
STUDY OF SOLVING LINEAR EQUATIONS BY

HYBRID EVOLUTIONARY COMPUTATION

TECHNIQUES

BY

Abdur Rakib Muhammad Jalal Uddin Jamali

Roll No. 0051502

A thesis submitted for the partial fulfillment of the requirements

for the degree of

 Master of Philosophy

Department of Mathematics

Khulna University of Engineering & Technology

Khulna, Bangladesh.

October 2004

STUDY OF SOLVING LINEAR EQUATIONS
BY HYBRID EVOLUTIONARY

COMPUTATION TECHNIQUES

M. Phil Thesis

Abdur Rakib Muhammad Jalal Uddin Jamali

Department of Mathematics
Khulna University of Engineering & Technology

Khulna, Bangladesh.

October 2004

ST
U

D
Y

 O
F

SO
L

V
IN

G
 L

IN
E

A
R

 E
Q

U
A

T
IO

N
S

B
Y

 H
Y

B
R

ID
 E

V
O

L
U

T
IO

N
A

R
Y

 C
O

M
P

U
T

A
T

IO
N

 T
E

C
H

N
IQ

U
E

S

Oct.
2 004

M. Phil
Thesis

 i

Abstract

Solving a set of simultaneous linear equations is a fundamental problem that occurs in diverse

applications. For solving large sets of linear equations, iterative methods are preferred over

other methods specially when the coefficient matrix of the linear system is sparse. The rate of

convergence of iterative (Jacobi & Gauss-Seidel) methods is increased by using successive

relaxation (SR) technique. But SR technique is very sensitive to relaxation factor, . Recently,

hybridization of evolutionary computation techniques with classical Gauss-Seidel-based SR

method has successfully been used to solve large set of linear equations in which relaxation

factors are self-adapted. Under this paradigm, this research work has developed a new class of

hybrid evolutionary algorithms for solving system of linear equations. The first algorithm is

the Jacobi-Based Uniform Adaptive (JBUA) hybrid algorithm, which has been developed

within the framework of contemporary Gauss-Seidel-Based Uniform Adaptive (GSBUA)

hybrid algorithm, and classical Jacobi method. The proposed JBUA hybrid algorithm can be

implemented, inherently, in parallel processing environment efficiently whereas GSBUA

hybrid algorithm cannot be implemented in parallel processing environment efficiently. The

second algorithm is the Gauss-Seidel-Based Time-Variant Adaptive (GSBTVA) hybrid

algorithm that has been developed within the framework of contemporary GSBUA hybrid

algorithm and time-variant adaptive technique. In this algorithm two new time-variant

adaptive operators have been introduced based on some observed biological evidences. The

third algorithm is the Jacobi-Based Time-Variant Adaptive (JBTVA) hybrid algorithm that

has been developed within the framework of GSBTVA and JBUA hybrid algorithms. This

proposed JBTVA algorithm also can be implemented, inherently, in parallel processing

environment efficiently. All the proposed hybrid algorithms have been tested on some test

problems and compared with other hybrid evolutionary algorithms and classical iterative

methods. Also the validity of the rapid convergence of the proposed algorithms are proved

theoretically. The proposed hybrid algorithms outperform the contemporary GSBUA hybrid

algorithm as well as classical iterative methods in terms of convergence speed and

effectiveness.

iii

Statement of Originality

This thesis does not incorporate without acknowledgement any material previously

submitted for a degree or diploma in any University, and to the best of my knowledge

and belief, dose not contain any material previously published or written by another

person except where due reference is made in the text.

…………………………………………….

Abdur Rakib Muhammad Jalal Uddin Jamali

iv

Dedication

To my respectable parents whose constant
guidance and inspirations helped me to choose the
correct path of life.

&

To my beloved wife and affectionate son who
directly and indirectly inspire me for doing
research works.

v

Acknowledgements

I wish to express my profound gratitude to my supervisor Dr. Md. Bazlar Rahman, Professor,

Department of Mathematics, Khulna University of Engineering & Technology for his

constant guidance and encouragement during my research work. I also wish to express my

sincere gratitude to my co-supervisor, Dr. M. M. A. Hashem, Professor, Department of

Computer Science and Engineering, Khulna University of Engineering & Technology for his

valuable suggestions, criticism and guidance throughout all phases of the research work. Dr.

Hashem has a lot of research experience in this area. He has been a great source of ideas,

knowledge and feedback for me.

I heartily express my gratefulness to Mohammad Arif Hossain, Assistant Professor,

Department of Mathematics, Munshi Tauhiduzzaman, Assistant Professor, Department of

Humanities and Md. Mahfuz Hasan Milon, Ex-Lecturer, Department of Computer Science

and Engineering, Khulna University of Engineering & Technology, for their generous

assistance and valuable suggestions throughout the entire period of research work. I would

like to thank Md. Akkas Uddin Pathan, Assistant Librarian, Md. Nurul Huda Assistant

Librarian and Miss Dilu Ara Assistant Programmer, Computer Center, for their timely helps

during my research period. I am also thankful to all members of the Department of

Mathematics for their assistance during my research work.

I wish to convey my thanks to the contemporary great people of evolutionary computation

field like, Dr. Xin Yao of University of Birmingham (http://www.cs.bham.ac.uk/~xin/), UK,

Dr. Jun He, Dr. Jiyou Xu Northern Jiaotong University (jhe1998@263.net), Beijing, China,

Dr. David B. Fogel of Natural Selection (http://www.natural.selection.com/people/dbf.html)

Inc. USA, Prof. H.-P. Schwefel of University of Dortmund, Germany (http://ls11-

www.informatik.uni-dortmund.de/people/schwefel/), Prof. Z. Michalewicz (http//www.

coe.uncc.edu /~zbyszek/) of University of North Carolina-Charlotte, USA for providing their

recent published papers in their respective Internet Homepages from which I was able to

expedite my research work.

I am obliged to express my heartiest thanks to my wife, Mrs. Nasima Parveen, for her

constant inspiration and encouragement. Finally, I would like to express my sincere thanks to

my son, Mohammad Tahmid Kawsar, for his sacrifice to get affectionate and love what they

ought to deserve, during my research period.

vi

Contents

Pages

Abstract. i
Approval. ii
Statement of Originality. iii
Dedication.. iv
Acknowledgement. v
Contents vi
List of Figures. viii
List of Tables. ix
List of Symbols x

Chapter
1 Introduction

1.1 Background . .
1.2 Statement of the Problem.
1.3 Goals of the Thesis.
1.4 Contributions
1.5 Structure of the Thesis

1
1
5
5
7
8

2 An Overview of Classical Numerical Methods
2.1 Introduction
2.2 Problem
2.3 Consistency
2.4 Direct Methods.

2.4.1 Gauss Elimination
2.4.2 Crout Method.

2.5 Classical Iteration Methods.
2.5.1 Iterative Techniques
2.5.2 Jacobi Method.
2.5.3 Gauss-Seidel Method.
2.5.4 Successive Relaxation (SR) Technique.

2.6 Summary.

09
09
09
10
11
12
12
14
15
16
17
18
19

3 An Overview of Evolutionary Computation
3.1 Introduction.
3.2 Variants of Evolutionary Algorithms.
3.3 Basic Mechanisms of Evolutionary Algorithms.

3.3.1 Time-Variant Mutation.
3.4 Modern Trends: Hybrid Algorithms.
3.5 Properties of Evolutionary Algorithms.
3.6 Merits and Demerits of Evolutionary Algorithms.

3.5.1 Merits.
3.5.2 Demerits.

3.7 Summary.

20
20
21
23
24
25
26
28
28
29
30

4 A Jacobi Based Uniform Adaptive Hybrid Algorithm
4.1 Introduction.
4.2 Proposed Method .

4.2.1 The Basic Equations of Jacobi Based SR Method.
4.4.2 The Algorithm.

4.3 Performance of the Proposed algorithm
4.4 Parallel Processing
4.5 Summary.

31
31
32
32
33
35
40
41

vii

5 A Gauss-Seidel Based Time Variant Adaptive Hybrid Algorithm
5.1 Introduction.
5.2 Development of Time-Variant Adaptive Parameters.

