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Abstract 

 

 

In this study the effect thermal diffusion and inclined magnetic field on the steady 

laminar natural convection heat and mass transfer flow of viscous incompressible 

MHD electrically conducting fluid past a vertical porous surface is considered under 

the influence of induced magnetic field. The governing non-dimensional equations 

relevant to the problem, containing the partial differential equations, are transformed 

by usual similarity transformations into a system of coupled non-linear ordinary 

differential equations and have been solved by using the perturbation technique. On 

introducing the non-dimensional concept and applying usual Boussinesq’s 

approximation, the solutions for velocity fields, temperature distribution, induced 

magnetic fields and mass concentration are obtained up to the second order 

approximations for different selected values of the established dimensionless 

parameters and numbers. The influences of these various establish parameters and 

numbers on the velocity and temperature fields, induced magnetic field and mass 

concentration are exhibited under certain assumptions and are studied graphically. 

Further, the effects of these dimensionless parameters on the coefficients of skin 

friction and rate of heat and mass transfers are also studied in tabular form in the 

present analysis. The effect of different angle of inclinations of the externally applied 

uniform magnetic field on the field variables have been investigated for the present 

problem. It is observed that with other useful associated parameters, the thermal 

diffusion and the angle of inclination of the applied magnetic field have a retarding 

influence on the fluid velocity, induced magnetic field and mass concentration as well. 

It is also found that the dimensionless Prandtl number, Grashof number, Modified 

Grashof number, magnetic parameter and suction parameter have their own 

dependency on the concerned independent field variables like the velocity, 

temperature, concentration and induced magnetic fields as well as on other physical 

parameters of interests like local skin-friction coefficient (Cf), Nusselt number (Nu) and 

Sherwood number (Sh).   
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INTRODUCTION 

The thermal and mass transfer caused by the convection process takes place due to 

the buoyancy effects owing to the differences of temperature and concentration are 

of considerable interest in practice. Further, heat and mass transfer in the presence of 

magnetic field, which is the subject matter of magnetohydrodynamics (MHD), has 

different applications in natural phenomena and in many engineering problems. In 

recent times natural convective heat and mass transfer flows through a porous 

medium under the influence of a magnetic field have been paid attention of a number 

of a number of researchers because of  their possible applications in many branches 

of science, engineering and geophysical process. Again suction is an important 

means to control the boundary layer development as well as to prevent the separation 

of flow. Thus, the effect of suction on MHD boundary layer is of great interest in 

astrophysics. Considering these numerous applications, MHD free convective heat 

and mass transfer flow in a porous medium have been studied by among others 

Raptis and Kafoussias (1982), Alam (1995) etc. Mohammed et al. (2005) 

investigated the effect of similarity solution for MHD flow through vertical porous 

plate with suction. Gundagani et al. (2013) presented a numerical solution to the 

problem of unsteady MHD free convective flow past a vertical porous plate with 

variable suction. Sattar et al. (2006) numerically studied a steady two-dimensional 

MHD free convective heat and mess transfer flow past an inclined semi-infinite 

surface with heat generation. Alam et al. (2013) studied heat and mass transfer in 

MHD free convection flow over an inclined plate with hall current. Alam et al. 

(2014) studied MHD boundary free conviction heat and mass transfer flow over an 

inclined porous plate with variable suction and Soret effect in presence of hall 

current. Rani et al. (2015) investigated the heat and mass transfer effect on MHD 

free convection flow over an inclined plate embedded in a porous medium. Recently, 

Opiyo et al. (2017) considered the effects of MHD on two dimensional steady free 

convection boundary layer heat and mass transfer flow of viscous, incompressible, 

electrically conducting fluid on an inclined plate with a varying angle of inclination.  

In most of the above studies it was generally being considered that the magnetic Reynolds 

number is very small, so that the effect of induced magnetic field was neglected. But such 

effect must be considered for those cases in which values of magnetic Reynolds number is 
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very high. However, Pantokratoras (2007) showed that a moving electrically 

conducting fluid induced a new magnetic field, which interacts with the applied 

external magnetic fields and the relative importance of this induced magnetic field 

depends on the relative value of the magnetic Reynolds number. 

A numerical study of the natural convection heat and mass transfer about a vertical 

surface embedded in a saturated porous medium under the influence of induced 

magnetic field has carried out by Postelnicu (2004), taking into account the diffusion 

thermo and thermal diffusion effects. Using the shooting iteration numerical technique 

Alam et al. (2008) investigated the steady MHD heat and mass transfer by mixed convection 

flow from a moving vertical porous plate with induced magnetic, thermal diffusion, constant 

heat and mass fluxes. Recently, Bég et al. (2009) obtained closed-form local non-similarity 

numerical solutions for the velocity, temperature and induced magnetic field distributions in 

forced convection hydromagnetic boundary layers, over an extensive range of magnetic 

Prandtl numbers and Hartmann numbers. Applying the method of series solution, Ahmed and 

Chamkha (2010) investigated the effects of radiation and chemical reaction on steady mixed 

convective heat and mass transfer flow of an optically thin gray gas over an infinite vertical 

porous plate with constant suction taking into account the induced magnetic field, and 

viscous dissipation of energy. Ali et al. (2011) investigated the steady MHD mixed 

convection stagnation point flow over a vertical flat plate. Following the study to those of 

Pantokratoras (2007) and Postelnicu (2004), Hossain and Khatun (2012) investigated 

the Dufour effect on combined heat and mass transfer of a steady laminar mixed 

free-forced convective flow of viscous incompressible electrically conducting fluid 

above a semi-infinite vertical porous surface under the influence of an induced 

magnetic field. They have used the perturbation technique to solve the problem. 

Later, Hossain et al. (2013) studied the steady MHD free convection heat and mass 

transfer flow about a vertical porous surface with thermal diffusion in the presence of 

induced magnetic field. Khan et al. (2014) investigate the effects of heat generation, 

radiation and chemical reaction on unsteady mixed convection flow from a moving 

vertical porous plate with induced magnetic field, time dependent suction velocity at 

the plate, thermal diffusion, constant heat and mass fluxes. Asaduzzaman et al. 
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(2016) considered the transient heat transfer flow along a vertical plate with induced 

magnetic field. 

The dual effects of the transverse magnetic field with the induced magnetic field on a steady 

mixed convective heat and mass transfer flow of an incompressible viscous electrically 

conducting fluid past an infinite vertical isothermal porous plate was studied by Ahmed and 

Zueco (2010). They have used the network simulation technique to solve the non-linear 

coupled equations taking into account the effects of viscous and magnetic dissipations of 

energy in presence of chemical reaction and heat generation/absorption. Using the Galerkin 

finite element method, an analysis was performed by Reddy and Rao (2011) to study 

the effect of thermal diffusion on an unsteady MHD free convective mass transfer 

flow of incompressible electrically conducting fluid past an infinite vertical porous 

plate with Ohmic dissipation. It was considered that the plate temperature oscillates 

with the same frequency as that of variable suction velocity and influence of uniform 

magnetic field is applied normal to the flow. Ahmed et al. (2012) investigated the effect 

of the transverse magnetic field on a transient free and forced convective flow over an infinite 

vertical plate impulsively held fixed in free stream taking into account the induced magnetic 

field. Wahiduzzaman et al. (2015) presented a numerical solution to investigate the 

influence of the hall current and constant heat flux on the MHD natural convection 

boundary layer viscous incompressible fluid flowing in the manifestation of 

transverse magnetic field near an inclined vertical permeable flat plate. In their 

analysis they assumed that the induced magnetic field is negligible compared with 

the imposed magnetic field.  

On the other hand, an inclination of applied magnetic field is essential to explain the 

competency of magnetohydrodynamic plasma devices, accelerators, energy systems and 

also for the study of more pragmatic geophysical and biological flows. An inclined 

magnetic field is just a magnetic field which is applied with a nonzero inclination. In 

other words, the inclined magnetic field is the generalization of a magnetic field. The 

details of the influence of inclined magnetic fields on the flow of Newtonian and non-

Newtonian fluids through different geometries have been presented by various researchers 

(Elshehawey et al.(2003), Nadeem and Akram (2010b) etc). Choudhary and Sharma 

http://www.emeraldinsight.com/doi/full/10.1108/WJE-11-2016-0124
http://www.emeraldinsight.com/doi/full/10.1108/WJE-11-2016-0124
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(2006) studied the laminar mixed convection flow of an incompressible electrically 

conducting vicious fluid over a continuously moving porous vertical plate with 

inclined magnetic field. Ahmed and Alam (2014)analyzed unsteady mixed convective 

ionized fluid flow through a vertical plate with joule heating, viscous dissipation, thermal 

diffusion, diffusion thermo, internal heat generation with chemical reaction, thermal 

radiation effects with an inclined uniform magnetic field in a rotating system. An 

investigation was performed by Reddy et al. (2015) in order to analyze the effects of 

aligned magnetic field on hydrodynamic free convection and mass transfer flow of 

viscous-elastic fluid through porous medium bounded by an oscillating porous 

surface in the slip flow regime with constant suction and temperature dependent heat 

source. The effect of thermal diffusion on the combined MHD heat transfer in an 

unsteady flow past a continuously moving semi-infinite vertical porous plate under 

the action of strong applied magnetic field has been investigated numerically by 

Islam et al. (2016)taking into account the induced magnetic field. Lastly, using 

Laplace Transform technique, Singh et al. (2016) have investigated the effect of inclined 

magnetic field on unsteady flow past a moving vertical plate with variable temperature. 

Based on above stated studies, the present study deals with the study of steady two-

dimensional MHD natural convection heat and mass transfer flow past an infinite 

vertical porous plate, taking into account the effects of thermal diffusion and large 

suction with inclined magnetic field.  

The present thesis is arranged in the following pattern: Considering various aspects 

of an MHD heat and mass transfer flow, available information regarding MHD heat 

and mass transfer flows along with various effects are summarized and discussed in 

CHAPTER I from both analytical and numerical point of view. In CHAPTER II, the 

basic governing equations related to the problem considered thereafter are shown in 

the modified form and detailed calculation techniques for the problem are discussed. 

In CHAPTER III, an analytical solution of the problem based on perturbation 

technique has been discussed. In CHAPTER IV, the perturbation solutions and 

results discussions are presented. In CHAPTER V, the conclusions gained form this 

work are discussed. 
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CHAPTER I 

Available Information on MHD Heat and Mass Transfer Flows 

1.1 Magnetohydrodynamics (MHD)  

Magentohydrodynamics (MHD) is the branch of magneto fluid dynamics, 

which deals with the flow of electrically conducting fluid in electric and 

magnetic field. The MHD phenomena are a consequence of the mutual 

interaction of the fluid flow and the magnetic field. Probably, the largest 

advancement towards an understanding of such phenomena comes from the 

field of astrophysics. It has long been suspected that most of the matter in the 

universe is in the form of plasma or highly ionized gaseous state and much of 

the basic knowledge in the area of electromagnetic fluid dynamics evolved 

from these studies.  

The field of MHD consists of the study of a continuous, electrically 

conducting fluid under the influence electromagnetic fields. Originally, MHD 

included only the study of partially ionized gases as well as the other names 

have been suggested, such as magneto fluid mechanics or magneto 

aerodynamics, but the original nomenclature has persisted. The essential 

requirement for problem to be analyzed under the law of MHD is that the 

continuum approach be applicable. There are many natural phenomena and 

engineering problems susceptible to MHD analysis. It is the useful in 

astrophysics because much of the universe is filled with widely spaced 

charged particles and permeated by magnetic fields and so the continuum 

assumption becomes applicable. Engineers employ MHD principles in the 

design of heat exchangers, pumps and flow meters; in solving space vehicle 

propulsion, control and reentry problem; in designing communications and 

radar system; in creating novel power generating systems, and in developing 

confinement schemes for controlled fusion. The MHD in the generation of 

electrical power with the flow of electrically conducting fluid through as 

right-hand transverse magnetic field is one of the most important applications. 

Recently, this experiment with large magnetic fields is used for the generation 

of MHD power on a smaller scale is of interest of space applications.   
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Generally we know that, to convert the heat energy in to the electricity, 

several intermediate transformations are necessary. Each of these steps means 

a loss of energy. This naturally limits the overall efficiency, reliability and 

compactness of the conversion process. Method for the direct conversion to 

energy is now increasingly receiving attention. Of these, the fuel converts the 

chemical of fuel directly into electrical energy; fusion energy utilizes the 

energy released when two hydrogen molecules fuse into a heavier one, and 

thermoelectrically power generation uses a thermocouple. MHD power 

generation is another new process that has received worldwide attention. The 

principal MHD effects were first demonstrated in the experiments of Faraday 

(1832) find out experiments with flow of mercury in glass tubes placed 

between poles of a magnet and discovered that a voltage was induced across 

the tube by the motion of the mercury across the magnetic field, perpendicular 

to the direction of flow and to the magnetic field. Faraday observed that the 

current generated by this induced voltage interacted with the magnetic field to 

slow down the motion of the fluid, and he was aware of the fact that the 

current produced its own magnetic fluid that obeyed Ampere right-hand rule 

and thus, in turn distorted the field of magnet. Michael Faraday in 1832 

discovered that when an electric field was applied to a conducting fluid 

perpendicularly to a magnetic field, it pumped the fluid in a direction 

perpendicular to both fields. Faraday also suggested that electrical power 

could be generated in a load circuit by the interaction of a flowing conduction 

fluid and a magnetic field. 

The first astronomical application of the MHD theory occurred in 1899, when 

Bigalow suggested that the sun as a gigantic magnetic system. It remained, 

however, for Alfven (1942) to make a most significant contribution by 

discovering MHD waves in the sun. These waves are produced by 

disturbances which propagate simultaneously in the conducting fluid and the 

magnetic field. The analogy that explains the generation of an Alfven wave is 

that of a harp string plucked while submerged in a fluid. The string provides 

the elastic force and the fluid provides the inertia force, and they combine to 

propagate a perturbing wave through the fluid and the string.  

