drawing 

is heavy, OpenGL performs better than HTML5. Whereas, HTML performs well in 

lightweight drawing or rendering applications, if the sole target of the developer is to 

develop any light weight web app or canvas-based application. Both of these technologies 

provide numerous opportunities to the application developers. 

 

 

HTML5, 21.29

OpenGL, 10.52

0

5

10

15

20

25

100 500 1000 2000 5000 10000

R
en

d
er

in
g 

TI
m

e 
(S

ec
o

n
d

s)

Number of Iterations

Rendering time vs Number of iteration 



20 
 

CHAPTER VI 

Conclusions 

6.1  Conclusions 

A simple HTML5 web page is implemented along with a C ++ based command line 

program is also implemented to provide OpenGL support in rendering fractal trees in both 

of these programs. The proposed method shows that HTML5 and OpenGL both performs 

significantly well in case of rendering fractals. The comparison in case of rendering time 

shows that OpenGL performs quite well in desktop platforms as it has the power of GPUs 

to render things much faster. On the other hand, HTML5 shines in case of web-based 

rendering where the rendering only relies on the resources available to web browsers. The 

two platforms vary significantly but it also shows the strength of HTML5 in rendering the 

fractals on the web whereas OpenGL relies on desktop platform. The study can be further 

extended in case of rendering complex 3D graphical structures such as 3D fractals, 3D 

human models etc. 

6.2  Future Work 

Use of HTML5 and OpenGL is a growing field. The internet is booming with graphical 

content. As the number of content increases, the use of the technology becomes eminent. 

Some directions for further research include: 

 How HTML5 can be applied into rendering more heavy graphical contents. 

 How to utilize canvas more efficiently to generate graphical contents. 

 Reduction of rendering time of HTML5 and OpenGL. 

 The study can be further extended in case of rendering complex 3D graphical 

structures such as 3D fractals, 3D human models etc. 

 

 

 

 

 



21 
 

References 

1. "Know HTML5,” May 5, 2018. [Online]. www.w3schools.com/html/html5_intro.asp.  

[Accessed: July. 3, 2018] 

2. HTML5.2: editor’s draft” [Online]. September 2017, http://w3c.github.io/html/. 

[Accessed: 11 May, 2018] 

3. "The OpenGL Book” [Online]. www.openglbook.com/chapter-0-preface-what-is-

opengl.html  [Accessed: 11 May, 2018] 

4. “Fractal drawing of Ferns” [Online]. https://ayoqq.org/explore/fractal-drawing-

fern/[Accessed: 11 May, 2018] 

5. Mikael Waerner, “3D Graphics Technologies for Web Applications: An Evaluation 

from the Perspective of a Real World Application”, Master thesis in information 

coding, Linkoping Institute of Technology, 2012  

6. P. Lubbers, B. Albers, and F. Salim., “Pro HTML5 Programming: Powerful APIs for 

Richer Internet Application Development”. Apress, 2010. 

7. “HTML5” – Wikipedia. [Online]. Available: http://en.wikipedia.org/wiki/HTML5. 

[Accessed: Nov 24, 2017] 

8. R. Miao, J. Song and Y. Zhu, "3D geographic scenes visualization based on WebGL," 

2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, 2017, pp. 1-

6.  

9. Min, Qiusha, Zhifeng Wang, and Neng Liu. "An Evaluation of HTML5 and WebGL 

for Medical Imaging Applications." Journal of healthcare engineering 2018 (2018). 

10. Ratha, Ashis Kumar, ShibaniSahu, and Priya Meher. "HTML5 in Web Development: 

A New Approach." International Research Journal of Engineering and Technology 

(IRJET), Vol 5, Issue 1  (2018).  

11. Mowery, Keaton, and HovavShacham. "Pixel perfect: Fingerprinting canvas in 

HTML5." Proceedings of W2SP (2012): 1-12. 

12. "What is OpenGL." 2013. [Online]. https://www.opengl.org/about/ [Accessed: 18 

May, 2018] 

13. Jagannathan, AK, S Suresh, VG Venkataraaman, and SR Milton. "A Canvas- Based 

Presentation Tool Using Scalable Vector Graphics." Technology for Education (T4E), 

2012 IEEE Fourth International Conference on Technology for Education 2012 

(2012): 149-152. Digital. 

https://www.opengl.org/about/


22 
 

14. "Scalable Vector Graphics (SVG) 1.0 Specification." W3 Organization. 4 Sept 2001. 