5.2.1 Basic Notion
5.2.2 Formulas
5.2.3. Properties.

5.3 Proposed Method
5.3.1 The Basic Equations of Gauss-Seidel Based SR Method
5.3.2 The Algorithm. .

5.4 Performance of the Proposed Algorithm.
5.5 Summary.

42
42
43
43
43
44
46
46
47
49
54

6 A Jacobi Based Time Variant Adaptive Hybrid Algorithm
6.1 Introduction.
6.2 Proposed Method

7.2.1 The Algorithm
6.3 Performance of the Proposed Algorithm
6.4 Parallel Processing
6.5 Summary.

55
55
55
56
56
59
59

7 Validity of the Algorithms
7.1 Introduction.
7.2 Theorems.

7.2.1 Convergence Theorem.
7.2.2 Adaptation Theorem.

7.3 Summary.

60
60
60
60
62
66

8 Discussions, Conclusions and Recommendations
8.1 Introduction
8.2 Discussions
8.3 Concluding Remarks
8.4 Recommendations for Future Research

67
67
67
69
71

Appendices 72
A Errors

A.1 Errors in Numerical Computation.
72
72

B Definitions And Theorems
B.1 Some Definition of Matrices.
B.2 Some Definitions Related to Iterative Methods.
B.3 Some Theorems Related to Iterative Methods .

75
75
79
82

C Algorithms
C.1 Some Algorithms of Classical Iterative methods.

C.1.1 Algorithm of Jacobi Method.
C.1.2 Algorithm of Gauss-Seidel Method.
C.1.3 Algorithm of Jacobi based SR Method
C.1.4 Algorithm of Gauss-Seidel based SR Method.

C.2 Some Evolutionary Algorithms .
C.2.1 A Pseudo-code Structure of Evolutionary Algorithms
C.2.2 A Pseudo-code Structure of Hybrid Evolutionary Algorithms

84
84
84
85
85
86
87
87
88

Publications 89

Reference 90

viii

List of Figures

Figures Pages

1.1 An abstract view of the evolutionary computation search cycle 3

2.1 Illustration of (a) convergence and (b) divergence of iterative methods. Notices

that the same functions (line u and v in the figure) are plotted in both cases 15

4.1 Curve (a) represents proposed JBUA hybrid generation history, curve (b)

represents classical Jacobi-SR iteration history and curve (c) represents classical

Jacobi iteration history . 39

5.1 Rate of change of the variation of Tw for various . 45

5.2 Rate of change of the variation of Tw for various . 45

5.3 Rate of change of the variation of px for  =50 and Ex = 0.125. 45

5.4 Rate of change of the variation of py for  =50; Ey=0.03125. 45

5.5 Rate of change of the variation of px for  =12 and Ex=0.0315. 46

5.6 Rate of change of the variation of py for  =12 and Ey=0.03145. 46

5.7 Curve (A) represents the evolution history of proposed GSBTVA (used Lambda
based TVA parameter) hybrid algorithm, curve (B) represents the evolution
history of proposed GSBTVA (used Gamma based TVA parameter) hybrid
algorithm and curve (C) represents the evolution history of GSBUA hybrid
algorithm .

51

5.8 Self-adaptation of 1 = 0.5 in the UA-based Algorithm. 53

5.9 Self-adaptation of 2 = 1.5 in the UA-based Algorithm. 53

5.10 Self-adaptation of 1 = 0.5 in the TVA-based Algorithm. 53

5.11 Self-adaptation of 2 =1.5 in the TVA-based Algorithm. 53

5.12 A graphical view of self-adaptation process of relaxation factors 1 = 0.5 and

2= 1.5 in the GSBTVA- Algorithm. 53

6.1 Curve (A) represents the evolution history of proposed JBTVA hybrid algorithm
and curve (B) represents the evolution history of JBUA hybrid algorithm.

57

7.1 Decrease both spectral radii of x, y when x, y < *. 63

7.2 Decrease both spectral radii of x, y when x, y > *. 63

7.3 Decrease spectral radius of x and y when x < * < y 64

7.4 Decrease spectral radius of x and y when x > * >y 64

C.1 A pseudo-code structure of evolutionary algorithms . 86

C.2 A pseudo-code structure of hybrid evolutionary algorithms 87

ix

List of Tables

Tables Pages

3.1 Main characteristics of evolutionary algorithms .
22

4.1 Comparison of Jacobi-based SR method and proposed JBUA hybrid
algorithm 37

4.2 Comparison of Jacobi-based SR method and proposed JBUA hybrid
algorithm . 37

4.3 The dynamical change of relaxation factors, ω, for corresponding
individuals at different generations for proposed JBUA hybrid algorithm . . 38

4.4 Comparison between existing GSBUA and proposed JUUA hybrid
algorithms for several randomly generated test problems. 40

5.1 Comparison of existing GSBUA and proposed GSBTVA hybrid algorithms
for several randomly generated test problems. 52

6.1 Comparison between JBUA and proposed JBTVA hybrid algorithms for
several randomly generated test problems. 58

1

CHAPTER 1

Introduction

1.1 Background

Systems of linear equations are associated with many problems in engineering and

science, as well as with applications of mathematics to the social sciences and the

quantitative study of business, statistics and economic problems. Solving a set of

simultaneous linear equations is probably the most important topic in numerical

methods. Linear equations arise frequently in physical problems, since the simplest

models for the physical world are linear. Even the most complicated problems are

frequently approximated by a linear model as a first step. Further, the solution of

system of nonlinear equations is achieved by an iterative procedure involving the

solution of a series of linear equations, each of them approximating the nonlinear

equations. Similarly, the solution of ordinary differential equations, partial differential

equations and integral equations using finite difference method lead to system of

linear or nonlinear equations. Linear equations also arise frequently in numerical

analysis. For example, the method of undetermined coefficients, which is useful for

deriving formulas for numerical differentiation, integration or solution of differential

equations, generally lead to a system of linear equations. After invention of

computers, one of the main issues is how one can increase the speed to solve linear

equations. For example short-term weather forecasting, image processing, simulation

to predict aerodynamics performance which of these application involve the solution

of very large sets of simultaneous equations by numerical methods and solution time

is an important factor for practical application of results. Because of the great

importance of this topic, a large amount of literatures as well as software, using

classical methods, are available for the solution of system of linear equations [Engeln-

Müllges and Uhlig (1996), Press et al. (1988), Antia (1991), Dongrarra et al. (1997),

Gregory (1969), Forsythe and Moler (1967) and Faddeev and Faddeeva, (1963)].

2

Consider a system of linear algebraic equations

,
1




n

j
ijij bxa  m,,,i 21 (1.1.1)

If the number of variable n is equal to the number of equation m and if the coefficient

matrix][ijaA is nonsingular, then a unique solution may be expected [Antia

(1991)]. For solving linear equations, there are two classes of classical numerical

methods – direct methods and iterative methods. The well known direct methods are

Gaussian elimination method, Gauss-Jordon method, LU Decomposition methods

(such as Crout method) etc [Engeln-Müllges and Uhlig (1996), Cheney and Kincaid

(1999), Burder and Faires (1997), Gerald and Wheatley (1994)]. In these direct

methods, if the calculations are done exactly, the solution will be exact. However, for

large number of linear equations, the inevitable roundoff error (by using computer)

may completely ruin the results. Apart roundoff error, with capable of parallel

processing, the situation may change in favor of iterative methods. Hence for set of

linear equations, specially, for large sparse and structured coefficient (matrices)

equations [Pissanetzky (1984) and Tewarson (1973)], iterative methods are

preferable. As they are unaffected by roundoff error and truncation error to a large

extent [Antia (1991), Wilkinson (1963), Gerald and Wheatley (1994), Varga (1962)

and Young (1971)]. The well-known classical numerical iterative methods are Jacobi

method and Gauss-Seidel method. The rate of convergence, as very slow for both

cases, can be accelerated by using Successive Relaxation (SR) technique [Gerald and

Wheatley (1994), Varga (1962), Engeln-Müllges and Uhlig (1996)]. But the speed of

convergence depends on relaxation factor,  with a necessary condition for the

convergence is 20  ω [Young (1954), Hagaman and Young (1981), Stoer and

Bulirsch (1991), Engeln-Müllges and Uhlig (1996) and Gourdin and Boumahrat

(1996)]. However, it is often very difficult to estimate the optimal relaxation factor,

which is a key parameter of SR technique [Young and Frank (1963), Varga (1962),

Engeln-Müllges and Uhlig (1996), Gourdin and Boumahrat (1996)]. Also SR

technique is very sensitive to the relaxation factor [Carre (1961), Krishnamurthy

(1989)].