It is well known that, a conductor when crossing magnetic field lines gives 

rise to an induced electric field, which drives an electric current in the 
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conducting fluid. The resulting Lorentz force accelerates the fluid across the 

magnetic field, which in turn creates another induced electric field and 

currents which modify the initial magnetic field. Thus, the bulk motion of a 

conducting fluid and a magnetic field influence each other and must be 

determined self-consistently. In summary, MHD phenomena result from the 

mutual effect of magnetic field and conducting fluid flowing across it. Thus, 

an electromagnetic force is produced in a fluid flowing across a transverse 

magnetic field, and the resulting current and magnetic field combine to 

produce a force that resists the fluid‟s motion. The current also generates its 

own magnetic field which distorts the original magnetic field. An opposing or 

pumping force on the fluid can be produced by applying an electric field 

perpendicularly to the magnetic field. Disturbance in either the magnetic field 

or the fluid can propagate in both to produce MHD waves, as well as 

upstream and downstream-wake phenomena. The science of MHD is the 

detailed study of these phenomena, which occur in nature and are produced in 

engineering devices. Therefore, one of the major results of 

magnetohydrodynamics is the ability of conducting fluids to amplify 

magnetic fields and the amplification of these magnetic fields being a 

universal necessity. 

1.2 Electromagnetic Equations  

MHD equations are the ordinary electromagnetic and hydrodynamic 

equations which have been modified to take account of the interaction 

between the motion of the fluid and electromagnetic field. The basic laws of 

electromagnetic theory are all contained in special theory of relativity. But it 

is always assumed that all velocities are small in comparison to the speed of 

light. Before writing down the MHD equations we will first of all notice the 

ordinary electromagnetic equations (Cramer and Pai (1973)). The 

mathematical formulation of the electromagnetic theory is known as 

Maxwell‟s equations which explore the relation of basic field quantities and 

their production. The Maxwell‟s electromagnetic equations are given by  

Charge continuity  c D  (1.1) 



8 
 

Current continuity  c

t


  


J  (1.2) 

Magnetic field continuity  0 B  (1.3)  

Ampere‟s law  
J

t
  



D
H J  (1.4) 

Faraday‟s law  
t


  



B
E  (1.5) 

Constitutive equations for D  and B are     D E  (1.6) 

  cB H  (1.7) 

Lorentz force on a change   p pq  F E q B  (1.8) 

Total current density flow    c    J E q B q  (1.9)  

In equations (1.1)–(1.9), D is the displacement current, c  is the charge 

density, J is the current density, B is the magnetic induction, H is the induced 

magnetic field. E is the electric field,    is the electrical permeability of the 

medium c  is the magnetic permeability of the medium, pq  is the velocity of 

the charge,   is the electrical conductivity, q is the velocity of the fluid and 

c q  is the convection current due to charges moving with the fluid. 

1.3 Fundamental Equations of fluid Dynamics of Viscous Fluids  

In the study of fluid flow one determines the velocity distribution as well as 

the states of the fluid over the whole space for all time, there are six 

unknowns namely, the three components  , ,u v w  of velocity q, the 

temperature T , the pressure p and the density   of the fluid, which are 

function of special co-ordinates and time. In order to determine these 

unknown we have the flowing equation:  

(a) Equation of state, which connects the temperature, the pressure and 

density of the fluid is given by p RT
                                              (1.10) 

For an incompressible fluid the above equation is simply  const.  (1.11)  

(b) Equation of continuity, which gives relation of conservation of mass of 

the fluid. The equation of continuity for a viscous incompressible fluid is  
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 0 q                                                                             (1.12)  

(c) Equation of motion, also known as the Navier-Stokes‟ equations, which 

give the relations of the conservation of momentum of the fluid. For 

viscous incompressible fluid the equation of motion is  

 2D
p

Dt
    

q
F q

                                                                            
(1.13)  

 Where F is the body force per unit volume and the last term on the right 

hand side represents the force per unit volume due to viscous stresses and 

p  is the pressure. The operator,  

 
D

u v w
Dt t x y z

   
   
   

 

 is known as the material derivative or total derivative with respect to 

time which gives the variation of a certain quantity of the fluid particle 

with respect to time. Also 2  represents the Laplacian operator. 

 (d)  The equation of energy, which gives the relation of conservation of 

energy of the fluid. For an incompressible fluid with constant viscosity 

and heat conductivity, the energy equation is  

 2

p

DT Q
pC k T

Dt t



   
                                                                         

(1.14)  

 pC is the specific heat at constant pressure, 
Q

t




 is the rate of heat 

produced per unit volume by external agencies, k  is the thermal 

conductivity of the fluid,   is the viscous dissipation function for an 

incompressible fluid  
22 2

2 2 21
2

2
xy yz zx

u v w
Y Y Y

x y z
 

       
          

        

 

 Where xy

u v
Y

y x

 
 
 

, yz

v w
Y

z y

 
 
 

 and .zx

w u
Y

x z

 
 
 

 

 (e) The concentration equation for viscous incompressible fluid is 

      

2

m

DC
D C

Dt
                                                                                           (1.15)  

  whereC is the concentration and mD  is the chemical molecular diffusivity. 
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1.4 MHD Approximations  

The electromagnetic equation as given in (1.1) – (1.9) are not usually applied 

in their present form and requires interpretation and several assumptions to 

provide the set to be used in MHD. In MHD we consider a fluid that is 

grossly neutral. The charge density c  in Maxwell‟s equations must then be 

interpreted as an excess charge density which is in general not large. If we 

disregard the excess charge density, we must disregard the displacement 

current. In most problems due to convection of the excess charge are small 

(Cramer and Pai, et al (1973)). 

The electromagnetic equations to be used are then as follows:  

D 0                                                                                                         (1.16)  

J 0                                                                                                          (1.17)  

B 0                                                                                                         (1.18)  

H J                                                                                                       (1.19)  

E 0                                                                                                        (1.20) 

D E                                                                                                         (1.21) 

c
B H

                                                                                                       
(1.22) 

 J E q B  
                                                                                           

(1.23) 

1.5 MHD Equations   

We will now modify the equations of fluid dynamics suitably to take account 

of the electromagnetic phenomena.  

(a) The MHD equation of continuity for viscous incompressible electrically 

conducting fluid remains the same  

     0 q              (1.24)  

(b) The MHD momentum equation for a viscous incompressible and 

electrically conducting fluid is  

     2D
p

Dt
     

q
F q J B  (1.25) 

 Where F is the body force per unit volume corresponding to the usual 

viscous fluid dynamic equations and the new term J B  is the force on the 

fluid per unit volume produced by the interaction of the current and 

magnetic field (called a Lorentz force). 
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(c) The MHD energy equation for a viscous incompressible electrically 

conducting fluid is  

 
2

2

p

DT Q J
C k T

Dt t
 




    


 (1.26) 

 The new term is the Joule heating term and is due to the resistance of the 

fluid to the flow of current.  

(d) The MHD equation of concentration for viscous incompressible 

electrically conducting fluid remains the same as  

 2

m

DC
D C

Dt
   (1.27) 

1.6 Some Useful Dimensionless Numbers/Parameters  

1.6.1 Reynolds number  e
R  

The Reynolds number eR  is the most important parameter of the fluid 

dynamics of a viscous fluid, which is defined by the following ratio  

 

3

2

Inertia force Mass×Acceleration

Viscous force Shear stress×Cross sectional area
e

U
L

LU LUTR
U

L
T




 



    

 

 

where, L  and U  denotes the Characteristic length and velocity respectively 

and 





  is the kinematic viscosity (  is the viscosity and   is the density). 

For if eR  is small, the viscous force will be predominant and the effect of 

viscosity will be felt in the whole flow field. On the other hand if eR  is large 

the inertia force will be predominant and in such case the effect of viscosity to 

be confined in a thin layer, near to the solid wall or other restricted region, 

which is known as boundary layer. However if eR  is very large, the flow 

ceases to be laminar and becomes turbulent. The Reynolds number at which 

translation from laminar to turbulent occurs is known as critical Reynolds 

number.  

 

Reynolds in 1883 found that for flow in a circular pipe becomes turbulent 

when eR  exceeds the critical value 2300, i.e. 2300e

crit

U d
R



 
  
 

, whereU  is the 
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mean velocity and „d‟ is the diameter of the pipe. When the viscous force is 

pre-dominating force, Reynolds number must be similar for dynamic 

similarity of two flows. 

 

1.6.2 Prandtl number  r
P  

The Prandtl number is a dimensionless number, named after its inventor, a 

German engineer Ludwig Prandtl, who also identified the boundary layer. 

The Prandtl number ( rP ) is the ratio of momentum diffusivity to thermal 

diffusivity. The momentum diffusivity, or as it is normally called, kinematic 

viscosity, tells us the material‟s resistance to shear-flows (different layers of 

the flow travel with different velocities e.g. different speeds of adjacent walls) 

in relation to density. Thus the Prandtl number is defined as 

  
r

Viscousdiffusion rate
P

Thermaldiffusion rate

p

p

c

k k

c


 





     

Where pc  is the specific heat at constant pressure μ is dynamic viscosity of the 

fluid and k  is the thermal conductivity. The value of 
p

k

c
 is the thermal 

diffusivity due to the heat condition. The smaller value of 
p

k

c
 is, the 

narrower is the region which affected by the heat condition and it is known as 

the thermal boundary layer, the value of 





 show the effect of viscosity of 

the fluid. Thus, the Prandtl number shows that the relative importance of heat 

conduction and viscosity of a fluid. Small values of the Prandtl number ( rP

<<1) means the thermal diffusivity dominates. Whereas, with large values of 

Prandtl number ( rP >>1), the momentum diffusivity dominates the behavior. 

Evidently rP  varies from fluid to fluid. For example, the typical value for 

liquid mercury, which is about 0.025, indicates that the heat conduction is 

more significant compared to convection, so thermal diffusivity is dominant. 

When Pr is small, it means that the heat diffuses quickly compared to the 

velocity. For air rP 0.72  (approx), for water at 0

r15.5 c, P 7.00  (approx), for 

http://www.nuclear-power.net/nuclear-engineering/fluid-dynamics/boundary-layer/
http://www.nuclear-power.net/nuclear-engineering/heat-transfer/thermal-conduction/
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mercury rP 0.044,  but for high viscous fluid it may be very large, e.g. for 

glycerin rP 7250.
 

 

1.6.3 Magnetic Force number  M  

The magnetic force number is the ratio of the magnetic force to the inertia 

force and is defined by  

  
2

3 0Magnetic force

Inertia force

eH L
M

U

 




 

 

 

1.6.4 Schmidt number  c
S  

The Schmidt number is a dimensionless number which is the ratio of 

momentum diffusivity or kinematics viscosity to the mass diffusivity. In other 

sense Schmidt number is the ratio of the viscous diffusivity to the chemical 

molecular diffusivity. It was named after the German engineer Ernst Heinrich 

Wilhelm Schmidt (1892-1975) and is defined by 

  
Viscous diffusivikinematics vi ty

Chamical mol

scosity

mass ecular diffusdiffusivi ivityty
c

m m

S
D D

 


  

 

 

1.6.5 Grashof number  r
G

 

The Grashof number is a dimensionless number which approximates the ratio 

of the buoyancy force to the viscous force acting on a fluid. The Grashof 

number frequently arises in the study of physical parameters or in the 

situations involving natural convection. It is named after the German engineer 

Franz Grashof. The Grashof number is defined as    
              

             
 
      


 , 

where g is the acceleration due to earth‟s gravity,   is the thermal expansion 

coefficient,   is the distance between region of high and low temperature 

(Characteristic length),    is temperature difference and   is the kinematic 

viscosity. Thus, it measures of the relative importance of the buoyancy and 

viscous forces. The larger it is, stronger is the convective current. At higher 

Grashof numbers, the boundary layer is turbulent and at lower Grashof 

numbers, the boundary layer is laminar. 
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1.6.6 Modified Grashof number  m
G  

The modified Grashof number usually occurring in free convection problem, 

when the effect of mass transfer is also considered. The modified Grashof 

number is defined by
3

2

*
m

g CL
G






 , where  is the volumetric co-efficient of 

thermal expansion or the concentration expansion coefficient and C be the 

concentration difference. 

 

1.6.7 Soret number  0
S  

The Soret number is defined by
 
 

0

T w

w

D T T
S

C C









 

1.6.8 Magnetic diffusivity parameter  m
P

 

The magnetic diffusivity is defined by m eP  
 

1.6.9 Eckert number  c
E  

The Eckert number is defined by
 

2

c

p w

U
E

c T T




 

1.7 Suction and Injection  

For ordinary boundary layer flows of adverse pressure gradients, the 

boundary layer flow will eventually separate from the surface. Separation of 

the flow causes many undesirable features over the whole field, consequently, 

it is often necessary to prevent separation of the boundary layer to reduce the 

drag forces and attain high lift values. For instance, if separation occurs on 

the surface of an airfoil, the lift of the airfoil will decrease and the drag will 

enormously increase. In some problems it is very essential to maintain 

laminar flow through preventing separation. To prevent the separation of 

boundary layer flows, various ways have been proposed of which 

suction/injection are very important ones. Besides, the stabilizing effect of the 

boundary layer development has been well known for several years and till to 

date suction/injection are still the most of efficient, simple and common 

method of boundary layer control. Hence, the effect of suction on 

hydromagnetic boundary layer is of great interest in astrophysics.  
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Many authors have made mathematical studies on these problems, specially 

in the case of steady flow. Among them the name of Cobble  (1977)may be 

cited who obtained the conditions under which similarity solutions exist for 

hydromagnetic boundary layer flow past a semi-infinite flat plate with or 

without suction. Following this, Soundalgekar and Ramanamurthy (1980) 

analyzed the thermal boundary layer. Then Singh (1980) studied this problem 

for large values of suction velocity employing asymptotic analysis in the 

spirit of Nanbu (1971).Singh and Dikshit (1988) have again adopted the 

asymptotic method to study the hydromagnetic effect on the boundary-layer 

development over a continuously moving plate. In a similar way Bestman 

(1990) studied the boundary layer flow past a semi-infinite heated porous 

plate for two component plasma.  