[Online] http://www.w3.org/TR/SVG10/ [Accessed: 4 June, 2018] 

15.  “The Khronos Group. WebGL - OpenGL ES 2.0 for the [Online].” 2012. Available:  

http://www.khronos.org/webgl/ [Accessed: Nov 24, 2017] 

16. “What are the differences between WebGL and OpenGL?” [Online] 

https://www.quora.com/What-are-the-differences-between-WebGL-and-OpenGL 

[Accessed: 5 May, 2018] 

17. E. Pinto, G. Amador, and A. Gomes. “A graphics library for delivering 3D contents on 

web browsers.” In Digital Content, Multimedia Technology and its Application (IDC), 

2010 6th International Conference on, pages 109-114, Aug. 2010. 

18. “ Definitions of fractals ” 

[Online]http://www.math.union.edu/research/fractaltrees/FractalTreesDefs.html[Acces

sed: Nov 24, 2017] 

19. “Chapter 8. Fractals”[Online]https://natureofcode.com/book/chapter-8-

fractals/[Accessed: 4 June, 2018] 

20. Belmonte, Nicolas Garcia. "Learning OpenGL." 2013. [Online]. 

http://www.senchalabs.org/philogl/ [Accessed: May 11, 2018] 

21. Kristian Sons, Felix Klein, Dmitri Rubinstein, SergiyByelozyorov, and Philipp 

Slusallek. “XML3D: interactive 3D graphics for the web.” In Proceedings of the 15th 

International Conference on Web 3D Technology, Web3D '10, pages 175-184, New 

York, NY, USA, 2010. ACM. 

22. Lee, Geonhee, Seunghyun Lee, and Soonchul Kwon. "A Study on Loading Speed of 

Web Browser for 3D Object." Welcome Remarks (2018): 55.  

23. MehbubaZerin Khan and M. M. A. Hashem, “A Comparison between HTML5 and 

OpenGL in Rendering Fractal”, International Conference on Electrical, Computer and 

Communication Engineering (ECCE 2019), Cox's Bazar,07-09 February, 2019. 

 

 

 

 

 



23 
 

Appendix -A 

Program Codes 

HTML5 Codes: 

<!DOCTYPE html> 

<html> 

<body> 

<canvas id="canvas"></canvas> 

 

/*Some basic CSS*/   

* {margin: 0; padding: 0;}   

/*To remove the scrollers*/   

#canvas {display: block;}   

 

<script> 

window.onload = function(){   

    var canvas = document.getElementById("canvas");   

    var ctx = canvas.getContext("2d");   

    //Lets resize the canvas to occupy the full page   

    var W = window.innerWidth;   

    var H = window.innerHeight;   

canvas.width = W;   

canvas.height = H;   

 

    //Some variables   

    var length, divergence, reduction, line_width, start_points = [];   

 

init();   

 

    function init()   

    {   

        //filling the canvas white   



24 
 

ctx.fillStyle = "white";   

ctx.fillRect(0, 0, W, H);   

 

        //Lets draw the trunk of the tree   

        //lets randomise the variables   

        //length of the trunk - 100-150   

        length = 100 + Math.round(Math.random()*50);   

        //angle at which branches will diverge - 10-60   

        divergence = 10 + Math.round(Math.random()*50);   

        //Every branch will be 0.75times of the previous one - 0.5-0.75   

        //with 2 decimal points   

        reduction = Math.round(50 + Math.random()*20)/100;   

        //width of the branch/trunk   

line_width = 10;   

 

        //This is the end point of the trunk, from where branches will diverge   

        var trunk = {x: W/2, y: length+50, angle: 90};   

        //It becomes the start point for branches   

start_points = []; //empty the start points on every init();   

start_points.push(trunk);   

 

        //Y coordinates go positive downwards, hence they are inverted by deducting it   

        //from the canvas height = H   

ctx.beginPath();   

ctx.moveTo(trunk.x, H-50);   

ctx.lineTo(trunk.x, H-trunk.y);   

ctx.strokeStyle = "brown";   

ctx.lineWidth = line_width;   

ctx.stroke();   

 

        branches();   

    }   

 



25 
 

    //Lets draw the branches now   

    function branches()   

    {   

        //reducing line_width and length   

lengthlength = length * reduction;   

line_widthline_width = line_width * reduction;   

ctx.lineWidth = line_width;   

 

        var new_start_points = [];   

ctx.beginPath();   

        for(var i = 0; i<start_points.length; i++)   

        {   

            var sp = start_points[i];   

            //2 branches will come out of every start point. Hence there will be   

            //2 end points. There is a difference in the divergence.   