On the other hand the Evolutionary Computation (EC) techniques are stochastic

algorithms whose search methods model some natural phenomena: genetic

3

inheritance and Darwinian strife for survival [Schoenauer and Michaleewicz (1997),

Bäck and Schwefel (1993) and Bäck et al. (1997)]. Nearly three decades of research

and applications have clearly demonstrated that the simulated search process of

natural evolution can yield very robust, direct computer algorithms, although these

limitations are crude simplification of biological reality. The resulting evolutionary

computation techniques are based on the collective learning process within a

population of individuals, each of which represents a search point in the space of

potential solutions to a given problem. The population is arbitrarily initialized, and it

evolves towards better and better region of the search space by means of randomized

process of selection (which is deterministic in some algorithms), mutation, and

recombination (which is completely omitted in some algorithmic realizations). The

environment (given aim of the search) delivers a quality information (fitness value) of

the search points, and the selection process favors those individuals of higher fitness

to reproduce more often than worse individuals. The recombination mechanism

allows the mixing of parental information while passing it to their descendants, and

mutation introduces innovation into the population [Bäck and Schwefel (1993),

Schoenauer and Michaleewicz (1997) and Bäck et al. (1997), Hashem (1999)].

According to this elucidation, the simulated evolutionary search cycle is abstractly

depicted in Fig. 1.1 [Hashem (1999)].

Evaluate Population
Fitness Value

Check for
Termination

Criteria

Selected New
Population

Apply
Evolutionary
Operation

Generate Initial Population

Fitness
Values

New
Population

Selected
Population

Best Solution

Figure 1.1: An abstract view of the Evolutionary Computation search cycle.

4

There is a general “agreement” that EC is “made up” of four main branches: (i)

Evolutionary Programming (EP), [Fogel et al. (1966), Bäck and Schwefel (1993)], (ii)

Evolution Strategies (ES), [Rechenberg (1994), Bäck and Schwefel (1993) and

Hashem (1999)], (iii) Genetic Algorithms (GAs [Holland (1962), Bäck and Schwefel

(1993] and (iv) Genetic Programming (GP), [Koza (1994)]. There has been a huge

increase in number of papers and successful applications of evolutionary computation

techniques in a wide range of areas in recent years. Almost all of these works can be

classified as evolutionary optimization (either numerical or combinatorial) or

evolutionary learning [He et al. (2000), Salomon (1998)]. But Fogel and Atmar

(1990) used linear equation solving as test problems for comparing recombination,

inversion operations and Gaussian mutation in an evolutionary algorithm. However,

they emphasized their study not on equation solving, but rather on comparing the

effectiveness of recombination relative to mutation. No comparison with classical

equation-solving methods was given. Recently a very different and novel application

of evolutionary computation was used to solve system of linear equations and partial

differential equations, which is presented by He et al. (2000). In that paper, a hybrid

evolutionary algorithm (Gauss-Seidel Based Uniform Adaptive hybrid algorithm) is

developed by integrating classical Gauss-Seidel based SR technique with evolutionary

computation techniques to solve equations in which  is self-adapted by using

Uniform Adaptation (UA) technique. The idea of self-adaptation was also applied in

many different fields [Beyer and Deb (2001), Salomon and Hemmen (1996), Bäck

(1997), Bäck (1992), Smith and Fogary (1996)].

Obvious biological evidence is that a rapid change is observed at early stages of life

and a slow change is observed at later stages of life in all kinds of animals/plants.

These changes more often occur dynamically depending on the situation exposed to

them. By mimicking this emergent natural evidence, a special dynamic Time-Variant

Mutation (TVM) operator is proposed by Hashem (1999), Michalewicz (1996) and

Bäck et al. (1997), Bäck and Schwefel (1993) in global optimization problem. But

Time-variant adaptive (TVA) parameter for solving linear equations has not been

used yet.

5

1.2 Statement of The Problem

Though there are many numerical methods for solving linear equations (as

Eqn.(1.1.1)) but they have some limitations. Some of those limitations are described,

in brief, below:

(a) Limitations of direct methods: For small and dense coefficients matrix of

system of linear equations direct methods are efficient and easy to implement. But

for large set of linear equations, especially for sparse and structured coefficient

(matrix) equations, solutions using direct method become arduous and for the

inevitable roundoff error, solutions may become completely useless [Young.

(1971), Antia (1991), Wilkinson (1963), Gerald and Wheatley (1994), Chapra and

Canale (1990)]. Moreover, direct methods cannot be implemented in parallel

processing environment efficiently.

(b) Limitations of iterative methods: The well known iterative methods are Gauss-

Seidel method and Jacobi method, but speed of convergence of both methods are

slow. By using SR technique, the speeds of convergence of both the methods are

accelerated. But SR technique needs to pre-estimate the optimal relaxation factor.

Also SR technique is very much sensitive to the relaxation factor [Carre (1961),

Krishnamurthy.and Sen (1989), Young and Frank (1963) and Young (1971)].

(c) Limitations of Gauss-Seidel Based Uniform Adaptive hybrid algorithm:

Though in Gauss-Seidel Based Uniform Adaptive (GSBUA) [He et. al. (2000)]

hybrid algorithm, we need not pre-estimate the optimal relaxation factor but this

algorithm cannot be implemented, inherently, in parallel processing environment

efficiently. Also in this algorithm, as uniform adaptation technique is used for

self-adaptation of relaxation factor, it has a tendency of oscillation. Consequently

the rate of convergence becomes relatively slow [Jamali et. al. (Dec. 2003), Jamali

et. al. (2003)].

1.3 Goals of The Thesis

After the invention of computer, one of the main issues is how to decrease the time to

solve problems. If appropriate algorithms can be used in parallel processing

6

environment, then it can decrease a significant amount of time. Though each

evolutionary algorithm can be implemented in parallel processing environment, but

Gauss-Seidel based algorithm, inherently, cannot be implemented in parallel

processing environment. On the other hand, Jacobi based algorithm, inherently, can

be implemented in parallel processing environment. For example, if 2n processors are

available, then Jacobi algorithm reduces the time, for each iteration, to nlog2 time

units. This is a significant speedup over the sequential algorithm, as Gauss-Seidel

algorithm, which requires 2n time units per iteration [Gerald and Wheatley (1994)].

Apart from this, Jacobi algorithm is more robust and stable [Engeln-Müllges and

Uhlig (1996)]. So, if a hybrid evolutionary algorithm will be developed by integrating

Jacobi based SR technique with evolutionary computation techniques within

framework of GSBUA hybrid evolutionary algorithm, it may be overcome the

limitation of recently developed GSBUA hybrid algorithm.

Recently developed GSBUA hybrid algorithm [He et. al. (2000)], relaxation factors

are adapted uniformly by using uniform random number as adaptive sample space.

For the cause of uniform adaptation, relaxation factors are not finely adapted and

there is a tendency of relaxation factor to oscillate in any stages and there is no local

fine-tuning in later stages. However, obvious biological evidence is that a rapid

change is observed at early stages of life and a slow change is observed at later stages

of life in all kinds of animals/plants. These changes more often occurr dynamically

depending on the situation exposed to them [Hashem (1999)]. By mimicking this

emergent natural evidence, a time variant adaptive (TVA) parameter has been

developed. Also if a time-variant adaptive hybrid evolutionary algorithm based on

classical Gauss-Seidel algorithm, within framework of GSBUA hybrid evolutionary

algorithm will be developed then the limitation of GSBUA algorithm of tuning of

relaxation factors in later stages may be overcome. Consequently the rate of

convergence may be increased.

Also by integrating Jacobi based SR technique with evolutionary computation

techniques, a time-variant adaptive hybrid evolutionary algorithm within the

framework of JBUA hybrid evolutionary algorithm, will be developed, then the

limitation regarding tuning of relaxation factor in later stages may be overcome. The

speed of convergence may also be increased.

7

1.4 Contributions

This thesis work makes the following contributions:

1. This thesis considerably extends the power of hybrid evolutionary computation by

introducing Jacobi Based Uniform Adaptive (JBUA), Gauss-Seidel Based Time-

Variant Adaptive (GSBTVA) and Jacobi Based Time-Variant Adaptive (JBTVA)

hybrid evolutionary algorithms in the numerical area.

2. This thesis also extends the method of solving system of linear equations.

3. The proposed JBUA algorithm outperforms classical Jacobi based SR method and

Gauss-Seidel based SR method. Also JBUA algorithm is parallel to GSBUA

algorithm in sequential processing environment. And this algorithm outperforms

the GSBUA algorithm in parallel processing environment.

4. The proposed GSBTVA algorithm overcomes the disadvantages of uniform

adaptation technique of GSBUA algorithm. This hybrid algorithm uses two new

Time-Variant Adaptive (TVA) parameters. The performance of GSBTVA hybrid

algorithm is much better than that of GSBUA hybrid algorithm.

5. By introducing TVA parameter in JBUA algorithm instead of Uniform Adaptive

(UA) parameter, a JBTVA hybrid algorithm is developed. The performance of

JBTVA hybrid algorithm is much better than that of JBUA hybrid algorithm.

1.5 Structure of The Thesis

After the introduction which is in this Chapter, the remaining thesis is organized as

follows:

Chapter 2 discusses the overview of classical methods for solving systems of

linear equations and formulations of the systems of linear equations in matrix form.