On the other hand, one of the important problems facing the engineers 

engaged in high speed flow is the cooling of the surface to avoid the structural 

failures as a result of frictional heating and other factors. In these respect the 

possibility of using injection at the surface is a measure to cool the body in 

the high temperature fluid. Injection of secondary fluid through porous walls 

is of practical importance in film cooling of turbine blades combustion 

chambers. In such applications injection usually occurs normal to the surface 

and the injected fluid may be similar to or different from the primary fluid. In 

some recent applications, however, it has been recognized that the cooling 

efficiency can be enhanced by vectored injection at an angle other than 090  to 

the surface. Kay (1953) studied the boundary layer growth on an infinite flat 

plate with uniform suction or injection. Exact solutions of the Navier-stokes‟ 

equations of motion were derived for the case uniform suction and injecting 

which was taken to be steady or proportional to 1/2t  and the plate is perfectly 

insulated, that is, there is no heat transfer between the fluid and the plate. 

Numerical calculations are also made for the case of impulsive motion of the 

plate. Raptis and Shing (1983) studied the free convection effects on the flow 

field of an incompressible, viscous dissipative fluid, past an infinite vertical 

porous plate which is accelerated in its own plane. The fluid is subjected to a 

normal velocity of suction/injection which is inversely proportional to the 

square root of time (i.e. 1/2t ) and the plate is perfectly insulated, i.e., there is 

no heat transfer between the fluid and the plate. The qualitative natures of the 
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flow for the case of both suction and injection are sometimes the same which 

are obtained from the results of the corresponding studies on steady boundary 

layer. 

 

1.8 MHD Boundary Layer and Related Transfer Phenomena  

Boundary layer phenomena occurs when the viscous effect may be considered 

to be confined in a very thin layer near to the boundaries and the non-

dimensional diffusion parameter such as the Reynolds number, the Pe‟clet 

number and the Magnetic Reynolds number are very large. The boundary 

layers are then the velocity and thermal (or magnetic) boundary layers and 

each of its thickness is inversely proportional to the square root of the 

associated diffusion number. Prandtl observed form experimental flows that, 

in classical fluid dynamics boundary layer theory, for large Reynolds number, 

the viscosity and the thermal conductivity appreciably influences the flow 

only near a wall. When distance measurements in the flow direction are 

compared with a characteristic dimension in that direction, transverse 

measurement compared with the boundary layer thickness and velocities 

compared with the free stream velocity, the Navier-Stokes and energy 

equations can be considerably simplified neglecting small quantities. The 

flow directional component equations only remain and pressure is then only a 

function of the flow direction and can be determined from the non-viscous 

flow solution. Also the number of viscous term is reduced to the dominant 

term and the heat condition flow direction is negligible. Therefore, two types 

of MHD boundary layer flows are found depending on the limiting cases of a 

very large and a negligible small Magnetic Reynolds number. When the 

magnetic Reynolds number is large, the magnetic boundary layer thickness is 

small and is of nearly the same size of the viscous and thermal boundary 

layers and then the equations of the MHD boundary layer must be solved 

simultaneously. On the other hand, when the magnetic Reynolds number is 

very small and the magnetic field is oriented in an arbitrary direction relative 

to a confining surface; the flow direction component of the magnetic 

interaction and the corresponding joule heating is only a function of the 

transverse magnetic field component and the local velocity in the flow 

direction. Changes in the transverse magnetic boundary layer are negligible. 

The thickness of the magnetic boundary layer is very large and the induced 
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magnetic field is negligible. In this case the magnetic field moves with the 

flow and is called frozen mass. 

1.9 MHD and Heat Transfer    

With the advent hypersonic flight, the field of MHD, as defined above, which 

has been associated largely with liquid metal pumping, has attracted the 

interest of aerodynamics. It is possible to alter the flow and the heat transfer 

around high-velocity provided that the air is sufficiently ionized. 

Furthermore, the invention of high temperature facilities such as the shock 

tube and plasma jet has provided laboratory sources of flowing ionized gas, 

which provide an incentive for the study of plasma accelerators and 

generators.  

As a result of this, many of the classical problems of fluid mechanics have 

been reinvestigated. Some of these analyses arose out of the natural tendency 

of scientists to investigate a new subject. In this case it was the academic 

problem of solving the equations of fluid mechanics with a new body force 

and another source of dissipation in the energy equation were presented. 

Sometimes there were no practical applications for these results. For 

Example, natural convection MHD flows have been of interest to the 

engineering community only since the introduction of liquid metal heat 

exchangers, whereas the thermal instability investigations are directly 

applicable to the problems in geophysics and astrophysics.  

 

1.10 Free and Force Convection   

In the studies related to heat transfer, considerable effort has been directed 

towards the convective mode, in which the relative motion of the fluid 

provides an additional mechanism for the transfer of energy and material, the 

later being a more important consideration in cases where mass transfer, due 

to a concentration difference, occurs. Convection is inevitably coupled with 

the conductive mechanisms, since, although the fluid motion modifies the 

transport process, the eventual transfer of energy from one fluid element to 

another in its neighborhood is thorough conduction. Also, at the surface the 

process is predominantly that of conduction because the relative fluid motion 

is brought to zero at the surface. A study of the convective heat transfer 

therefore involves the mechanisms of conduction and sometimes those of 
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radioactive processes as well, couples with that fluid flow. These make the 

study of this mode of heat or mass transfer very complex, although its 

importance in technology and in nature can hardly be exaggerated. The heat 

transfer in convective mode is divided into two basic processes. 

Free convection is sometimes known as natural convection. It is the natural 

flow of air or fluid over a surface without any external driving force. Free 

convection is a mechanism or type of heat transfer, in which the motion is 

generated without any action of external source (like a pump, fan and suction 

device etc.) and flow arises naturally simply owing to the effect of a density 

difference, resulting from a temperature or concentration difference in a body 

force field, such as the gravitational field, the process is referred to the natural 

convection. In the natural convection, the density difference gives rise to 

buoyancy effects, owing to which the flow is generated. A heated body 

cooling in ambient air generates such a flow in the region surrounding it. 

Another classical natural convection problem is the thermal instability that 

occurs in a liquid heated from below. In such a case, fluid neighboring a heat 

source receives heat, becomes less dense and rises then the neighboring 

cooler fluid moves to replace it. This cooler fluid is then heated and the 

process continues, forming a current convection; this process transfer heat 

energy from the bottom of the convection cell to the top. This subject is of 

natural interest to geophysicists and astrophysicists, although some 

applications might arise in boiling heat transfer. The driving force for natural 

convection is buoyancy, a result of differences in fluid density. It does not 

appear in inertial or free-fall environment. It has attracted a great deal of 

attention from researcher because of its presence both in nature and industrial 

applications. Convection is also seen in the rising plume of hot air from fire, 

oceanic currents and sea formation. A very common industrial application of 

natural convection is free air cooling without the aid of fans. The flow may 

also arise owing to concentration differences such as those caused by salinity 

differences in the sea and by composition differences in chemical processing 

unit, and these cause a natural convection mass transfer. 

Forced convection is just what it says. If the motion of the field is caused by 

an external agent such as the externally imposed flow of a fluid stream over a 

heated object, the process is termed as force convection. It is a mechanism, or 

type of transport in which fluid motion is generated by an external source 
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(like a pump, fan, suction device, etc.). It is caused due to the forced flow of a 

fluid or air over a surface. In the force convection, the fluid flow may be the 

result of, for instance, a fan, a blower, the wind or the motion of the heated 

object itself. Such problems are very frequently encountered in technology 

where the heat transfers to or from a body is often due to an imposed flow of 

a fluid at a different temperature from that of a body. It should be considered 

as one of the main methods of useful heat transfer as significant amounts of 

heat energy can be transported very efficiently. This mechanism is found very 

commonly in everyday life, including central heating, air conditioning, steam 

turbines and in many other machines. Forced confection is often encountered 

by engineers designing or analyzing heat exchangers, pipe flow, and flow 

over a plate at a different temperature than the stream (the case of a shuttle 

wing during re-entry, for example). In any forced convection situation, some 

amount of natural convection is always present whenever there is g-forces 

present (i.e., unless the system is in free fall).Practically some time both 

processes, natural and forced convection are important and heat transfer is 

occurred by mixed convection, in which neither mode is truly predominant. 

The main difference between the two really lies in the word external. A 

heated body lying in still air loses energy by natural convection. But it also 

generates a buoyant flow above it and body placed in that flow is subjected to 

an external flow and it becomes necessary to determine the natural, as well as 

the forced convection effects in the regime in which the heat transfer 

mechanisms lie. When MHD become a popular subject, it was normal that 

these flows would be investigated with the additional ponder motive body 

force as well as the buoyancy force. At a first glance there seems to be no 

practical applications for these MHD solutions, for most heat exchangers 

utilize liquids, whose conductively is so small that prohibitively large 

magnetic fields are necessary to influence the flow. But some nuclear plants 

employ heat exchangers with liquid metal coolants, so the application of 

moderate magnetic fields to change the convection pattern appears feasible. 

Another classical natural convection problem is the thermal instability that 

occurs in a liquid heated from below. This subject is of natural to 

geophysicists and astrophysicists, although some applications might arise in 

boiling heat transfer.  
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The basic concepts involved in employing the boundary layer approximation 

to natural convection flows are very similar to tide in forced flows. The main 

difference lies in the fact is that the pressure in the region beyond the 

boundary layer is hydrostatic instead of being imposed by an external flow, 

and that the velocity outside the layer is zero, however, the basic treatment 

and analysis remain the same. 

The book by Schlichting (1968) is an excellent collection of the boundary 

layer analysis. There are several method for the solution of the boundary layer 

equations, namely, the similarity variable method, the perturbation method, 

analytical method, numerical method etc. and their details are obtained in the 

books by Rosenberg (1969), Patanker and Spalding (1970) and Spalding 

(1977). 

 

1.11 Heat and Mass Transfer  

The basic heat and mass transfer problem is governed by the combined 

buoyancy effects arising from the simultaneous diffusion of thermal energy 

and chemical species. Therefore the equations of continuity, momentum, 

energy, mass diffusion are coupled through the buoyancy terms alone, if there 

are other effects, such as the Soret and Duffor effects, they are neglected. This 

would again valid for low species concentration levels. These additional 

effects have also been considered in several investigations, for example, the 

work of the Groots and Mozur (1962), Caldwell (1974) etc. 

Somers (1956) considered combined buoyancy mechanisms for flow adjacent 

to a wet isothermal vertical surface in an unsaturated environment. Uniform 

temperature and uniform species concentration at the surface were assumed 

and an integral analysis was carried out to obtain the result which is expected 

to be valid for the values of Prandtl number ( Pr ) and Schmidt number ( Sc ) 

around 1.0 with one buoyancy effect being small compared with the other. 

Gebhart and Pera (1971) studied laminar vertical natural convection flows 

resulting from the combined buoyancy mechanisms in terms of similarity 

solutions. Georgantopolous et al. (1979) have studied the effects of mass 

transfer on free convection problem in the stokes‟ problem for an infinite 

vertical limiting surface. Raptis and Kafoussias (1982) presented the analysis 

of free convection and mass transfer steady hydromagnetic flow of an 
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electrically conducting viscous incompressible fluid, through a porous 

medium, occupying a semi infinite region of the space bounded by an infinite 

vertical porous plate under the action of transverse magnetic field. Agrawal et 

al. (1983) have investigated the effect of Hall current on the combined effect 

of thermal and mass diffusion of an electrically conducting liquid past an 

infinite vertical porous plate, when the free stream oscillates about constant 

non zero mean. The velocity and temperature distributions are shown on 

graphs for different values of obtained parameters. 

 

1.12 Thermal Diffusion 

In the above mentioned studied heat and mass transfer occur simultaneously 

in a moving fluid, where the relations between the fluxes and driving 

potentials are of more complicated nature. In general the thermal diffusion 

effects is of a small order of magnitude, described by Fourier or Flick‟s law, 

is often neglected in heat and mass transfer processes. Mass fluxes can also be 

created by temperature gradients and this is Soret or thermal diffusion effect. 

There are however, exceptions. The thermal diffusion effect, for instance, has 

been utilized for isotope separation and in mixtures between gases with very 

light molecular weight  2,H He and of medium molecular weight  2, airN . 

Kafoussias (1992) studied the MHD free convection and mass transfer flow, 

past an infinite vertical plate moving on its own plane, taken into account the 

thermal diffusion when (i) the boundary surface is impulsively started moving 

in its own plane (I.S.P) and (ii) it is uniformly accelerated (U.A.P). The 

problem was solved with the help of Laplace transformation method and 

analytical expressions were given for the velocity and skin friction for the 

above-mentioned two different cases. The effect of the velocity and skin 

friction of the various dimensionless parameters entering into the problem 

was discussed with the help of graph. For both the cases, it was seen from the 

figure that the effect of magnetic parameters M is to decreases the fluid 

(water) velocity inside the boundary layer. This influence of the magnetic 

field on the velocity field is more evident in the presence of the thermal 

diffusion. From the same figures it is also concluded that the fluid velocity 

rises due to greater thermal diffusion. Hence, the velocity field is considerably 

affected by the magnetic field and the thermal diffusion. Nanousis (1992) 
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extended the work of Kafoussias (1992) to the case of rotating fluid taking 

into account the Soret effect. The plate is assumed to be moving on its own 

plane with arbitrary velocity  0
U f t where 0U

 
is a constant velocity and  f t  

is a non-dimensional function of time t . The solution of the problem is given 

for the velocity field and for the skin friction for two different cases 

mentioned above.  

 

1.13 Important Physical Parameters 

Generally a parameter is any characteristic that can help in defining or 

classifying a particular event, project, object, or situation, etc. It is an element 

of a system that is useful, or vital, when evaluating the identify of a system; 

or, when evaluating performance, status, condition, etc. of a system that 

controls what something is or how something should be done. In this clause 

following physical parameters are described regarding our study: 

1. Skin-friction co-efficient 

2. Nusselt number. 

3. Sherwood number 

1.13.1 Skin-friction Coefficient (Cf) 

Friction is the force resisting the relative motion of solid surfaces, fluid 

layers, and material elements sliding against each other. There are several 

types of friction such as skin friction, fluid friction and internal friction etc. 