            var ep1 = get_endpoint(sp.x, sp.y, sp.angle+divergence, length);   

            var ep2 = get_endpoint(sp.x, sp.y, sp.angle-divergence, length);   

 

            //drawing the branches now   

ctx.moveTo(sp.x, H-sp.y);   

ctx.lineTo(ep1.x, H-ep1.y);   

ctx.moveTo(sp.x, H-sp.y);   

ctx.lineTo(ep2.x, H-ep2.y);   

 

            //Time to make this function recursive to draw more branches   

            ep1.angle = sp.angle+divergence;   

            ep2.angle = sp.angle-divergence;   

 

new_start_points.push(ep1);   

new_start_points.push(ep2);   

        }   

        //Lets add some more color 

        if(length < 10) ctx.strokeStyle = "green";   



26 
 

        else ctx.strokeStyle = "brown";   

ctx.stroke();   

start_points = new_start_points;   

        //recursive call - only if length is more than 2.   

        //Else it will fall in an long loop   

        if(length > 2) setTimeout(branches, 50);   

 

    }   

 

    function get_endpoint(x, y, a, length)   

    {   

        //This function will calculate the end points based on simple vectors   

        //http://physics.about.com/od/mathematics/a/VectorMath.htm   

        //You can read about basic vectors from this link   

        var epx = x + length * Math.cos(a*Math.PI/180);   

        var epy = y + length * Math.sin(a*Math.PI/180);   

        return {x: epx, y: epy};   

    }   

 

}   

 

</script> 

</body> 

</html> 

 

 

 

 

 

 

 



27 
 

OpenGL Code: 

#include <stdio.h> 

#include <stdlib.h> 

#include <float.h> 

#include <math.h> 

#include <time.h> 

#include <iostream> 

using namespace std; 

#include <GL/glut.h> 

 

GLuintmakeaTree; 

float x,y,z; 

 

void makeCylinder(float height, float base) 

{ 

GLUquadric *obj = gluNewQuadric(); 

//gluQuadricDrawStyle(obj, GLU_LINE); 

    glColor3f(0, 1,0); 

glPushMatrix(); 

glRotatef(-90, 1.0,0.0,0.0); 

gluCylinder(obj, base,base-(0.2*base), height, 20,20); 

glPopMatrix(); 

glutSwapBuffers(); 

} 

void makeTree(float height, float base) 

{ 

 

    float angle; 

makeCylinder(height, base); 

glTranslatef(0.0, height, 0.0); 

    height -= height*.2; 

    base-= base*0.3; 



28 
 

    for(int a= 0; a<3; a++) 

    { 

        //angle = 45; 

        angle = rand()%60+20; 

        if(angle >59) 

 

            angle = -(rand()%60+20); 

        if (height>.7) 

        { 

glPushMatrix(); 

glRotatef(angle,1,0.0,1); 

makeTree(height,base); 

glPopMatrix(); 

        } 

    } 

} 

void init(void) 

{ 

glClearColor(1.0,1.0,1.0,1.0); 

glShadeModel(GL_SMOOTH); 

glEnable(GL_DEPTH_TEST); 

makeaTree=glGenLists(2); 

glNewList(makeaTree, GL_COMPILE); 

makeTree(5,0.2); 

glEndList(); 

} 

 

void display() 

{ 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

glPushMatrix(); 

glRotatef(x,1.0,0.0,0.0); 

glRotatef(y,0.0,1.0,0.0); 



29 
 

glRotatef(z,0.0,0.0,1.0); 

glCallList(makeaTree); 

glPopMatrix(); 

glutSwapBuffers(); 

} 

void reshape(int w, int h) 

{ 

glViewport (0, 0, (GLsizei) w, (GLsizei) h); 

glMatrixMode(GL_PROJECTION); 

glLoadIdentity(); 

gluPerspective(30.0, (GLfloat) w/(GLfloat) h, 0.001, 1000.0); 

glMatrixMode(GL_MODELVIEW); 

glLoadIdentity(); 

glTranslatef(0.0,-8.0,-50.0); 

} 

int main(int argc, char **argv) 

{ 

glutInit(&argc, argv); 

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); 

glutInitWindowSize (1200, 800); 

glutInitWindowPosition(0,0); 

glutCreateWindow("3D Tree Using Recursion"); 

init(); 

glutReshapeFunc(reshape); 

// glutKeyboardFunc(keyboard); 

glutDisplayFunc(display); 

glutMainLoop(); 

} 

 