Also this chapter overviews the conditions of existence of solutions of a system. Some

well-known classical methods for solving linear equations are also discussed in this

chapter.

Chapter 3 discusses an overview of the basic constituents and commitments,

comparisons, properties, and merits and demerits of major evolutionary algorithms in

8

terms of their canonical forms. This chapter also overviews the hybridization of

classical numerical method with evolutionary computation techniques for solving

linear equations.

Chapter 4 discusses and presents the development of a Jacobi Based Uniform

Adaptive (JBUA) hybrid evolutionary algorithm within the framework of

contemporary Gauss-Seidel Based Uniform Adaptive (GSUA) hybrid evolutionary

algorithm. This proposed new algorithm has been tested and then the performance of

the algorithm is compared with classical iterative methods as well as GSBUA hybrid

evolutionary algorithm by some numerical experiments.

Chapter 5 discusses the weakness of uniform adaptation techniques, discusses

the formulation of a Time-Variant adaptive (TVA) parameter and presents the

development of Gauss-Seidel Based Time-Variant Adaptive (GSBTVA) hybrid

evolutionary algorithm within the framework of GSBUA hybrid evolutionary

algorithm. This newly proposed algorithm has been tested and then the performance

of the algorithm is compared with classical iterative methods as well as GSBUA

hybrid evolutionary algorithm by some numerical experiments.

Chapter 6 discusses and presents the development of Jacobi Based Time-

Variant adaptive (JBTVA) hybrid evolutionary algorithm within the framework of

JBUA hybrid evolutionary algorithm. This newly proposed algorithm has been tested

and then the performance of the algorithm is compared with JBUA hybrid

evolutionary algorithm by some numerical experiments.

Chapter 7 discusses the convergence theorems and the adaptation theorem of

hybrid evolutionary algorithms and then proves the theorems.

Chapter 8 contains the detail discussions, concluding remarks and

recommendations for possible future extensions of the present works.

Appendices overview the numerical errors coming from computer implements

of the algorithms. Also some related definitions and theorems are given in appendix.

Moreover some algorithms of classical methods and pseudo-code of evolutionary

computation techniques are given in the appendix.

9

CHAPTER 2

An Overview of Classical Numerical

Methods

2.1 Introduction

The importance of solving linear equations can be summarized in a single statement:

solving linear equations pervades and enriches almost all areas in numerical

computation. Numerous classical methods are available for the computer solution of

system of linear equations. Yet this field is constantly expanding as more and more

new concepts and algorithms are developed almost every day. The reasons for such a

rapid growth in this area are the advent of very high-speed large-memory computers

and the non-availability of a best suited computational method in solving system of

linear equations for all types of a given problem. Since linear equations can be

expressed as matrix equations, these constitute an important aspect of matrix algebra.

This chapter overviews the elementary concept of linear equations in matrix algebra

and the classical numerical methods of solving linear equations.

2.2 Problem

Consider the problem (see Eqn. 1.1.1) of finding values for n unknowns quantities

,jx n,,j 21 , so that m given linear equations

1n1n212111 bxaxaxa  

22222121 bxaxaxa nn  

……………………………………… (2.2.1)

mnmnmm bxaxaxa  2211

10

are simultaneously satisfied. In Eqn. (2.2.1), the coefficients ija and the right

hand sides constant component ib are given numbers for mi ,,3,2,1  and

nj ,,3,2,1  . Written in matrix notation [Antia (1991)], Eqn.. (2.2.1) becomes

bAx  (2.2.2)

for nx and mb ,

where





















mnmm

n

n

ik

aaa

aaa

aaa

a









21

22221

11211

)(A ,





















nx

x

x


2

1

x and





















mb

b

b


2

1

b

Note that the first index i of ika indicates the row in which the element ika occurs in

A , while the second index k of ika denotes the column in which ika occurs in A. The

matrix A is called coefficient matrix of order nm , where m is indicated number of

rows and n is indicated number of column of the matrix A and vector b is called right

hand constant vector of order m.

A vector x with components ,,,1, njx j  that solves Eqn. (2.2.2) is called a

solution vector of the linear systems.

If the number of unknowns are equal to the number of equations i.e. m = n then Eqn.

(2.2.1) i.e. Eqn. (2.2.2) becomes

bAx  (2.2.3)

where, nx and nb , and nn A

2.3 Consistency

When the system (2.2.1) has a solution, it is said to be consistent; otherwise, the

system is said to be inconsistent.

Now for the system of Eqn. (2.2.1) the augmented matrix is given by

11





















mmnmm

n

n

b

b

b

aaa

aaa

aaa











2

1

21

22221

11211

][bA (2.3.1)

So in matrix notation, if rank of the coefficient matrix and that of augmented matrix

are identical then the system is said be consistent; otherwise, the system is said to be

inconsistent [Ayres (1997), Krishnamurthy and Sen (1989)]. Thus

(a) A system bAx  of m linear equations in n unknowns is consistent if and only if

the coefficient matrix and the augmented matrix of the system have the same rank

[Krishnamurthy and Sen (1989)].

(b) In a consistent system of Eqn. (2.2.2) if rank, r, is less then number of unknowns,

n, i.e. r < n, the system has many solutions and n-r of unknown may be chosen

arbitrarily [Antia (1991)].

(c) If the right hand side constant vector, b, is a zero vector then the system of Eqn.

(2.2.2) is called homogeneous and then system is always consistent.

(d) If the right hand side constant vector, b, is not a zero vector i.e. 0b  , then the

system of Eqn. (2.2.2) is called non-homogeneous.

(e) A system of n non-homogeneous equations in n unknowns (i.e. Eqn. (2.2.3)) has

a unique solution provided the rank of its coefficient matrix A is n, that is,

determinant of A not equal to zero i.e. |A| 0 [Ayres (1997), Kreyszig (1993),

Lang (1987), and Gantmacher (1990)]. Some theorem related to the classical

methods are discussed in appendices.

2.4 Direct Methods

The term direct method indicates a method that solves a set of equations by

techniques in which it need not guess an approximate solution. This method involves

elimination of a term containing one of the unknowns in all but one equation. One

such step reduces the order of equations by one. Repeated elimination leads finally to

one equation with one unknown [Balagurusamy (2004)]. There are many direct

methods to solve system of linear equations such as Gauss elimination method,

Gauss-Jordon method, Crout method, Doolittle’s method etc [Gerald and Wheatley

12

(1994), Jain (1985). Two well-known classical direct methods named Gauss

Elimination and Crout LU decomposition methods are described below:

2.4.1 Gauss Elimination Method

A simple and most well known direct method of solving linear equations (Small and

dense coefficient matrix) is Gauss elimination method. For small coefficient matrix,

this method is frequently used. This method process a systematic strategy for

deducing the system of equations to the upper triangular form using the forward

elimination approach and then for a obtaining values of unknowns using the back

substitution process. The strategy, therefore, comprised two phases:

1. Forward elimination phase: This phase is concerned with the manipulation of

equations in order to eliminate some unknowns from the equations and produce an

upper triangular system. By the following way the coefficient matrix of Eqn.

(2.2.3) is reduced to triangular matrix. The relation for obtaining the coefficient of

the kth derived system has the general form:

)1(
)1(

)1(
)1()(




  k

kjk
kk

k
ikk

ij
k

ij a
a

a
aa (2.4.1)

where nki to1 ; nkj to1 ; and

njniaa ijij to1,to1for)0(

The kth equation, which is multiplied by the factor kkik aa , is called the pivot

equation and kka is called pivot element. The process of dividing the kth equation

by kkik aa is referred to as normalization [Balagurusamy (2004)].

2. Back substitution process: This phase is concerned with the actual solution of the

equations and uses the back substitution process on the reduced upper triangular

system. After reducing the system of Eqn. (2.2.3), by the following way the

relation for obtaining the kth unknown, kx , has the general form:









 






n

kj

k
kj

k
kk

kk

k ab
a

x
1

)1()1(
)1(

1
(2.4.2)

where 11 tonk  , and

)1(

)1(






n

nn

n
n

n
a

b
x (2.4.3)

13

2.4.2 Crout Method

Although Gaussian elimination is the best known of the direct LU decomposition

methods, Crout (or Doolittle) method is widely used. In direct method, Crout method

is popular in programs because the storage space may be economized. There is no

need to store the zeros in either L or U, and the ones on the diagonal of U can also be

omitted. The LU decomposition is produced by Crout reduction method [Gerald and

Wheatley (1994)] as follow:

,,,2,1,,
1

1

niikulal jk

k

j
ijikik  





(2.4.4)

.,,2,1,,
1 1

1

nkkiula
l

u
i

j
jkijik

ii
ik 








 




(2.4.5)

(For 1=k , the role for l reduces to 11 ii al  for n,,,i 21 . And for 1i , the role for

u reduces to
11

1
1 l

a
u k

k  for nk ,3,2 ).