Skin friction arises from the interaction between the fluid and the skin of the 

body, and is directly related to the area of the surface of the body that is in 

contact with the fluid. The dimensionless sharing stress on the surface of a 

body, due to fluid motion is known as skin-friction coefficient and it is 

defined as     
  

   
  ⁄

. Here    is the local shearing stress on the surface of 

the body and it is defined as     (
  

  
)
   

 

1.13.2 Nusselt Number (Nu) 

Nusselt number is the ratio of heat flow rate by convection under unit 

temperature gradient to the heat flow by conduction process under unit 

temperature gradient. Named after Wilhelm Nusselt, it is a dimensionless 
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number. Nusselt number is defined as     
   

   
, where     (

  

  
)
   

 is 

the wall heat flux and L is the characteristic length. 

 

1.13.3 Sherwood Number (Sh) 

The Sherwood number is a dimensionless number for convective mass 

transfer in fluid flow region. It represents the ratio between mass transfer 

coefficient, that is, mass transfer by convection and mass transfer by 

diffusion. It is named in the honor of Thomas Kilgore Sherwood.  

Sherwood number is defined as     
  

 
 , where k is mass transfer coefficient, 

D is the mass diffusivity, and L is representative dimension (e.g. diameter of 

Tubes or pipes). For example, if mass transfer coefficient k = 5 m/s 

Characteristic length L = 15 m then we have the Sherwood number       . 

More conveniently, the ratio of mass transfer in terms of Sherwood in terms 

of Sherwood number at the plate is also defined as     
   

   
, where    

 (
  

  
)
   

is the quantity of mass transfer through the unit area of the surface. 
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CHAPTER II 

Basic Equations and Transformations 

2.1 Governing Equations of the Flow  

We consider the flow model of steady free convection heat and mass transfer flow of a 

viscous, incompressible, electrically conduction fluid past a semi-infinite vertical electrically 

non-conducting moving porous plate with thermal diffusion.  

Following the Cartesian coordinate system, the x-axis is assumed to be in the upward 

direction, which is taken along the vertical porous plate in the direction of the flow and y-axis 

is normal to it. The leading edge of the plate is taken as coincident with z-axis .A strong 

uniform transverse magnetic field B is chosen to be applied in a direction that makes an angle 

α with the normal to the considered plate (i.e. the y-axis). Therefore, B is taken in the form 

  (           √       ) . Thus, if       , i.e.     , the imposed magnetic 

field is parallel to y-axis and if       , i.e.      , then the magnetic field is parallel to 

the plate. Since the magnetic Reynolds number of the flow is not taken to be of small 

magnitude, the induced magnetic field is not negligible, so that it is taken into account with 

the applied magnetic field. 

The physical model of this study as well as the coordinate system is furnished in the 

following figure (Figure 2.1.1): 

 

Figure 2.1.1: Physical configuration and the coordinates system. 

Following the Cartesian coordinate system, the flow is assumed to be in the x-direction, 

which is taken along the vertical plate in the upward direction, where, y-direction is normal to 

the plate. The leading edge of the plate is taken as coincident with z-axis. A strong uniform 
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transversely applied magnetic field of strength B0is applied in the direction at an angle α with 

the y-axis. It is also assumed that all the physical properties of the field are considered to be 

constant except only the influence of variation of density due to the variation of temperature 

are coupled with the body force term, in accordance with the Boussinesq‟s approximation. 

Besides, no chemical reaction takes place between the foreign mass and the fluid considered. 

The induced magnetic field is of the form  , ,0 x yH HH . The equation of the conservation 

of electric charge is 0, J where the current density  , ,0 .x yJ JJ  Since the direction of 

propagation of electric charge is considered only along the y-axis and J does not have any 

variation along y  axis, that is 0
y

y

J
J

y


  


constant and as the plate is electrically non-

conducting, hence the constant is zero 0yJ  at the plate as well as everywhere within the 

flow. Further the Joule heating effect is considered to be small enough. As the direction of 

propagator is along the y -axis and  , ,0x yH HH = does not have any variation along y -axis, 

so that from diverge equation 0 H 0
yx

HH

x y


  

 
 of Maxwell‟s equation for the 

magnetic field we have 0
yH

y





 i.e. yH constant 0  (say)H is the constant induced magnetic 

field. In accordance with the above stated assumptions, the generalized form of basic 

governing equations related to the problem with the incorporation of the Maxwell‟s equations 

and generalized Oham‟s law can be put in the following form: 

Continuity equation: 

0
 

 
 

u v

x y
 (2.1) 

Momentum equation: 

   
2

0

2

cos
* xB Hu u u

u v g T T g C C
x y y y


  


 

  
      

   
 (2.2) 

Magnetic induction equation: 

2

0

2

cos 1x x x
x

e e

H H B Hu u
u v H

x y x y y



 

   
   

    
 (2.3) 

Energy equation: 

2 22

2

1 x

p p p

HT T k T u
u v

x y C y C y C y



 

      
      

       
 (2.4) 
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Species (concentration) equation: 

2 2

2 2m T

C C C T
u v D D

x y y y

   
  

   
 (2.5) 

The relevant boundary conditions on the vertical surface and in the uniform stream are 

defined as follows:  

0 0, , , , at 0

0, 0, , , 0 when

w w x w

x

u U v V T T C C H H y

u v T T C C H y 

       


     
 (2.6) 

where g  is the acceleration due to gravity,   is the coefficient of thermal expansion, T  

denotes fluid temperature, C  is concentration of species, T  and C  are the temperature and 

species concentration of the uniform flow, *  is the concentration expansion coefficient,   

is the Newtonian kinematics viscosity of the fluid, e  is the magnetic permeability, 0H  is the 

constant magnetic field, xH  is induced magnetic field coefficient,   is the density of the 

fluid,   is the electrical conductivity, pC  is the specific capacity of the fluid at constant 

pressure, wC  is concentration of species at the wall, Tk  is the thermal diffusion ratio, 0U  is 

the uniform velocity of the plate which is taken as the free stream velocity, wH  is the induced 

magnetic field at the wall and 0V  is the non-zero suction velocity perpendicular to the wall 

(the negative sign indicates that the suction velocity is directed towards the plate surface), 

respectively. In order to simplify the above equations (2.1)–(2.5) with boundary conditions 

(2.6), we will now introduce the following transformations,  viz: 

   
 

0

0 0 00

, ,so that , , ,
2 w

U T T C Cu u
y f d f

x U U T T x C C



     


 

 

 
    

 
 

and  0

2
x

e

U
H H

x





  (2.7) 

The equation of continuity i.e., equation (2.1) is identically satisfied by introducing the 

stream function   such that   
  

  
 and    

  

  
. 

Now from equation (2.7) we have  0u U f  .  

Then by equation (2.1) we obtain     0

2

U
v f f

x


   
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2.2 Mathematical Calculations 

Calculation for equation (2.2): 

    
2

0

2


  



u U
u f f

x x
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Now using equations (2.8)–(2.11) in equation (2.2) we get  
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Calculation for equation (2.3): 
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      0 0Therefore, 
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 0 0 0
0cos cos

2e e
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Now using equation (2.13)–(2.17) in equation (2.3) we get 
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Calculation for equation (2.4): 
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2

2

T T

y y y

   
  

   

T

y y





   
  
   

   0 0

2 2
w

U U
T T

x x
 

  


   
  

   
   0

2
w

U
T T

x
 




   
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   
2

0

2
Therefore, 

2
w

p

Uk T k
T T

C y x C
 

  



 


 (2.21) 

  
2 3

2
0

2 p

Uu
f

Cp y C x




 
 

 
 (2.22) 

  
2 2

2
0

2

1

4

x

p p e

H U
H

C y C x


  

 
 

 
 (2.23) 

Now using equations (2.19)–(2.23) in equation (2.4) we get 

              0 0

2 2
w w

U U
T T f T T f f

x x


        
         

         
3 2

2 2
0 0 0

22 2 4
w

p p p e

U U Uk
T T f H

x C C x C x
   

  


       

Dividing both sides by   0

2
w

p

Uk
T T

C x 
 , we obtain 

      
 

  
 

  
2

2 2
0 0

2

p

w e w

C U U
f f H

k k T T xk T T

   
      

 

      
 

 

 
  

2
2

01 1
0

2

p

p w e

pC U
H

k C T T




 

 


                                                            (2.24)  

Calculation for equation (2.5): 

 
 0

0

0

C C xU
C C C C

x C C
 




 




    


 

           
2 2

0 0
0 0Therefore, 

2

U UC
u C C f C C f

x


     

 
 


     


 (2.25) 

and 
C

v
y




       

2

0
0

2

U
C C f f    




                                                                   (2.26) 

   
22

0
02 2

Therefore, 
2

UC
C C

y
 





 


 (2.27) 

   
2

0

2
and 

2
w

UT
T T

y x
 





 


 (2.28) 

Now using equations (2.25)–(2.28) in equation (2.5) we get  

                    
2 2 2

0 0 0
0 0 0

2 2

U U U
C C f C C f C C f f          

  
  

         
 

                                                                   
       

2

0 0
022 2

m T w

U U
D C C D T T

x
   

 
 

      
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or,                
2 2 2

0 0 0
0 0 022 2

m

U U U
C C f C C f D C C       

  
  

        

   0

2
T w

U
D T T

x
 




   

Dividing both sides by  
2

0
022

m

U
D C C


 , we obtain 

           
0 0

2 0w T

m m m

T T D
f f

D D C C xU D

  
         




      


 (2.29) 

Boundary Conditions: 

For  y = 0, we have 0u U  

But           and   0
0

0 0

1
u U

u U f
U U

      

    0
0 0

2

U
v V f f V

x


         

or,     0

0

2x
f f V

U
  


     

Since for    ,   1f    and considering 0

0

2
w

x
f V

U
 , we obtain  0 .wf f  

 0 1w
w

w w

T T T T
T T

T T T T
  

 

 
    

 
 

 
     

0

0 0

0 1w
w

w

C C C C C C
C C

x C C C C C C
   

  

  
    

  
as

 0

wC C
x

C C









 

Since x wH H when 0y  , hence 

   0 0

2 2
x w

e e

U U
H H H H

x x

 
 

 
   when 0   

or,  
0

2 e
w

x
H H

U





   

or,  
0

2 wH M
H

H
   , where 0

0

1

e

B
M

U 
  

  0H h  , where 
0

2
.wH M

h
H

  

Again            and  0 as 0u y f      

    00 as 0
2

U
v y f f

x


       
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or,     0nf f     

or,  
 f

f
n


 

 

 Therefore, 0f    as   

 0 0w

w w

T T T T
T T

T T T T
   

 

 
    

 
 

 
   0 0

0
C C C C

C C
x C C x C C

   


 

 
     

 
 

0xH  as y   00
2e

U
H

x





  as  or,   0H    

Now we define the following dimensionless numbers and parameters  

The local Grashoff number: 
 

2

0

2w

r

g T T x
G

U

 
  

The local modified Grashoff number: 
  2

0

2

0

* 2
m

g C C x
G

U

 
  

The magnetic parameter: 0

0

1

e

B
M

U 
  

The magnetic diffusivity parameter: m eP   

The Prandtl number: 
p

r

C
P

k


  

The  Eckert number: 
 

2

0
c

p w

U
E

C T T




 

The Schmidt number: c

m

S
D


  

The Soret number: 
 
 

0

0 0

w TT T D
S

C C U x









 and  

The suction  parameter 0

0

2
w

x
f V

U
 .  

Therefore, introducing the above dimensionless numbers and parameters into equations 

(2.12), (2.18), (2.24) and (2.29), we obtain  

       cos 0r mf f f G G M H              (2.30) 

                2 cos 0m m mH P f H H f P H f P M f                   (2.31) 

           
2 21

0
2

r r c

m

P f P E f H
P

      
 

       
 

 (2.32) 

           02 0c c cS f S f S S                 (2.33) 
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with transformed boundary conditions  

         

       

0 , 0 1, 0 1, 0 1, 0 1

0, 0, 0, 0

wf f f H h

f H

 

 

      


         

 (2.34) 

Where  is the dimensionless temperature and it is assumed that
0

2
1wH M

h
H

  and 

0 1.
U x


  

To obtain the solution for large suction of above equations (2.30)–(2.33) we further introduce 

the following transformations:  

           2, , , ,w w w wf f f F H f L f G            and    2

wf P    (2.35)
 

Calculation for equation (2.30): 

w wf f


 



  


 

   wf f F   

     2

w wf f F f F


  



   


 

     2 3

w wf f F f F


  



   


 

     3 4

w wf f F f F


  



   


 (2.36) 

           3 4

w w wf f f F f F f F F          (2.37) 

   2

r r wG G f G    (2.38) 

   2

m m wG G f P    (2.39) 

     2cos cos cosw wM H M f L M f L


     



   


 (2.40) 

Now using equations (2.36)–(2.40) in equation (2.30) we get  

           4 4 2 2 2 cos 0w w r w m w wf F f F F G f G G f P f L M              

or,            2

1
cos 0r m

w

F F F G G G P L M
f

                (2.41) 

Calculation for equation (2. 31): 

         2

w w wH f L H f L f L


    



     


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     2 3

w wH f L f L


  



   


 (2.42) 

           2 3

w w wf H f F f L f F L          (2.43) 

           2 3

w w wf H f F f L f F L          (2.44) 

           3 4

w w wH f f L f F f L F          (2.45) 

   3

wf f F    (2.46) 

Now using equations (2.42)–(2.46) in equation (2.31) we get  

             3 3 3 3

w m w w m wf L P f F L f F L P f L F                

 32 cos 0m wP f F M    

or,                2 cos 0m m mL P F L F L P L F P F M                     (2.47) 

Calculation for equation (2.32): 

         2 2 3

w w wf G f G f G


      



     


 

   3 4

w wf G f G


  



   


 (2.48) 

           3 4

w w wf f F f G f F G           (2.49) 

     
2 26

wf f F    (2.50) 

     
2 24

wH f L    (2.51) 

Now using equations (2.48)–(2.51) in equation (2.32) we get  

           
2 24 4 6 41

0
2

w r w r c w w

m

f G P f F G P E f F f L
P

    
 

       
 

 

or,            
2 22 1

0
2

r r c w

m

G P F G P E f F L
P

    
 

       
 

 (2.52) 

Calculation for equation (2.33): 

         2 2 3

w w wf P f P f P


      



     


 

     3 4

w wf P f P


   



   


 (2.53) 

           2 2 4

w w wf f F f P f F P           (2.54) 

and            3 4

w w wf f F f P f F P            

     3 4

w wf G f G


   



   


 (2.55) 
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Now using equations (2.53)–(2.55) in equation (2.33) we get  

           4 4 4 4

02 0w c w c w c wf P S f F P S f F P S S f G             

or,            02 0c c cP S F P S F P S S G             (2.56) 

Boundary Conditions (2.34): 

For 0   0  and then      w wf f f f F       or,     1w wf f F F     

   21 1wf f F     or,   2

1

w

F
f

     

   21 1wf G     or,   2

1

w

G
f

    

   21 1wf P     or,   2

1

w

P
f

    

   1 1wH f L    or,  
1

w

L
f

    

For    

   0 0f F      

   0 0G      

   0 0P      

   0 0H L     

Therefore, re-writing equations (2.41), (2.47), (2.52), (2.56) and the corresponding boundary 

conditions: 

         ( ) cos 0r mF F F G G G P M L                 (2.57) 

             ( ) 2 cos 0m m mL P F L F L P L F P M F                     (2.58) 

           
2 21 1

0
2

r r c

m

G P F G P E F L
P

    


 
       

 
 (2.59) 

           02 0c c cP S F P S F P S S G             (2.60) 

with transformed boundary conditions  

         

       

1, , , at 0

0, 0, 0 0 as

      


      

F F G P L

F G P L

         

    
 (2.61)  
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CHAPTER III 

Perturbation Solution 

To obtain a complete solution of the coupled nonlinear system of equations (2.57) – (2.60) 

under boundary conditions (2.61), we introduce the perturbation approximation technique. 

Since the dependent variables , ,F L G  and P  are mostly dependent on   only and the fluid 

is purely incompressible, we expand the dependent variables  , ,F L G  and P  in powers of 

small perturbation quantity   such that the terms in 3  and its higher order can be neglected. 

Thus we assume 

       2 3

1 2 31F F F F            (3.1) 

       2 3

1 2 3L L L L           (3.2) 

       2 3

1 2 3G G G G           (3.3) 

       2 3

1 2 3P P P P           (3.4) 

By differentiating equation (3.1): 

 / / 2 / 3 /

1 2 3Therefore, F F F F        

 // // 2 // 3 //

1 2 3F F F F        

 /// /// 2 /// 3 ///

1 2 3F F F F        

Calculation for equation (2.57):
 

         ( ) cos 0r mF F F G G G P M L                  

  /// 2 /// 3 /// 2 3 // 2 // 3 //

1 2 3 1 2 3 1 2 31F F F F F F F F F                    

   2 3 2 3

1 2 3 1 2 3r mG G G G G P P P             


 

 / 2 / 3 /

1 2 3cos 0M L L L        


 

The first order perturbation equation  O  : (Those terms including the order of  ) 

/// // /// //

1 1 1 10 0F F F F       

The second order perturbation equation  2O  : (Those terms including the order of  2
) 

2 1 1 2 1 1 1cos 0r mF F F F G G G P M L          

By differentiating equation (3.2): 

2 3

1 2 3L L L L         

3

1 2 3L L L L          
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Calculation for equation (2.58): 

             ( ) 2 cos 0m m mL P F L F L P L F P M F                      

  2 3 2 3 2 3

1 2 3 1 2 3 1 2 3mL L L P F F F L L L                        

  2 3 2 3

1 2 3 1 2 31mP F F F L L L                

  2 3 // 2 / / 3 / /

1 2 3 1 2 3 ...mP L L L F F F            
 

 2 3

1 2 32 cos 0mP M F F F         
 

The first order perturbation equation  O  : 

1 1 12 cos 0m mL P L P M F      

The second order perturbation equation  2O  : 

 2 1 1 1 1 2 1 1 22 cos 0m m mL P F L F L L P L F P F M             

By differentiating equation (3.3): 

2 3

1 2 3G G G G          

2 3

1 2 3G G G G          

Calculation for equation (2.59): 

           
2 21 1

0
2

r r c

m

G P F G P E F L
P

    


 
       

 
  

  2 3 2 3 2 3

1 2 3 1 2 3 1 2 31rG G G P F F F G G G                         

 
 

2 3

1 2 3 2
2 3

1 2 3

1 1
0

2
r c

m

P E F F F
P L L L

  
   

 
 

        
      

 

The first order perturbation equation  O  :  

1 1 0rG PG    

The second order perturbation equation  2O  : 

   
2

2 2 1 1 1 0
2

c r
r

m

E P
G P G FG L

P
        

By differentiating equation (3.4): 

2 3

1 2 3P P P P          

2 3

1 2 3P P P P          
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Calculation for equation (2.60): 

           02 0c c cP S F P S F P S S G              

  2 3 2 3 2 3

1 2 3 1 2 3 1 2 32 cP P P S F F F P P P                        

  2 3 2 3

1 2 3 1 2 31cS P P P F F F                

 2 3

1 2 3 0o cS S G G G          

The first order perturbation equation  O  : (Those terms including the order of  ) 

1 1 1 0c o cP S P S S G      

The second order perturbation equation  2O  : (Those terms including the order of  2
) 

 2 1 1 1 1 2 22 0c c o cP S PF S PF P S S G          

So that the first order equations are:  

1 1 0F F    (3.5) 

1 1 12 cos 0m mL P L P M F      (3.6) 

1 1 0rG PG    (3.7) 

1 1 1 0c o cP S P S S G      (3.8) 

The corresponding boundary conditions are: 

1 1 1 1 1

1 1 1 1

1
0, 1, 1, 1, at 0

0, 0, 0, 0, as


      


     

F F G P L

F G P L






 (3.9) 

and the second order equations are:  

2 1 1 2 1 1 1 cos 0r mF F F F G G G P L M           (3.10) 

 2 1 1 1 1 2 1 1 2 cos 0m m mL P F L F L L P L F P F M             (3.11) 

   
2

2 2 1 1 1 0
2

c r
r

m

E P
G P G FG L

P
        (3.12) 

 2 1 1 1 1 2 22 0c c o cP S PF S PF P S S G          (3.13) 

with the corresponding boundary conditions: 

2 2 2 2 2

2 2 2 2

0, 0, 0, 0, 0 at 0

0, 0, 0, 0 as

      


      

F F G P L

F G P L




 (3.14) 

Now we are interested to solve equations (3.5)–(3.8) with boundary conditions (3.9) and 

equations (3.10)–(3.13) with boundary conditions (3.14)  

From equation (3.5) we have  
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1 1 0F F    

The general solution of equation (3.5) is given by  

1 1 2 3F c c c e      

Applying boundary conditions:  

1 10, 1as 0F F    and 1 0 atF    

1 3 1 2 3 2 3Therefore 0 , ,1c c F c c e c c      and 20 c  so that 1 2 31, 0, 1   c c c  

Hence the complete solution of equation (3.5)  1 1F e     (3.15) 

Again from equation (3.6) we have  

1 1 12 cos 0m mL P L P M F      

Here 1 11 Therefore F e F e       

So that 1 1 2 cosm mL P L P M e      

The complementary function is obtained by  

1 1 2
mp

cL c c e


   

Now the particular integral  

1 2

1
2 cosp m

m

L P M e
D P D

 


 

 

2 cos

1

m

m

P M e

P

 




 

The general solution is 1 1 2

2 cos

1
mP m

m

P M e
L c c e

P


  


  


 

Using boundary conditions:  

1

1
L


at 0  and 1 0L   as    

1 2

2 cos1
Therefore 

1

m

m

M P
c c

P




  


 and 1 0,c   so that 1 2

2 cos1
0,

1

m

m

M P
c c

P




  


 

Hence the complete solution of equation (3.6) is  

1

2 cos 2 cos1

1 1
mPm m

m m

P M P M
L e e

P P

 



  
   

  
 

or,  1

2 cos 1

1
m mP Pm

m

P M
L e e e

P

 



   


 

or,    1 1 1
m mP P

L A e e K e
      
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where 1 1

2 cos 1
,

1 cos

m

m

P M
A K

P M




 


 (3.16) 

Again from equation (3.7) we have 

1 1 0rG PG    

The general solution is 1 1 2
rPG c c e 

   

Using boundary conditions:  

1 1G 
 
at 0   and 1 0G   as    

1 2Therefore, 1 c c 
 
and 10 c  so that 1 20, 1c c   

Hence the complete solution of equation (3.7) is  

 1
rPG e  

  (3.17) 

Again from equation (3.8) we have  

1 1 1 0c o cP S P S S G      

Here 
2

1 1 1 Therefore ,r r rP P P

r rG e G Pe G P e          

2

1 1Therefore rP

c o c rP S P S S P e      

The complementary function is obtained by  

1 1 2
cS

cP c c e


   

And  the  particular integral is  

 2

1 02

1
rP

p c r

c

P S S P e
D S D

 


 

or, 
2

0 0
1 2




  
 

r

r

P
Pc r c r

p

r c r r c

S S P e S S P
P e

P S P P S




 

The general solution is 1 1 2

r

c

P
S o c r

r c

S S Pe
P c c e

P S







  


 

Using boundary conditions:  

1 1P  at 0   and 1 0P   as    

1 2Therefore, 1 o c r

r c

S S P
c c

P S
  


 and 10 c  so that 1 20, 1 o c r

r c

S S P
c c

P S
  


 

Hence the complete solution of equation (3.8) is  

1 1 c rS Po c r o c r

r c r c

S S P S S P
P e e

P S P S

   
   

  
 

or,  1 2 3
c rS PP A e A e
   

    (3.18)   
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where, 2 3 31 , o c r

r c

S S P
A A A

P S
   


 

Again from equation (3.10) we have  

2 1 1 2 1 1 1cos 0r mF F F F G G G P M L          

Here 1 1 1 1 2 31 , , , er rSP PF e F e G e P A e A e
             ,  

 1 1 1
m mP P

L A e e K e
     ,  

 1 1 1
m mP P

m mL A P e e K P e
       

   2 2 2 3 1Therefore, 1 cosc mr rS PP P

r m m mF F e e G e G A e G A e A M P e e
                  

1 cos mP

mK P M e
 

  

The complementary function is obtained by  

2 1 2 3cF c c c e      

and  the particular integral is  

2 pF 
       

2 2 3 1

2 2 2

cos1

4 1 1 1 1
c mr rS PP Pm mr

r r c c r r m m

G A G AG A M
e e e e e e

P P S S P P P P

    
        

   
 

 
1

1

cos
cos

1
mP

m m

K M
A M e e

P P

 
  


 

The general solution is  

 
 

 
32

2 1 2 3 1 2

1
1 cos

4 1
rr m P

r r

G G A
F c c c e e A M e e

P P

       


      


 

 

 

 
1 12

2

cos

1 1
c mS Pm

c c m m

A K MG A
e e

S S P P

  
 

 
 

Using boundary conditions:  

2 20, 0F F  as 0   and 2 0F   as    

 
 

   

 

 
3 1 12

1 1

cos1
 1 cos

2 1 1 1

r m m

r r c c m

G G A A K MG A
c A M

P P S S P




 
     

  
 

 

   

 

 
3 1 12

2 2

cos1

4 1 1 1

r m m

r r c c m

G G A A K MG A

P P S S P

 
   

  
 

 

2 0c   

 
 

   

 

 
3 1 12

3 1

cos1
1 cos

2 1 1 1

r m m

r r c c m

G G A A K MG A
c A M

P P S S P




 
      

  
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 
 

   

 

 
3 1 12

1 2 2

cos
1 cos

1 1 1
c mr S Pr m P m

r r c c m m

G G A A K MG A
A M e e e e

P P S S P P

  
   

 
    

  
 

Hence the complete solution of equation (3.10) is  

  2

2 1 9 10 7 8 11

1

4
c mr S PP

F e D e D e D e D e D e D
                (3.19) 

Where 
 

2
1 1 2 3 3 2 41 cos , , , ,

1
r m m

r r

D
D A M D G G A D G A D

P P
     


 

 
3

5 ,
1


c c

D
D

S S
12

6
1m

D
D

P



 

 
 

12
12 1 1 7 8 1 4 5 6

1
cos , , ,

1 2m m

D
D A K M D D D D D D

P P
        



   
32

9 10 11 8 9 10 72 2

1
, ,

1 1 4r r c c

DD
D D D D D D D

P P S S
       

 
 

Again from equation (3.11) we have   

 2 2 1 1 1 1 1 1 22 cos 0m m m mL P L P F L F L P L F P M F             

Here 1 1 11 , ,F e F e F e           

2

2 1 9 10 7 8 11

1

4

         c mr S PP
F e D e D e D e D e D e D

     

2

2 1 1 9 10 7 8

1

2

            c mr S PP

r c mF e D e D e D Pe D S e D P e D e
      

 2 2 2 2

2 1 8 1 9 10 72
         c mr S PP

r c mF e D e D D e D P e D S e D P e
     

   1 1 1 1 1 1,m m m mP P P P

m mL A e e K e L A P e e K P e
               

     1 2 2

2 2 1 1 1 1 1 1 1 1
m m

P P

m m m m m m mL P L P K A A P K P e P A K e A P e A P e
  

            
 

     1 2

1 1 8 1 12 cos 2 2 cos 2 cosmP

m m mK A e P M e P D D M e P D M e
      

           

2 2 3

9 10 72 cos 2 cos 2 cos 0c mr S PP

m r m c mP D P M e P D S M e P D M e
    

     

The complementary function is obtained by  

2 1 2
mP

cL c c e


   

Now the particular integral is  

2 pL      
 

1 21 1
1 1 1 1

1 2 2

m m
P P m m

m m

m m

A P A P
P A K e P A K e e e

P P

   