Where coefficient matrix][ikaA from Eqn. (2.2.3), Lower triangular matrix

][iklL and Upper triangular matrix][ikuU .

Then the matrix A can be transformed by the above equations and becomes



























nnnnn

nnnn

n

aaa

aa

aaa

aaa

aaaa

1,1

,1,1

333231

232221

1131211





































nnnn

nn

n

n

lll

u

lll

uull

uuul











21

)1(

333231

2232221

1131211

(2.4.6)

Because the L and U matrices are condensed into one array and store their elements in

the space A, this method is often called a compact scheme.

Then the solution of the set of the Eqn. (2.2.3) is readily obtained with the L and U

matrices by the following formulas:

The general equation for the reduction of b



























niblb
l

b

l

b
b

i

j
jkiji

ii
i ,,3,2,

1 1

1

11

1
1



(2.4.7)

And the equations for the back-substitution are

14














1,,2,1,

,

1

nnkxubx

bx
n

kj
jkjkk

nn

(2.4.8)

The direct methods are efficient and effective for small number of unknowns. But

direct methods are not suitable for solving very large set of linear equations. Since

the order of operation of direct methods are O(3n) (only consider multiplication and

divisions) [Gerald and Wheatley (1994)] so it may produce a significant amount of

round off error in calculation. Direct methods also inefficient for large sparse and

structured matrices.

2.5 Classical Iterative Methods

As opposed to the direct methods of solving a set of linear equations, iterative

methods are discussed now. Direct methods for solving linear systems, with their

large number of operations proportional to 3n [Gerald and Wheatley (1994)], have a

tendency to accumulate roundoff errors so that for a not well-conditioned coefficient

matrix A, the solution can become entirely useless. On the other hand, iterative

methods are unaffected by roundoff error to a large extent, because each approximate

solution with its inherent computational error can easily be improved upon in the

following iteration steps. Iterative methods typically require around 2n operations

[Gerald and Wheatley (1994)] for each iteration step. But unfortunately, they do not

converge for all solvable systems [Chapra and Canale (1990)]. Fig.2.1 illustrates the

convergence and divergence of iterative methods applied to the same functions (line u

and v in the figure). Thus the order in which the equations are implemented (as

depicted by the direction of the first arrow from the origin in the figure) dictates

whether the computation converges or diverges [Chapra and Canale (1990)]. In

certain cases, these methods are preferred over the direct methods – when the

coefficient matrices are sparse (has many zeros). Then they may be more rapid. They

may be more economical in memory requirements of a computer. Apart from this,

because of round off error, direct methods sometimes prove inadequate for large

systems. Iterative methods may sometimes be used to reduce round off error in the

solutions computed by direct methods, as discussed earlier.

15

2.5.1 Iterative Techniques

An iterative technique to solve the linear system bAx  starts with an initial

approximation)0(x to the solution x and generate a sequence of vectors 
0

)(}{ k
kx that

converge to x. Iterative technique involves a process that converts the system bAx 

into an equivalent system of the form

VHxx  (2.5.1)

For some fixed matrix H, called iteration matrix, and vector V [Jain et al. (1985),

Chapra and Canale (1990), Mathews (2001)]. After the initial vector)0(x is selected,

the sequence of approximate solution vectors is generated by computing

VHxx  )1()(kk , for each ,,k 21= (2.5.2)

An iteration matrix H can be viewed as a correction on the last computed iteration

[Chapra and Canale (1990)]

)()̀()̀1(kkk zxx  (2.5.3)

where)(kz is called the correction vector or residual vector.

Figure2.1: Illustration of (a) convergence and (b) divergence of iterative methods. Notices that
the same functions (line u and v in the figure) are plotted in both cases.

x2 x2

x1

x1

(a) (b)

v

u

v

u

16

Subtracting Eqn.(2.5.1) from Eqn. (2.5.2) and if the error is defined as

xxε )()(kk , (2.5.4)

then

,2,1,0,)()1( kkk  H (2.5.5)

from which follows

,2,1,0,)0()()1( kkk  H (2.5.6)

There are mainly two basic iterative methods – Jacobi method and Gauss-Seidel

method. The rate of convergence of both methods is relatively slow. The rate of

convergence may be accelerated by using Successive Relaxation (SR) technique

[Gerald and Wheatley (1994), Varga (1962), Engeln-Müllges and Uhlig (1996)]. The

two well-known iterative methods are discussed bellow. SR technique also discussed

bellow.

2.5.2 Jacobi Method

Assume that a linear system given in the form Eqn. (2.2.3) is

bAx  with 0|| A

Assume without loss of generality that none of the diagonal entries is of zero;

otherwise interchange it rows. Then

bxLUD )(, where)(LUDA 

or xLUbDx)(

or xLUDbDx)(11  

or jj VxHx  (2.5.7)

where)(1 ULDH  
j , called Jacobi iteration matrix, and bDV 1j [Engeln-

Müllges and Uhlig (1996), Jain et al. (1985), Burder and Faires (1997) Cheney and

Kincaid (1999)].

By solving the ith equation of Eqn.(2.2.3) for ix , then an equivalent form for the

system is [Antia (1991), Balagurusamy (2004)]

ni
a

b
x

a

a
x

ii

i
n

ik
k

k
ii

ik
i ,,1,

1

 



(2.5.8)

And construct the sequence }{ (k)x for an initial vector (0)x by setting

17

 






t)()(
2

)(
1

)(

)()1(

,,,

with
k

n
kkk

j
k

j
k

xxx x

VxHx
for ,2,1,0k . (2.5.9)

Expressed in component-wise, this Jacobi iteration becomes

,,,1,
1

)()1(nix
a

a

a

b
x

n

ij
j

k
j

ii

ij

ii

ik
i  




 and ,,,k 210 (2.5.10)

The iteration matrix jH can be viewed as a correction on the last computed iteration

as Eqn. (2.5.3) i.e.

)()̀()̀1(kkk zxx 

where

)̀()(k
jj

k)xH(IVz  (2.5.11)

Jacobi method is also known as the method of simultaneous displacement method

[Antia (1991), Balagurusamy (2004)].The algorithm of this method is given in

Appendix C.

2.5.3 Gauss-Seidel Method

The Gauss-Seidel method differs from the Jecobi method slightly. The difference

between the Jacobi and Gauss-Seidel methods is that in the later, as each component

of)(kx is computed, and used it immediately in the iteration [Engeln-Müllges and

Uhlig (1996), Jain et al. (1985), Burder and Faires (1997), Cheney and Kincaid

(1999)]. Assume that a linear system given in the form Eqn. (2.2.3) is

bAx  with 0|| A

Assume without loss of generality that none of the diagonal entries of is zero;

otherwise interchange it rows. Since in Gauss-Seidel method used on the right hand

side all the available values from the present iteration. So

bxLUD )(, where)(LUDA 

or bUxxLD )(

or bLDUxLDx 11)()( 

or gg VxHx  (2.5.12)

where bDLV
1

)(


g and UDLH
1

)(


g , called Gauss-Seidel iteration matrix.

And construct the sequence }{ (k)x for an initial vector (0)x by setting

18

 









t)()(
2

)(
1

)(

)()1(

,,,

with
k

n
kkk

g
k

g
k

xxx x

VxHx
, for ,,,k 210 (2.5.13)

Expressed in component wise, this Gauss-Seidel iteration becomes

,,,1,
1

)(
1

1

)1()1(nix
a

a
x

a

a

a

b
x

n

ij

k
j

ii

ij
i

j

k
j

ii

ij

ii

ik
i  







 and ,,k 10= (2.5.14)

The iteration matrix gH can be viewed as a correction on the last computed iteration

as Eqn. (2.5.3) i.e

)()()1(kkk zxx 

where

)()(k
gg

k)xH(IVz  (2.5.15)

Gauss-Seidel method is also known as the method of successive displacement

method. The algorithm of this method is given in Appendix C.

2.5.4 Successive Relaxation (SR) Technique

Relaxation represents a slight modification of the Jacobi/Gauss-Seidel method and is

designed to enhance convergence [Carre` (1961), Young, (1954), Gerald and

Wheatley (1994), Varga (1962), Engeln-Müllges and Uhlig (1996)]. Define an

auxiliary vector x~ as

bDUxDLxDx 1)(1)(1)1(~   kkk , for Jacobi method and

bDUxDLxDx 1)(1`)1(1)1(~   kkk , for Gauss-Seidal method

Then using SR technique the final solution is now written as

)()()1(kkk zxx  (2.5.16)

where)(kz is the correction vector and  is a relaxation factor.

or)-~()(`)1()()1(kkkk xxxx   

or `)1()()1(~)-(1   kkk xxx  (2.5.17)

Here)̀1(kx is weighted mean of)̀()̀1(and~ kk xx  and ω is a weighted factor that is

assigned a value between 0 and 2 [Krishnamurthy and Sen (1989), Gerald and

Wheatley (1994), Varga (1962), Engeln-Müllges and Uhlig (1996)].