         
 

 

 

 

 

 
    

 
 1 11 1 1 1 12 2

2 2

4 2 cos

1 24 2 1

m mP Pm m m m

m mm m

A P P A K A K P P M
e e e e

P PP P

       
   

   
  
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   

 
8 1 11

2

2 2 cos 2 2 cos2 cos

1 1 1

m m mm

m m m

P D D M P D P MP D M
e e e

P P P

     
 

  
  

 

29 10
7

2 cos 2 cos
2 cosc mr S PPm r m c

m

m r m c

D P P M D P S M
e e D P M e

P P P S

  
   

 
 

The general solution is   

     
 

1 21 1
2 1 2 1 1 1 1

1 2 2

mm m
PP P m m

m m

m m

A P A P
L c c e A K P e A K P e e e

P P

   


           
 

 

 

 

 

 
    

 
 1 11 1 1 1 12 2

2 2

4 2 cos

1 24 2 1

m mP Pm m m m

m mm m

A P P A K A K P P M
e e e e

P PP P

       
   

   
  

 

   

 
8 1 11

2

2 2 cos 2 2 cos2 cos

1 1 1

m m mm

m m m

D D P M D P P MD P M
e e e

P P P

     
 

  
  

 

29 10
7

2 cos 2 cos
2 cosc mr S PPm r m c

m

m r m c

D P P M D P S M
e e D P M e

P P P S

  
   

 
 

Using boundary conditions:  

2 0,L  at 0   and 2 0L   as    

 
 

 

  

 
1 1 11

1 2 1 1 2 2

4 2
Therefore, 0

1 4 2 1

m m mm
m

m m m

A P P A K PA P
c c A K P

P P P

  
      

  
 

   

 
8 1 1

2

2 2 cos 2 2 coscos

2 1 1

m m mm

m m m

D D P M D P P MP M

P P P

   
  

  
 

9 102 cos 2 cosm r m c

m r m c

D P P M D P S M

P P P S

 
 

 
 

and 1 0c  , so that  

 
 

 

  

 
1 1 11

2 1 1 2 2

4 2 cos

1 24 2 1

m m mm m
m

m mm m

A P P A K PA P P M
L P A K

P PP P

   
      

  

 

   

 
8 1 1 9

2

2 2 cos 2 2 cos 2 cos

1 1

m m m m r

m m rm

D D P M D P P M D P P M

P P PP

   
  

 
 

     110
1 1 1 1

2 cos
mm m

PP Pm c
m m

m c

D P S M
e A K P e A K P e

P S

 


  
    

 
 

 

 

 

 

 
 11 1 12 21 1

2

4

1 2 2 14 2

mPm mm m

m m mm

A P P A KA P A P
e e e e

P P PP

       
 

   
  

 

  

 
   11 1 8 12

2

2 2 2 coscos

2 11

mPm mm

m mm

A K P D D P MP M
e e e

P PP

     
  

  
 
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 

 
11 9

2

2 2 cos2 cos 2 cos

1 1

rm m Pm m r

m m rm

D P P MD P M D P P M
e e e

P P PP

    


  
 

 

210
7

2 cos
2 cosc mS Pm c

m

m c

D P S M
e D P M e

P S

 
 

 


 

Hence the complete solution of equation (3.11) is  

     1 12 2

2 1 1 2 3 4 5 6

             m mm
P PP

L B e B e B e B e B e B e B e
      

 

2

7 8 9 10 11

      c mr S PPB e B e B e B e B e
    

 
 1

12 13 14

    m m
P P

B e B e B e
         (3.20)  

Where  
 

 

  

 
1 1 11

1 1 1 2 3 42 2

4 2
, , , ,

1 4 2 1

m m mm
m

m m m

A P P A K PA P
B A K P B B B

P P P

  
    

  
 

   

 
8 1 1

5 6 7 2

2 2 cos 2 2 coscos
, , ,

2 1 1

m m mm

m m m

D D P M D P P MP M
B B B

P P P

   
  

  
 

9 10
8 9

2 cos 2 cos
, ,m r m c

m r m c

D P P M D P S M
B B

P P P S

 
 

 
 

 
 

1
10 1 2 3 4 5 6 7 8 9 11, ,

2 2

m

m

A P
B B B B B B B B B B B

P
          


 

211 1
12 13 14 7

2 cos
, , 2 cos

1 1

m
m

m m

D P MA K
B B B D P M

P P





  

 
 

Again from equation (3.12) we have  

   
2

2 2 1 1 1 0
2

c r
r

m

E P
G P G FG L

P
        

Here 1 1,r rP P

rG e G Pe      

   1 1 1 1 1 1 11 , ,
           m m m mP P P P

m mF e L A e e K e L A P e e K P e
       

 
2

1L      122 2 2 2 2

1 1 1 1 1 12 2 mm
PP

m m mA K P e A K P A P e A e
         

The complementary function is obtained by  

2 1 2
rP

cG c c e 
   

and the particular integral is  

2 pG
 

   
 

 
  

 
22

11 21 1 1 1 1

1 4 2 1 1

mr mr
PP PP r c r cr

r

r m r m m r

P E A K A P E A KP
P e e e e

P P P P P P

 
     

    
    

 

 

2
21

4 2

r c

m r

P E A
e

P P



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The general solution is  

 
   

 

22
1 1 1

2 1 2
1 4 2

r mr r
P Pr cP P r

r

r m r

A K P EP
G c c e P e e e

P P P

  
    

    
 

 

 

  
 

 

2
11 1 1 21

1 1 4 2

mPr c r c

m m r m r

A A K P E A P E
e e

P P P P P

   


 
   

 

Using boundary conditions:  

2 0G 
 
at 0   and 2 0G   as    

 

 

 

 

    

2 22
1 1 1 1 1 1

1 2Therefore, 0
1 4 2 1 1 4 2

r c r c r cr

r m r m m r m r

A K P E A A K P E A P EP
c c

P P P P P P P P

 
     

     
 

and 1 0c  , so that  

     11 2 2

2 4 5 6 7 8 9

         mr mr r
PP PP P

G A e A e A e A e A e A e
     (3.21) 

where 
 

 
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Again from equation (3.13) we have  
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The complementary function is obtained by  
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The general solution is  
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Using boundary conditions:   
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and 1 0c  , so that  

       1 11 2

2 1 2 3 4 5

     
    c mr mr

S PP PP
P E e E e E e E e E e

    

 
2

6 7 8 9 10

      c cr rS SP PE e E e E e E e E e
           (3.22) 

The solution of equations (3.5)–(3.8) and (3.10)–(3.13) up to the second order under the 

prescribed boundary conditions (3.9) and (3.14), respectively are obtained in a 

straightforward manner and are re-written as: 

 1 1F e     (3.23) 
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where the constants , , ,i i i iA B D E  and 1K  are shown in Appendix 3.A. 

The above solutions (3.23)–(3.30) are however valid for 1r cP S   and r cP S  

The velocity, temperature, induced magnetic field and the mass concentration can now be 

calculated from (3.1)–(3.4) as follows:  
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u
f F F F

U
          (3.31) 

  3/2

1 2H L L     (3.32) 

  2

1 2 3G G G       (3.33) 

2

1 2 3( ) P P P       (3.34) 

Thus with the help of the solutions (3.23) – (3.30) the velocity, temperature, inclined 

magnetic field and concentration distributions are calculated from (3.31) – (3.34). However 

for different values of the established parameters and numbers, the results of the velocity, 

temperature, inclined magnetic field and concentration distribution are plotted graphically 

and the coefficients of skin friction, wall heat flux and are wall mass flux are presented in 

tabular form in CHAPTER IV.  
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CHAPTER IV 

Perturbation Solutions and Results Discussions 

4.1 Numerical Solution 

The solution of system of coupled, nonlinear, ordinary differential equations (3.5)–(3.8) and 

(3.10)–(3.13) together with the boundary conditions (3.9) and (3.14) respectively, are 

obtained by using perturbation technique. In order to put the physical insight into the flow 

pattern of the problem, the approximate numerical results of the first order solutions (3.23)–

(3.26) along with the second order solutions (3.27)–(3.30), concerning the velocity, 

temperature, induced magnetic field and concentration field are obtained. For more consistent 

results the numerical approximation of the second order solutions (3.27)–(3.30), in 

collaboration with the first order approximation, have been carried out here for small values 

of Eckert number 0.2cE  (which is the measure of the heat produced by friction) with 

different selected values of the established dimensionless numbers and parameters like Soret 

number  0S , Grashof number  rG , Modified Grashof number  mG  for mass transfer, 

suction parameter 
wf , magnetic parameter  M , etc. Since the two most important fluids are 

atmospheric air and water, the values of the Prandtl number  rP  are chosen to be 0.71 for air 

(at 20C ) to 7.0 for water (at 20C ) for numerical investigation. The others like magnetic 

diffusivity parameter  mP  and Schmidt number  cS  are chosen to be the fixed values 3.0, 

0.6, respectively.  

As one of the main intentions of this research is to investigate the influence of inclined 

magnetic field on the above mentioned field variables, three different inclined angles of 

uniform applied magnetic field have been considered, namely, 0
0
, 45

0 
and 75

0
 for the present 

problem. However, to show the effects of non-dimensional numbers or parameters on the 

flow fields, namely, velocity, temperature, concentration and induced magnetic fields, the 

inclined angle is kept 45
0
everywhere. Besides, to show the variation effects of any one of the 

non-dimensional numbers or parameters on the flow fields, the other numbers/parameters 

have been taken to be fixed values. With the above considerations the velocity and 

temperature profiles, the induced magnetic field and the mass concentration are obtained for 

some selected values of the inclined angles, non-dimensional numbers and parameters. The 

dependency of wall shear stress, wall heat flux, and wall mass flux, which are of physical 

interests, on the concerned non-dimensional parameters and numbers are also been 

calculated. 
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4.2 Numerical Results and Discussions 

In the following, the obtained numerical results involving the effects of the variation of 

considered inclination angles, non-dimensional numbers and parameters on the velocity 

profile, temperature profile, induced magnetic field and concentration distribution have been 

presented through Figures 4.2.1– 4.2.24 whereas the variation of values proportional to the 

skin friction coefficient   0f , Nusselt number   0  and Sherwood number   0  

with the variation of the values of different selected established dimensionless parameters and 

numbers are tabulated and have been illustrated through Tables 4.2.1– 4.2.7. 

The effects of the variations of the considered inclined angle on the velocity, temperature, 

concentration and induced magnetic fields have been presented through Figures 4.2.1 – 4.2.4. 

Figure 4.2.1 represents the velocity profiles for the variation of the angle of inclination of 

applied magnetic field. It is observed that in all cases the velocity starts from 1.0 and with the 

increase of the distance from the plate the velocities increased rapidly and after certain 

distance the velocity decreases and then leads to zero asymptotically which clearly shows the 

boundary layer effect. Also profiles show that velocity decrease with the increase of the 

inclined angle α from 0
0
 to 75

0
. This Implies that the angle of inclination has a retarding 

influence on the velocity. 

 

Figure 4.2.1: Effect inclined angle  (in degree) on velocity fields (with fixed values of 

00.71, 2.0,rP S  0.6, 1.5, 6.0, 3.0c r wS M G f    and 4.0mG ). 

Figure 4.2.2 shows the temperature profiles for different inclined angle. In fact the variable 

considered is not the temperature itself, rather it is the ratio of the difference between 

temperature of the fluid within the boundary layer and that of the fluid outside the boundary 

layer to the difference between temperature at the wall and temperature outside of the 

boundary layer. It is seen that the temperature starts at 1.0 and with the increase of the 
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distance from the plate the temperature decreases rapidly within the boundary layer. In all 

cases the temperature reduces to zero. But the temperature profiles don‟t affect by any means 

with the variation of the inclined angle as shown in Figure 4.2.2. 

 

Figure 4.2.2: Effect inclined angle  (in degree) on temperature fields (with fixed values of 

00.71, 2.0,rP S  0.6, 1.5, 6.0, 3.0c r wS M G f    and 4.0mG ). 

The effect of the variations of inclined angle on the induced magnetic field is very strong as 

seen in Figure 4.2.3. From figure it is seen that with the increase in inclined angle α, the 

magnitude of the induced magnetic field decreases highly. The concentration fields affect a 

little only inside the boundary layer and are decreased with the increase of α was observed in 

Figure 4.2.4.   

 

Figure 4.2.3: Effect inclined angle  (in degree) on induced magnetic fields (with fixed 

values of 
00.71, 2.0,rP S  0.6, 1.5, 6.0, 3.0c r wS M G f    and 4.0mG ). 
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Figure 4.2.4: Effect inclined angle  (in degree) on concentration fields (with fixed values of 

00.71, 2.0,rP S  0.6, 1.5, 6.0, 3.0c r wS M G f    and 4.0mG ). 

 

Figure 4.2.5: Velocity profiles for different values of 
0S  (with fixed values of 0.71,rP

00.6, 1.5, 6.0, 3.0, 4 )5c r wS M G f      taking 4.0mG  and 4.0.  

 

Figure 4.2.6: Temperature profiles for different values of 
0S  (with fixed values of 0.71.rP

00.6, 1.5, 6.0, 3.0, 4 )5c r wS M G f       taking 4.0mG  and 4.0.  
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Figures 4.2.5 and 4.2.6 show the effect of Soret number  0S  on the velocity and temperature 

fields respectively. It is observed that velocity increases with the increase of 
0S  but there is 

no remarkable effect of 
0S  on the temperature field. Also the velocity decreases more with 

increasing 
0S  for negative values of modified Grashof number 

mG  and it becomes negative 

and asymptotically tends zero far away from the plate surface.  

The variation of induced magnetic field and mass concentration with 
0S  are shown in Figure 

4.2.7 and Figure 4.2.8 respectively. It is seen from Figure 4.2.7 that with the increase in 
0S , 

the magnitude of the induced magnetic field increases. The magnitude of the induced 

magnetic field is much smaller for negative values of 
mG  and show decreasing with 

increasing 
0S  as observed in Figure 4.2.7. 

 

Figure 4.2.7: Induced magnetic field distribution for different values of 
0S (with fixed values 

of 00.71, 0.6, 1.5, 6.0, 43 , 5.0 )r c r wP S M G f        taking 4.0mG  and 4.0.  

The reverse effect is observed for the mass concentration, that is, concentration increases 

with increase of Soret number
0S as is seen in Figure 4.2.8. 
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Figure 4.2.8: Concentration distribution for different values of 
0S  (with fixed values of 

00.71, 0.6, 1.5, 6.0, 3.0 and 4.0, 45 ).r c r w mP S M G f G         

Figure 4.2.9 represents the velocity profiles for the variation of the suction parameter (fw), 

keeping the other variables/parameters fixed. It has been observed that for increasing values 

of suction parameter, the velocity at any point within the boundary layer decreases rapidly. In 

fact the velocity within the boundary layer becomes much more slower with the increase of  

fw which reflects the stability effect of the boundary layer clearly. The effects of suction 

parameter (fw) on the temperature fields are presented in Figure 4.2.10. Like before, 

temperature found decreasing significantly with increasing suction. 

 

 

Figure 4.2.9: Velocity profiles for different values of 
wf  (with fixed values of 0.71,rP

0 2.0, 0.6, 1.5, 6.0c rS S M G    , 04.0 and 45 ).mG    

 

Figure 4.2.10: Temperature profiles for different values of 
wf  (with fixed values of 0.71,rP

0 2.0, 0.6, 1.5, 6.0c rS S M G    , 04.0 and 45 ).mG    
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Figure 4.2.11 and 4.2.12 respectively show the effect of fw on the induced magnetic field and 

mass concentration. The magnitude of the induced magnetic field surprisingly decreases with 

the increase of fw but concentration first increases very close to the plate surface and then 

found to decrease further with increasing  fw  away from the surface.  

 

Figure 4.2.11: Induced magnetic field distribution for different values of 
wf  (with fixed 

values of 0.71,rP 0 2.0, 0.6, 1.5, 6.0c rS S M G    , 04.0 and 45 ).mG    

 

Figure 4.2.12: Concentration distribution for different values of 
wf  (with fixed values of 

0.71,rP 0 2.0, 0.6, 1.5, 6.0c rS S M G    , 04.0 and 45 ).mG    

The effect of Grashof number  rG  on the velocity and temperature fields, induced magnetic 

field and mass concentration are displayed in Figures 4.2.13, 4.2.14, 4.2.15 and 4.2.16, 

respectively. Figure 4.2.13 shows that as the values of Grashof number 
rG  increases, the 

velocity increases. From Figure 4.2.15 it is observed that the magnitude of induced magnetic 

fields increase with the increasing values of 
rG . No considerable effect of 

rG  on the 

temperature and concentration fields is found as seen in Figure 4.2.14 and Figure 4.2.16, 

respectively. 
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Figure 4.2.13: Velocity profiles for different values of 
rG  (with fixed values of

0 2.0,S 

0.6, 1.5, 3.0c wS M f   , 04.0 and 45 ).mG    

 

Figure 4.2.14: Temperature profiles for different values of 
rG  (with fixed values of 0.71,rP

0 2.0, 0.6, 1.5, 3.0c wS S M f    , 04.0 and 45 ).mG    

 

Figure 4.2.15: Induced magnetic field distribution for different values of 
rG  (with fixed 

values of 0.71,rP 0 2.0, 0.6, 1.5, 3.0c wS S M f    , 04.0 and 45 ).mG    



56 
 

 

Figure 4.2.16: Concentration distribution for different values of 
rG  (with fixed values of 

0.71,rP 0 2.0, 0.6, 1.5, 3.0c wS S M f    , 04.0 and 45 ).mG    

Figure 4.2.17 and Figure 4.2.18 observed the effect of magnetic parameter  M  on the 

velocity and temperature fields.  The effect of magnetic parameter  M  on induced magnetic 

field and mass concentration are shown in Figures 4.2.19 and 4.2.20, respectively. As the 

values of M increase, both the velocity and the magnitude of induced magnetic field increase 

as are shown in Figures 4.2.17 and 4.2.19, respectively. From Figure 4.2.17 it is also depict 

that with the increase of the magnetic parameter M, the velocity profiles increase with very 

small difference between  0 0.25   (approx.). After that they coincide for large value of 

and finally approach to zero. Figure 4.2.19 illustrates the influence of magnetic parameter M 

on the induced magnetic field profiles. It is observed that as the values of M increase, the 

magnitude of induced magnetic fields boundary layer thickness increase. This is due to the 

fact that the applied magnetic field exerts additional Lorentz forces which lead to increase the 

induced magnetic field. But no significant effect is observed on the temperature and 

concentration profiles for the variation of magnetic parameter M as are observed in Figure 

4.2.18 and Figure 4.2.20, respectively. 
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Figure 4.2.17: Velocity profiles for different values of M  (with fixed values of 0.71,rP

0 2.0, 0.6, 3.0, 6.0c w rS S f G    , 04.0 and 45 ).mG    

 

Figure 4.2.18: Temperature profiles for different values of M  (with fixed values of 0.71,rP

0 2.0, 0.6, 3.0, 6.0c w rS S f G    , 04.0 and 45 ).mG    

 

Figure 4.2.19: Induced magnetic field distribution for different values of M  (with fixed 

values of 0.71,rP 0 2.0, 0.6, 3.0, 6.0c w rS S f G    , 04.0 and 45 ).mG    
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Figure 4.2.20: Concentration distribution for different values of M  (with fixed values of 

0.71,rP 0 2.0, 0.6, 3.0, 6.0c w rS S f G    , 04.0 and 45 ).mG    

Displayed Figure 4.2.21 exhibits the effect of Prandtl number  rP on the non-dimensional 

velocity profiles. We observed that the velocity decreases significantly with the increase of 

rP  within the boundary layer. This is due to fact that as 
rP  increases, the dynamic viscosity 

of the fluid increases which then slow down the velocity of the fluid. Figure 4.2.22 illustrates 

the effects of Prandtl number, 
rP on the non-dimensional temperature profiles within the 

boundary layer. As we observed in the figure, the temperature abruptly decreases when the 

values of 
rP  increase at a fixed value of  , so that for a higher Prandtl number fluid, the 

thermal conductivity is relatively lower, which reduces conduction  as well as the thermal 

boundary layer thickness and finally temperature is reduced. Therefore increasing 
rP is to 

increase the heat transfer rate at the surface and as a result the temperature gradient at the 

surface increases. 

Figure 4.2.23 and Figure 4.2.24 show the effect of 
rP  on induced magnetic field and mass 

concentration, respectively.  

 



59 
 

Figure 4.2.21: Velocity profiles for different values of 
rP  (with fixed values of 

0 2.0,S 

0.6, 1.5, 3.0, 6.0c w rS M f G    , 04.0 and 45 ).mG    

 

Figure 4.2.22: Temperature profiles for different values of 
rP  (with fixed values of 

0 2.0,S 

0.6, 1.5, 3.0, 6.0c w rS M f G    04.0 and 45 ).mG    

 

Figure 4.2.23: Induced magnetic field distribution for different values of 
rP  (with fixed values 

of 
0 2.0, 0.6, 1.5, 3.0, 6.0c w rS S M f G     , 04.0 and 45 ).mG    

Here again the magnitude of the induced magnetic fields decrease with the increasing values 

of 
rP  as is seen in Figure 4.2.23. Also with increasing 

rP , the concentration is found to 

increase firstly very close to the plate surface and after that it further decreases and 

asymptotically approaches to zero away from the plate surface (Figure 4.2.24). 
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Figure 4.2.24: Concentration distribution for different values of 
rP  (with fixed values of 

0 2.0, 0.6, 1.5, 3.0, 6.0c w rS S M f G     , 04.0 and 45 ).mG    

Finally, the dependency of wall shear stress (in terms of local skin-friction coefficient (Cf)), 

wall heat flux (in terms of Nusselt number (Nu)) and wall mass flux (in terms of Sherwood 

number (Sh)), which are of physical interests, on the concerned non-dimensional parameters 

and numbers have been observed. The variation of values proportional to Cf  in term of shear 

stress   0f ,Nu in term of wall heat transfer   0 and Sh in term of wall mass transfer 

  0 with the variation of the values of different selected established dimensionless 

parameters and numbers are tabulated and have been illustrated through Tables 4.2.1 to 4.2.7. 

Table 4.2.1: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0 and rate of mass transfer   0 with the variation of 
0S  (for 

fixed values of 0.71, 0.6, 3.0, 1.5, 6.0r c w rP S f M G     , 04.0 an )4d 5mG   . 

0S   0f   0   0
 

0.0 0.811797 2.009 2.175000 

1.5 2. 811797 2.009 0.507300 

2.0 3.478463 2.009 -0.048962 

5.0 7.478463 2.009 -3.384906 

Form Table 4.2.1, it is observed that with the increase in 
0S , the coefficient of skin friction 

increases and the rate of mass transfer decreases. No effect of 
0S  on the coefficient of heat 

transfer is perceived.  

Table 4.2.2: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0 and rate of mass transfer   0 with the variation of 
wf (for 

fixed values of 0.71, 0.6, 1.5, 6.0r c rP S M G    , 04.0 an )4d 5mG   . 
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wf   0f   0   0
 

1.5  12.517590 -0.708820 0.708820 

3.0 3.478463 0.048962 -0.048962 

5.0 -1.537190 0.645236 -0.645236 

From Table 4.2.2, it is seen that, with the increase of 
wf , the coefficient of skin friction and 

rate of mass transfer highly decreased but the rate of heat transfer increased. The usual 

stabilizing effect of the suction parameter on the boundary layer growth is also evident from 

this Table.  

Table 4.2.3: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0 and rate of mass transfer   0 with the variation of 
rG  (for 

fixed values of 0.71, 0.6, 3.0, 1.5r c wP S f M    , 04.0 an )4d 5mG   . 

rG   0f   0   0
 

-4.0 -1.216370 2.009 -0.048962 

-2.0 -0.277410 2.009 -0.048962 

2.0 1.600529 2.009 -0.048962 

4.0 2.539496 2.009 -0.048962 

6.0 3.478463 2.009 -0.048962 

Table 4.2.3 shows that with the increase of
rG , the coefficient of skin friction gradually 

increases but both the rate of heat and mass transfers remain unaffected as
rG  varies.  

Table 4.2.4: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0 and rate of mass transfer   0 with the variation of M  (for 

fixed values of 0.71, 0.6, 3.0, 6.0r c w rP S f G    , 04.0 an )4d 5mG   . 

M  0f   0   0
 

0.1 4.468413 2.15419 -0.223190 

1.0 3.832017 2.06884 -0.120722 

1.5 3.478463 2.00900 -0.048962 

2.0 3.124910 1.94029 0.033500 

 

Form Table 4.2.4 it is seen that, as the magnetic parameter (M) increases, the coefficient of 

skin friction and the rate of heat transfer decreased slightly, but the rate of mass transfer 

diminutively increased.  
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Table 4.2.5: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0  rate of mass transfer   0  with the variation of 
rP  (for fixed 

values of 0.6, 3.0, 1.5, 6.0c w rS f M G    , 04.0 an )4d 5mG   . 

rP   0f   0   0
 

0.71 3.478463 2.0090 -0.048962 

5.0 1.061562 13.4510 -13.59124 

7.0 0.947276 18.7342 -19.91232 

It is observed form Table 4.2.5 that, with the increase of the Prandtl number 
rP , the 

coefficient of skin friction decreases. Also the rate of heat transfer highly increases whereas 

the rate of mass transfer extensively decreases as 
rP  increases.  

Table 4.2.6: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0 and rate of mass transfer   0 with the variation of 
cS  (for 

fixed values of 0.71, 3.0, 1.5, 6.0r w rP f M G    , 04.0 an )4d 5mG   . 

cS   0f   0   0
 

0.1 14.48957 2.009 -0.003342 

0.6 3.478463 2.009 -0.048962 

0.7 3.161003 2.009 -0.061487 

1.5 2.14513 2.009 -0.179643 

5.0 1.522908 2.009 -0.796665 

Table 4.2.6 shows that with the increase of 
cS , the coefficient of skin  friction decreases 

sharply but the rate of mass transfer evenly decreases. No through effect of 
cS  on the rate of 

heat transfer is seen here. 

Table 4.2.7: Variations of the values proportional to the coefficients of skin friction   0f , 

rate of heat transfer   0  and rate of mass transfer   0 with the variation of 
mG  (for 

fixed values of 0.71, 3.0, 1.5, 0.6r w cP f M S    , 
06.0 an )4d 5rG   . 

mG   0f   0   0
 

-4.0 -6.29931 2.009 -0.048962 

4.0 3.478463 2.009 -0.048962 

The coefficient of skin friction remarkably decreases with decreasing values of 
mG  from 

positive to negative but no consequence of 
mG  on the rate of heat and mass transfers are 

observed as is seen in Table 4.2.7. 
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CHAPTER V 

 

Conclusions 

 

In the present research, a flow model of steady natural convection heat and mass transfer of 

viscous incompressible electrically conducting fluid past a semi-infinite vertical electrically 

non-conducting moving porous plate has been studied considering the effects of thermal 

diffusion and uniform inclined magnetic field. Numerical approximation of the second order 

solutions in collaboration with the first order solutions has been carried out using the 

perturbation technique. The influence of inclined magnetic field on the independent field 

variables have been investigate considering three different inclined angles of uniform 

applied magnetic field, namely, 0
0
, 45

0 
and 75

0
. From the investigation of the present 

problem, some conclusions have been made as follows: 

 The increase of inclined magnetic field angle from 0
0
 to 75

0
 tends to slow down the 

velocity field. The magnitude of the induced magnetic field decreases highly with the 

increase of inclined angle. But the mass concentration process slow down a little only 

inside the boundary layer with the increase of inclined angle while temperature 

profiles are not affect by any means with the variation of the inclined angle.  

 The velocity, mass concentration and the magnitude of the induced magnetic field 

increases with the increase of Soret number but there is no remarkable effect of the 

number on the temperature field is observed.  