(i) For 1ω , the Eqn. (2.5.16) reduced to the Jacobi/Gauss-Seidel method

[Krishnamurthy and Sen (1989), Gerald and Wheatley (1994)].

19

(ii) If ω is set at a value between 0 and 1, the result is weighted average of

corresponding previous result and sum of other (present or previous) result. It

is typically employed to make a non-convergence system or to hasten

convergence by dampening out oscillations. This approach is called successive

under relaxation [Gerald and Wheatley (1994), Krishnamurthy and Sen

(1989)].

(iii) For value of ω from 1 to 2, extra weight is placed. In this instance, there is an

implicit assumption that the new value is moving in the correct direction

towards the true solution but at a very slow rate. Thus, the added weight  is

intended to improve the estimate by pushing it closer to the truth. Hence this

type of modification, which is called over relaxation, is designed to accelerate

the convergence of an already convergent system. This approach is called

successive over relaxation (SOR) [Gerald and Wheatley (1994),

Krishnamurthy and Sen (1989)].

(iv) The combine approach, i.e. for value of ω from 0 to 2, is called successive

relaxation or SR technique [Gourdin and Boumahrat (1996), Engeln-Müllges

and Uhlig (1996)].

The algorithms of SR technique are given in Appendix C.

2.6 Summary

Throughout this chapter an attempt is made to overview the basic properties of

classical numerical methods for solving linear equations and also describes about the

formulation of the problems in matrix notations and then consistency of the problems.

Also overviews some well-known direct methods (Gauss elimination method, Crout

decomposition method) as well as classical iterative methods (Jacobi method, Gauss-

Seidel method) for solving equations. Successive Relaxation (SR) technique is also

discussed here.

20

CHAPTER 3

An Overview of Evolutionary

Computations

3.1 Introduction

The Evolutionary Computation (EC) techniques are inspired by the natural process of

evolution [Hashem (1999)]. The peculiarity of ECs is maintaining a set of points

(called population) that are searched in parallel. Each point (individual) is evaluated

according to the objective function (fitness function). Further a set of genetic

operators is given that work on populations. They contribute to the two basic

principles in evolution – selection and variation. Selection focuses the search to

“better” regions of the search space by given individuals with “better” fitness values

and higher probability to be member of the next generations (loop iteration). On the

other hand, variation operators create new points in the search space. Here not only

random changes (mutations) of particular point are possible but also the random

mixing of the information of two or more individuals (crossover/ recombination) are

possible [Bäck and Schwefel (1993), Schoenauer and Michaleewicz (1997) and Bäck

et al. (1997), Hashem (1999)]. ECs are often characterized as combining features

from path-oriented methods and volume-oriented methods. ECs combine these

contrary features in so far that in the beginning of the search the population is usually

spread out in the whole search space, corresponding to a volume-oriented search. In

the latter stages of the search algorithm has focused to few (or single) region due to

selection and the single region is examined further. In this respect the algorithm

behaves like a path –oriented search [Hashem (1999)]. Another possible identification

of these two stages of the search could be the correspondence of the first stage to a

global reliability strategy (coarse grin search) and the second stage to a local

refinement strategy (fine grin search) [Yuret 1994, Hashem (1999)]. It is also

observed that there are two important issues in the simulated search process of natural

21

evolution: population diversity (exploration) and selective pressure (exploitation).

These factors are strongly related – a strong selective pressure “supports” the

premature convergence of evolutionary search and a weak selective pressure can

make the search ineffective. Thus it is important to strike a balance between these two

factors [Hashem (1999), Michalewicz (1996), Blickle (1997)].

3.2 Variants of Evolutionary Algorithms

The variations of Evolutionary Algorithms (EAs) that are of current interest bring

differing philosophies of how to algorithmically abstract the model of natural

evolution. Because of differing commitment to levels of abstraction, each uses a

distinct emphasis that leads to a commitment to representations and philosophy of

operators. Four main streams of instances of these general algorithms, developed

independently of each other, can now a days be identified – (i) Genetic Algorithms

(GAs) [Holland (1962), Bäck and Schwefel (1993)], (ii) Evolution Strategies (ESs)

[Rechenberg (1993), Bäck and Schwefel (1993) and Hashem (1999)], (iii)

Evolutionary Programming (EP) [Fogel et al. (1966), Bäck and Schwefel (1993)] and

(iv) Genetic Programming (GA) [Koza (1994) and Hashem (1999)]. Each of these

main stream algorithms have clearly demonstrated their capability to yield good

approximate solutions even in the cases of complicated multimodal, discontinues,

non-differentiable, and even noisy or moving response surfaces of optimization

problems. The variety of data-structures, variation of operators and selection

mechanisms give possible ways of classifying EAs. However, the different terms are

mostly historical. Moreover, the differences between the variants are fluid.

Furthermore, these algorithms are specified for parameter optimization problems.

It is a remarkable fact that each algorithm emphasizes different features as being most

important for a successful evolution process. In analogy to repair-enzymes, which

give evidence for a biological self-control of mutation rates of nucleotide bases in

DNA, both ESs and EP use self-adaptation processes for the mutation rates. In

canonical GAs, this concept was successfully tested only recently [Bäck (1992)], but

still need more time to be recognized and applied. Both ESs and EP concentrate on

22

mutation as the main search operator, while the rule of pure random mutation in

canonical GAs and GPs is usually seen to be of secondary importance. On the other

hand, recombination plays a major rule in canonical GAs and GPs, but recombination

is missing completely in EPs and is urgently necessary for use in connection to self-

adaptation in ESs. Finally, canonical GAs, GPs and EPs emphasize on a necessarily

probabilistic selection mechanism, while from the ESs point of view selection is

completely deterministic without any evidence for the necessity of incorporating

probabilistic rules. In contrast, both ESs and EPs definitely exclude some individuals

from being selected for reproduction, i.e. they use extinctive selection mechanisms,

while canonical GAs and GPs generally assign a non-zero selection probability to

each parent individual, which can be termed as preservative selection mechanism. The

characteristic similarities and differences of the evolutionary algorithms discussed in

this chapter are summarized in Table3.1 [Hashem 1999].

Table 3.1: Main characteristics of evolutionary algorithms.

Characteristics GA ES EP GP

Abstraction level Organism Individual behavior Species

behavior

Organism

Representation Binary-valued Real-valued Real-valued Tree like

Structure

Self-adaptation None Standard deviation

& covariance

Standard

deviation

None

Fitness Scaled objective

function value

Objective function

value

Objective

function value

Objective

Function value

Mutation Background

operation

Main operation Only operation Secondary

Operation

Recombination Main operation Different variants,

important for

self-adaptation

None Main

operation

Selection Probabilistic,

preservative

Deterministic,

extinctive

Probabilistic,

extinctive

Probabilistic,

preservative

23

3.3 Basic Mechanisms of Evolutionary Algorithms

For the sake of clarity, we shall try to introduce a general framework according as

much as possible for most of the existing Evolutionary Algorithms. The EAs can be

classified as probabilistic search algorithms, which maintain a population of u

individuals,         tttt uψψψ ,,, 21  where   Sψ ti for generation t which

simultaneously sample of the search space S. Each individual represents a potential

solution to the problem at hand and is implemented as some complex data structure

and/or object variable vector ξ with component iξ  n,,,i 21 . Each

solution  tψ is evaluated to produce some measure of its “fitness”  tφ . After

initialization of the population, a new population is formed by three main operators –

crossover (recombination), mutation and selection operations. There is higher order

transformation:  (crossover operator), which creates new individuals (offspring)

(  vu ξξξ :) where v is the offspring population size and an unary

transformation: ´ (mutation operator), which modifies these new individuals

(offspring) by a small change (ξξ :). A selection operation

  u
parent

u
offspting

v ξξξ : is then applied to choose the parent population for the

next generation. After some number of generations the program converges – it is

hoped that the best individual represents a near optimum solution [Hashem (1999),

Bäck and Schwefel (1993)]. The pseudo-code of this process is given in Fig. C.1 (see

Appendix C).

Variation is introduced into the population by crossover and/or mutation. Since these

operators usually create offspring at new positions in the search space, they are also

called “explorative” operators. Algorithm Fig. C.1 (see Appendix C) gives an outline

of the mechanism of an EA. The several instances of the EA differ in the way that

individuals are represented and in the realization of the recombination operator.