 The velocity, temperature and magnitude of induced magnetic fields decreases 

quickly with the increase of the suction parameter. Concentration shows increasing-

decreasing characteristics as the suction values increases. 

 The fluid velocity, temperature and magnitude of induced magnetic field decrease 

highly with the increase of Prandtl number. But the concentration has increasing-

decreasing behavior with the increasing values of the Prandtl number. 

 The local skin-friction coefficient increases with the increase of Soret number, 

Grashof number and modified Grashof numberbut decrease with the increase of 

suction parameter, magnetic parameter, Prandlt number and Schmidt number. 

 Nusselt number increases with the increase of suction parameter and Prandlt number 

but decreases with the increase of magnetic parameter. Whereas it remains unchanged 

with increasing Soret number, Grashof number and modified Grashof number and 

Schmidt number. 
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 Sherwood number increases only with the increase of Magnetic parameter but 

decreases with the increase of Soret number, Suction parameter, Prandlt number and 

Schmidt number. Whereas it remain unaffected with the increase of Grashof number 

and modified Grashof number.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

REFERENCES 

Agrawal, H.L., Ram, P.C. and Singh, V.(1983). “Heat and mass transfer of an oscillatory 

flow with hall current,  II.” Astrophys.Space Sci., 94, 383–393. 

Ahmed, T., Alam Md.M. (2014). “Chemically reacting ionized fluid flow through a vertical 

plate withinclined magnetic field in rotating system.” Procedia Engineering 90, 301–307 

(Earlier presented in 10th International Conference on Mechanical Engineering, ICME 2013). 

Ahmed, S. and Chamkha, A. J. (2010). “Effects of chemical reaction, heat and mass transfer 

and radiation on MHD flow along a vertical porous wall in the presence of induced magnetic 

field.” Int. Journal of Industrial Mathematics, 2, 245–261. 

Ahmed, S. and Zueco, J. (2010). “Combined heat and mass transfer by mixed convection 

MHD flow along a porous plate with chemical reaction in presence of heat source.” Appl. 

Math.and Mech., 31, 1217–1230. 

Ahmed, S., Bég, O. A.,Vedad,S.,Zeinalkhani, M. and Heidari, A. (2012). “Mathematical 

modelling of magnetohydrodynamic transient free and forced convective flow with induced 

magnetic field effects.” Int. Pure and Appl. Sci. and Tech., 11, 109–125. 

Alam, Md. M. (1995). “Steady MHD free convection and mass transfer flow with thermal 

diffusion and large suction.”  Ph. D. Thesis, Ch 7, 134. 

Alam M. S., ALi, M. and Hossain, Md. D. (2013). “Heat and Mass Transfer in MHD free 

convection flow over an inclined plate with Hall current.”Volume 2, 81–88. 

AlamM.S.,Ali M, Alim M.A., Saha A. (2014). “Steady MHD boundary free convective heat 

and mass transfer flow over an inclined porous plate with variable suction and Soret effect in 

presence of hall current.” Banglasesh J. Sci. Ind. Res. 49 (3), 155–164. 

Alam, Md. M., Islam, M. R. and Rahman, F. (2008). “Steady heat and mass transfer by mixed 

convection flow from a vertical porous plate with induced magnetic field, constant heat and 

mass fluxes.” Thammasat Int. J. Sc. Tech., 13, 1–13.   

Alam, M.S. Rahman, M. M. Ferdows, M. M., Kaino, M., Koji, Eunice, M. and Postelnicu, A. 

(2007). “Diffusion-thermo and thermal-diffusion effects on free convective heat and mass 

transfer flow in a porous medium with time dependent temperature and concentration.” Int. J. 

Appl. Engng. Res., 2(1), 81–96. 

Alfven, H. (1942). “On the existence of electromagnetic Hydromagnetic waves.” 

Mat.Astro.Fysik.Bd., 2, 295. 

Ali, F. M., Nazar, R., Arifin, N. M. and Pop, I. (2011). “MHD Mixed Convection Boundary 

Layer Flow Toward a Stagnation Point on a Vertical Surface With Induced Magnetic 

Field, Trans.” ASME Journal of Heat Transfer, 133, 1–6.          



66 
 

Asaduzzaman, Md., Islam, Md.R. and Islam, A.(2016). “Transient heat transfer flow along a 

vertical plate with induced magnetic field.” International Journal of Scientific & Engineering 

Research, 7 (11), 10–22. 

Bég, O.A., Bakier, A. Y., Prasad, V.R. Zueco, J. and Ghosh, S. K. (2009). “Non-similar, 

laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow 

with induced magnetic field effects.” Int. J. Thermal Sciences, 48, 1596–1606. 

Bestman, A.R. (1990). “The boundary-layer flow past a semi-infinite heated porous plate for 

a two-component plasma.” Astrophysics and Space Science, 173 (1),93–100. 

Caldwell, D.R. (1974). “Experimental studies on the onset of thermohaline convection.” J. 

Fluid Mech., 64, 347–367. 

Choudhary, R.C. and Sharma, B.K. (2006). “Combined heat and mass transfer by laminar 

mixed convection flow from a vertical surface with induced magnetic field.” J. Appl. Phys., 

99, 034901–10.  

Cobble, M.H. (1977). “Manetofluiddynamic flow with a pressure gradient and fluid 

injection.”  11,249-256. 

Cramer, K.R. and Pai, S.I. (1973). “Magneto fluid Dynamics for Engineers and applied 

physicists.” McGraw Hill, New York. 

Elshehawey, E.F., El Elbarbary, M.E. and Elgazery, N.S. (2003). “Effect of inclined 

magnetic field on magneto fluid flow through a porous medium between two inclined 

wavy porous plates (numerical study).” Applied Mathematics and Computation, 135 (1), 

85–103.  

Farady, M. (1832). “Electromagnetic Force Field, Particle/Field Duality.” 2, 525–1333. 

Gebhart, B. and Pera, L. (1971). “The nature of vertical convection flows resulting from the 

combined buoyancy effects of thermal and mass diffusion.” Int.J. Heat Mass Transfer, 14, 

2025. 

Georgantopolous, G. A.,Nanousis, N. D. and Goudas, C. L. (1979). “Effects of mass 

transfer on the free convection flow in the Stokes‟ problem for an infinite vertical limiting 

surface.” Astrophysics and Space Science, 66 (1), 13–21. 

Groots, S. R. T. and Mozur, P. (1962). “Non-equilibrium Thermodynamics.” North Holland, 

Amsterdam. 

Gundagani, M., Sheri, S., Paul, A. and Reddy, M.C.K. (2013). “Unsteady 

magnetohydrodynamic free convective flow past a vertical porous plate.” International 

Journal of Applied Science and Engineering, 11(3), 267–275. 



67 
 

Hossain M.M.T. and Khatun, M. (2012). “Study of Diffusion-Thermo Effect on Laminar 

Mixed Convection Flow and Heat Transfer from a Vertical Surface with Induced Magnetic 

Field.” Int. J. of Appl. Math and Mech., Vol. 8(5), 40–60. 

Hossain, M.M.T., Zaman, M.A., Rahman, F. and Hossain, M.A. (2013). “Steady MHD free 

convection heat and mass transfer flow about a vertical porous surface with thermal diffusion 

and induced magnetic field.” American Institute of Physics (AIP) Conf. Proc., 1557, 594–

603; doi: 10.1063/1.4824172;© 2013 AIP Publishing(http://dx.doi.org/10.1063/1.4824172). 

Islam, A., Islam, M.M.,Rahman, M., Ali, L.E. and Khan, Md. S. (2016). “Unsteady heat 

transfer of viscous incompressible boundary layer fluid flow through a porous plate with 

induced magnetic field.” Journal of Applied Mathematics and Physics, 4, 294–306 

(http://dx.doi.org/10.4236/jamp.2016.42037). 

Kafoussias, N. G. (1992). “MHD thermal-diffusion effects on free convective and mass 

transfer flow over an infinite vertical moving plate.” Astrophysics and Space Science, 192, 

11–19. 

Kay, J. M (1953). “Boundary layer flow alonga flat plate with uniform 

suction.” Cam.Univ. Engng.Lab., 2628. 

Khan, Md.S., Wahiduzzaman, M., Karim, I., Islam, Md.S. and Alam, Md.M. (2014). “Heat 

generation effects on unsteady mixed convection flow from a vertical porous plate with 

induced magnetic field.” (10th International Conference on Mechanical Engineering, ICME 

2013), Procedia Engineering, 90, 238–244.  

Kim, Y. J., (2004). “Heat and mess transfer in MHD micro polar flow over a vertical moving 

porous plate in a porous medium.” Transport in Porous Media, 56(1), 17–37.   

Legros, J. G., Van Hook, W. K. and Thomas, G. (1968). Chem. Phys. Lett., 2, 696. 

Mohammad, F., Masatiro, O., Abdus, S. and Mohamud, A. (2005). “Similarity solutions for 

MHD flow through vertical porous plate with suction.” Journal of Computational and 

Applied Mechanics, 6(1), 15–25. 

Nadeem, S. and Akram, S. (2010). “Influence of inclined magnetic field on peristaltic 

flow of a Williamson fluid model in an inclined symmetric or asymmetric channel.” 

Mathematics Computing Modeling, 52 (1/2),107–119. 

Nanbu, K. (1971). “Vortex flow over a flat surface with suction.”  AIAA,  J. 9 (8), 1642–

1643. 

http://dx.doi.org/10.1063/1.4824172
http://dx.doi.org/10.4236/jamp.2016.42037


68 
 

Nanousis, N. (1992). “Thermal-diffusion effects on MHD free convection and mass transfer 

past a moving infinite vertical plate in a rotating system.” Astrophysics and Space Science, 

191, 313–322. 

Opiyo, R.O., Alfred, W.M. and Jacob, K.B. (2017). “Numerical computation of steady 

buoyancy driven MHD heat and mass transfer past an inclined infinite flat plate with 

sinusoidal surface boundary conditions.” Applied Mathematical Sciences, 11(15), 711–729 

(https://doi.org/10.12988/ams.2017.7127). 

Patanker, S. V. and Spalding, D. B. (1970). “Heat and Mass Transfer in Boundary Layers.” 

2
nd

Edn.Intertext Books, London. 

Pantokratoras, A. (2007). Comment on “Combined heat and mess transfer by laminar mixed 

convection flow from a vertical surface with induced magnetic field”.Journal of Applied 

Physics, 102, 076113. 

Postelnicu, A. (2004). “Influence of magnetic field on heat and mass transfer by natural 

convection from vertical surfaces in porous media considering Soret and Dufour effects.” Int. 

J. Heat and Mass Transfer, 47, 1467–1472. 

Rani, K. J., Reddy, G. V. R., and Murthy, Ch. V. R. (2015). “Heat and mass Transfer effects 

on MHD free convection flow over an inclined plate embedded in a porous medium.” 

13(4),1998–2016. 

Raptis, A. (1986). “Flow through a porous medium in the presence of magnetic field.” Int. J. 

Energt Res., 10, 97–101. 

Raptis, A. and Kafoussias, N.G. (1982). “Magnetohydrodynamic free convection flow and 

mass transfer through porous medium bounded by an infinite vertical porous plate with 

constant heat flux.” Can. J. Phys., 60(12), 1725–1729. 

Raptis, A. and Shing A. K. (1983). “MHD Free convection flow past an accelerated vertical 

plate.International Communication in Heat and Mass Transfer.” 10 (4), 313–321. 

Reddy, V.P., Kumar, R.V.M.S.S. K., Reddy, G.V., Prasad, P.D. and Varma, S.V.K. (2015). 

“Free convection heat and mass transfer flow of chemically reactive and radiation absorption 

fluid in an aligned magnetic field.” (International Conference on Computational Heat and 

Mass Transfer-2015), Procedia Engineering, 127, 575–582. 

Reddy, B. P. and Rao, J. A. (2011). “Numerical solution of thermal diffusion effect on an 

unsteady MHD free convective mass transfer flow past a vertical porous plate with Ohmic 

dissipation.” Int. J. of Appl. Math.and Mech., 7 (8), 78–97. 

https://doi.org/10.12988/ams.2017.7127


69 
 

Rosenberg, D. U. V. (1969). “Method for numerical solutions of partial differential 

equations.” American Elsevier, New York. 

Sattar, M. A., Alam, M. S. and Rahman, M. M. (2006). “MHD free convective heat and mass 

transfer flow past an inclined surface with heat generation.” Thammasat Int. J. Sc. Tech. ll 

(4), 1–8. 

Schlichting, H. (1968). “Boundary Layer Theory.” McGraw-hill, New York. 

Singh, A. K. (1980). “Hydromagnetic boundary-layer flows with large suction.” 115(2),387–

391. 

Singh, A.K. and Dikshit, G.K. (1988). “Hydromagnetic flow past a continuously moving 

semi-infinite plate for large suction.” Astrophysics and Space Science, 148 (2), 249–256. 

Singh, N. K., Kumar, V. and Sharma, G. K. (2016). “The Effect of Inclined Magnetic Field 

on Unsteady Flow Past on Moving Vertical Plate with Variable Temperature.” IJLTEMAS, V 

(II), 34–37. 

Somers, F.V. (1956). J. Appl, mech., 23, 295. 

Soundalgekar, V. M. and Ramanamurthy, T. V. (1980). “Heat transfer flow past a continuous 

moving plate with variable temperature.” Warme-Und Stoffubertrag, 14,91–93 

Spalding D. B. (1977). “GENMIX, a general computer program for two dimensional 

parabolic phenomena.” Pergamon Press, Oxford, Uk. 

Wahiduzzaman, M., Biswas, R., Eaqub, Md. A., Khan, Md. S. and Karim, I. (2015). 

“Numerical solution of MHD convection and mass transfer flow of viscous incompressible 

fluid about an inclined plate with hall current and constant heat flux.” Journal of Applied 

Mathematics and Physics, 3, 1688–1709 (http://dx.doi.org/10.4236/jamp.2015.312195). 

  

  

http://dx.doi.org/10.4236/jamp.2015.312195

	1.pdf (p.1-12)
	Chapter-I, II, III Final 07.08.18.pdf (p.13-81)