Common representations are, for example, bit strings, vectors of real or integer values

(for parameter optimization), trees (for function optimization), graphs or any other

problem dependent data-structure. Based on information-theoretical considerations,

John Holland suggests that the bit-string representation is optimal. Back et al. (1993)

suggests from practical experience, as well as some theoretical point of view that the

24

bit-string representations have some disadvantages such as the coding and decoding

functions might introduce additional multimodality along with the objective function f

[Michalewicz (1994, 1994a), Michalewicz and Attia (1994), Kim and Myung (1997),

Chellapilla et al. (1998), and Waagen et al. (1992)].

Along with a particular data-structure, variation operators have to be defined which

can be divided in asexual and sexual variation operators. The asexual variation

(mutation) consists of a random change of the information represented by an

individual. If the individual is represented as a vector, mutation is the random change

of elements of the vector. How this change is performed depends on the type of the

vector-elements. If the vector is a simple bit-string, mutation is to toggle the bit or not

(with equal probability). For real or integer values more sophisticated mutation

operators are necessary. The most general approach is to define a probability

distribution over the domain of possible values for a particular vector element. A new

value is then chosen according to this distribution. During sexual variation (Crossover

/recombination) two individuals exchange or blend part of their information. Two

individuals are chosen from the population and named parents. How the exchange or

blend of information is performed depends of the chosen representation. There is no

need to restrict the number of parents for crossover to two. Recent research shows that

increasing the number of mates leads to an increased performance [Blickle (1997),

Salomon (1998)]. There is an ongoing debate between different communities which

operator- mutation or crossover – is more important. Some researchers found

evidence that the crossover operator might be “simulated” by mutation (Fogel 1995).

3.3.1 Time-Variant Mutation

The inherent strength of EAs – towards convergence and high precision results – lies

in the choice of the mutation steps i.e. standard deviation [Rechnberg (1994), Fogel

(1995), Bäck et. al. (1996)]. According to the biological evidence, a special dynamic

Time-Variant Mutation (TVM) operator is proposed aiming to both improving the

fine local tuning and reducing the disadvantage of uniform mutation [Michalewicz

(1996), Bäck et. al. (1997), Hashem (1999)]. Moreover, it can exploit the fast (but not

premature) convergence. By this mutation scheme, a natural behavioral change at the

25

level of individuals will be achieved. The TVM is defined for a child – as that of EAs

[Bäck et. al. (1993), Schwefel et. al. (1995)] do – as  n,,,i 21

   1,0)(
ii

m
i Nt   (3.3.1)

where  1,0iN indicates that Gaussian random value with zero-mean and unity

variance, and it is sampled anew for each value of the index i. And  tσ is the time-

variant mutation step generating function at the generation t, which is defined by

  









 


)

T

1
1(

1 qt (3.3.2)

where q(0,1), is uniform random number, T is the maximal generation, γ is a real-

valued parameter determining the degree of dependency on generations. The

parameter γ is also called an exogenous parameter of the method [Hashem 1999].

The function  tσ returns a value in the range [0,1], that falls within so-call evolution

window [Rechebberg (1994)] such that the probability of  tσ being closed to 0 as

the generation t increases. This property of  tσ causes to search the problem space

uniformly (volume- oriented search) initially when t is small and very locally (path –

oriented search) at larger t stages. Another possible identification of these two stages

of the search could be the correspondence of the first stage to a global reliability

strategy (coarse grain search) and the second stage to a local refinement strategy fine

grain search [Michalewicz (1994a), Michalewicz and Attia (1994), Michalewicz

(1996)].

3.4 Modern Trends: Hybrid Algorithms

Many researchers modified further evolutionary algorithms “by adding” some

problem specific knowledge to the algorithm. Several papers have discussed

initialization techniques, different representations, decoding techniques (mapping

from genetic representations to phenotype representations) and the use of heuristics

for genetic operators. Such hybrid/nonstandard systems enjoy a significant popularity

in evolutionary computation community. Very often these systems, extended by the

26

problem-specific knowledge, outperform other classical evolutionary methods as well

as other standard techniques. For example, a system Genetic-2N [Michalewicz]

constructed for the nonlinear transportation problem used a matrix representation for

its chromosomes, a problem-specific mutation (main operator, used with probability

0.4) and arithmetical crossover (background operator, used with probability 0.05)

[Schoenauer and Michalewicz (1997)]. It is hard to classify this problem: it is not an

evolution strategy, since it did not use Gaussian mutation, nor did it encode any

control parameters in its chromosomal structures. Clearly, it has nothing to do with

genetic programming and very little (matrix representation) with evolutionary

programming approaches. It is just an evolutionary computation technique aimed at

particular problem.

Recently, hybridization of evolutionary algorithm with classical Gauss-Seidel based

SR method has successfully been used to solve large set of linear equations; where

relaxation factor, ω, is self-adapted by using uniform adaptation technique [He et. al

(2000)].

The key idea behind this hybrid algorithm that combines the SR technique and

evolutionary computation techniques is to self-adapt the relaxation factor ω which is

used in the classical SR technique. For different individuals in a population, different

relaxation factors are used to solve equations. The relaxation factors will be adapted

based on the fitness of individuals (i.e. based on how well an individual solves the

equations). Similar to many other evolutionary algorithms, this hybrid algorithm

always maintains a population of approximate solution to linear equations. Each

solution is represented by an individual. The initial solution is usually generated by

the SR technique using an arbitrary relaxation factor ω . The fitness of an individual

is evaluated by approximate solution. The relaxation factor is adapted after each

generation, depending on how well an individual performs.

3.5 Properties of Evolutionary Algorithms

ECs are normally classified as stochastic optimization algorithms. Within this

categorization, the most important properties of ECs can be itemized as bellow:

27

Accuracy: The accuracy describes the difference between the optimal solution and

the solution obtained by the optimization method. This distinguishes between exact

methods and ECs. Exact methods guarantee to find the optimum. This guarantee is

paid with the complexity of the optimization method that has to be at least as high as

the complexity of the problem to be solved. For example, the branch and bound

algorithm is an exact method for solving linear optimization problems with integer

restrictions. On the other hand, ECs do obtain only near-optimal solutions,

furthermore, the accuracy of the solution often can not be predicted for these

algorithms [Hashem 1999].

Time–complexity: The complexity of an EC method (or an algorithm in general) is

measured by the order of the number of elementary operations in dependence of the

input size. The input size is the amount of data necessary to specify the problem. As

there are many different problem instances having the same problem size, there are

different possibilities to define the complexity. Most commonly the complexity is

measured in the worst case asymptotic complexity. “Worst-case” means that the

complexity of the algorithm is determined by the “hardest” problem of fixed size

input. EAs have polynomial execution time allowing problems with a several order of

magnitudes higher dimensionality to be considered. Usually the absolute complexity

depends upon the underlying machine model or implementation. Hence, the

asymptotic complexity measures the relative increases in time with length of the

problem instance and not the absolute time [Hashem 1999].

Space–complexity: The space (memory) demand of an evolutionary algorithm is an

important property that may limit the applicability of the algorithm. Similar to the

time-complexity measure a worst-case space demand is most commonly used

[Hashem 1999].

Utilization of a priori-knowledge: It is obvious, that an algorithm that considers a

priori-knowledge about the problem will outperform a method using less knowledge.

The least knowledge that must be known (or must be computable) is the value of the

objective function. Additional information could be used to restrict the search space,

28

and to use symmetries in the objective function, etc. But most of the EAs perform

blind search without priori-knowledge [Hashem 1999].

Balance between global reliability and local refinement: Two competing goals

have to be achieved by an optimization method. First, as the global minimum can be

located anywhere in the search space no parts of the region can be neglected. Global

reliability, therefore, corresponds to a strategy where the search points are uniformly

distributed over the whole search space. Secondly, the assumption that the chance of

finding a good point in the neighborhood of a good point is higher than in the

neighborhood of bad point. This assumption will surely be fulfilled for a continuous

function. However, in general this assumption can not be made. Nevertheless for

pragmatic reasons, most optimization methods make this assumption. This leads to a

strategy that focus on particular regions or in other words that performs a local

refinement of the search at “promising” points. Interestingly, ECs have incorporated a

mixture of these two basic strategies [Hashem 1999].

3.6 Merits and Demerits of Evolutionary Algorithms

3.6.1 Merits

The identified merits of ECs can be itemized as

Large application domain: ECs have been applied successfully in a wide variety of

application domains. One reason for this might be the intuitive concept of evolution

and the modesty to the ECs with regard to the structure of the specific optimization

problem. Especially the intuitive concept makes it easy to implement an algorithm

that works [Hashem 1999].

Suitable for complex search spaces: It is extremely difficult to construct heuristics

for complex combinatorial problems. In these problems, the choice of one variable

may change the meaning or quality of an other, i.e., there are high correlation between

variables. ECs have been successfully applied to such instances. Obviously, the

success of the ECs depends on the particular implementation and not all flavors ECs

are equally well suited. As a rule of thumb, it is always good to combine an EC with

available (problem-dependent) optimization heuristics [Hashem 1999].

29

Robustness: Robustness means that different run of an EA for the same problem

yields similar results i.e. there is no great deviation in the quality of the solution. But a

Monte-Carlo-based algorithm performed in average as good as a GA, the variation in

the results was much higher [Hashem 1999].

Easy to parallelize : The population concept of ECs makes parallelization easy.

This can reduce the execution time of the algorithm. Whole population can be divided

into sub-population and each sub-population is assigned to each processor that

evolves almost independently of the other populations. Furthermore, a topology of the

population is defined such that each sub-population has only few “neighbors” A few

individuals migrate between neighbors and form a loose coupling between the sub-

populations [Hashem 1999].

3.6.2 Demerits

The identified demerits of ECs can be itemized as

High computational time: The modest demand on the objective function is paid

with a relatively high computational time. This time demand not only arises from the

population concept but also from the difficulty of the problems. An application

specific heuristic that makes use of domain –knowledge is likely to outperform an EC

[Hashem 1999].

Difficult adjustment of parameters: In every EA, a large number of parameters

need to be adjusted, for example the kind of selection and crossover operator to use,

the population size the probabilities of applying certain operator and the form of

fitness function. Due to this fact, successful applications are often the result of a

lengthy trial–and error procedure whose sole purpose is to adjust the parameters of the

algorithm for a particular problem class or even problem instance. Furthermore EAs

are often very sensitive to the fitness function such that slight changes in the fitness

function may lead to completely different behavior [Hashem 1999].

Heuristic principle: ECs don’t guarantee to find the global optimum. The

theoretical proofs of global convergence are useless from practical point of view as

30

they assume infinite computation time. Under this premise, even random search can

reach the global optimum. Of more importance is the fact that for most instances of

EC, the accuracy of a solution obtained in a limited amount of computation time can

not be predicted or guaranteed [Hashem 1999].

3.7 Summary

Throughout this chapter an attempt is made to overview the basic constituents,

properties, merits and demerits of evolutionary algorithms in terms of their canonical

forms. But in practical the borders between these approaches are much more fluid.

This chapter also overviews the hybridization of classical numerical method with

evolutionary computation techniques for solving linear equations.

31

CHAPTER 4

Jacobi Based Uniform Adaptive Hybrid

Algorithm

4.1 Introduction

Invent of easily accessible computers makes it possible and practical for us to solving

large set of simultaneous linear algebraic equations. Now for appropriate decision of

the physical problems, it is sometimes desired an appropriate algorithm which

converged rapidly for solving physical problems. For example, short-term weather

forecast, image processing, simulation to predict aerodynamics performance which of

these applications involve the solution of very large set of simultaneous equations by

numerical methods and time is an important factor for practical application of the

results. If the algorithm of solving equations can be implemented in parallel

processing environment, it can easily decrease a significance time to get the result.

But as Gauss-Seidel based SR method cannot be implemented in parallel processing

environment, so Gauss-Seidel Based Uniform Adaptive (GSBUA) hybrid algorithm

cannot be implemented, inherently, in parallel processing environment efficiently.

To eliminate above-mentioned problem and to decrease the time of convergence (by

using parallel processors) this chapter is devoted to develop a new hybrid

evolutionary algorithm [Jamali et. al. (2003)]. This hybrid algorithm uses Jacobi

based SR method instead of Gauss-Seidel based SR method. As Jacobi based SR

method can be implemented in parallel processing environment [Gerald and Wheatley

(1994)], so Jacobi based hybrid evolutionary algorithm can be implemented in parallel

processing environment. Note that in hybrid evolutionary algorithm, individuals of

population can be implemented in parallel processing environment explicitly.

32

4.2 Proposed Method

In this section, a new hybrid evolutionary algorithm is proposed in which

evolutionary computation techniques and Jacobi based SR technique is used. The

proposed Jacobi-Based Uniform Adaptive (JBUA) hybrid evolutionary algorithm

does not require a user to guess or estimate the optimal relaxation factor ω . The

proposed algorithm initializes uniform relaxation factors in a given domain and

“evolves” it. The proposed algorithm integrates the Jacobi-based SR method with

evolutionary computation techniques, which uses initialization, recombination,

mutation, adaptation, and selection mechanisms. It makes better use of a population

by employing different equation-solving strategies for different individuals in the

population. Then these individuals can exchange information through recombination

and the error is minimized by mutation and selection mechanisms.

4.2.1 The Basic Equations of Jacobi Based SR Method

The system of linear equations (Eqn. (1.1.1)) can be written as

,
1




n

j
ijij bxa  ni ,,2,1  (4.2.1)

In Jacobi method by using SR technique [Engeln-Müllges, and Uhlig (1996)] Eqn.

(4.2.1) is given by

   








 


 k
j

1j

k
i

)1(k
i b xa

a
ωxx

n

iji
ii

,  ni ,,2,1  (4.2.2)

In matrix form Eqn. (4.2.2) can be rewritten in matrix-vector equation as (see Chapter

2 Eqn. (2.4.18)):

   
ω

k
ω

k VxHx 1 (4.2.3)

where ωH , called Jacobi iteration matrix, and ωV are given successively by

)}()1{(1 ULIDH   ω , (4.2.4)

and

bDV -1ωω  . (4.2.5)

33

4.2.2 The Algorithm

Similar to many other evolutionary algorithms, the proposed JBUA hybrid algorithm

always maintains a population of approximate solution to linear equations. Each

solution is represented by an individual. The initial population is generated randomly

form the field n . Different individuals use different relaxation factors.

Recombination in the hybrid algorithm involves all individuals in a population. If the

population size is N, then the recombination will have N parents and generates N

offspring through linear combination. Mutation is achieved by performing one

iteration of Jacobi based SR method as given by Eqn. (4.2.3). The mutation is

stochastic since  used in the iteration is initially generated between L and U

and  is adapted stochastically in each generation (iteration). The fitness of an

individual is evaluated based on the error of an approximate solution. For example,

given an approximate solution (i.e. individual) x~ , its error is defined by

||~||||)~(|| bxAx e . The relaxation factor is adapted after each generation, depending

on how well an individual performs (in term of error). The main steps of the JBUA

hybrid evolutionary algorithm described as follows:

Step-1: Initialization

Generate an initial population of approximate solution to the system of linear Eqn.

(4.2.1) using different arbitrary relaxation factors. Denote the initial population as

)0(X },{ (0)(0(0)
N

)
21 xxx  (4.2.6)

Where each individual n
i x ; N is the population size. Let 0k where k is the

generation counter. Also initialize relaxation factor ω1, ω2,, … ,ωN randomly from

(ωL ωU) where ωL and ωU are lower and upper boundary of ω’s.

Step-2: Recombination

Now generate  ckX },,,{)()(
2

)(
1

ck
N

ckck  xxx  as an intermediate population through

the following recombination:

 )()(kck XRX (4.2.7)

Where

NNijr )(R (4.2.8)

34

so that





N

j
ijr

1

1 and 0ijr for Ni 1

i.e. R is a stochastic matrix [Kriyszig (1993)] . Superscript “ ΄ “ is a transposed

operator. Note that the symbol c, as a superscript, is used just as an indicator of

crossover.

Step 3: Mutation

Then generate the next intermediate population  mkX from  ckX as follows:

For each individual  ck
i
x)1(Ni  in population  ckX produces an offspring

according to Eqn. (4.2.3) as

Ni
ii ω

ck
iω

mk
i,2,1,)()(  VxHx . (4.2.9)

where
iωH is called Jacobi iteration matrix corresponding iω and given by

)}()1{(1 ULIDH  
iiω ωω

i
,

(4.2.10)

and

bDV -1
iω ω

i
 . (4.2.11)

Here iω is denoted as relaxation factor of the ith individual and)(mk
i
x is denoted as

ith (mutated) offspring, so that only one iteration is carried out for each mutation.

Note that the symbol m, as a superscript, is used just as an indicator of mutation.

Step 4: Adaptation

Let x and y be two offspring individuals corresponding relaxation factors xω and

yω and ||)(|| xe and ||)(|| ye are their corresponding errors (fitness value). Then the

relaxation factors xω and yω are adapted as follows:

(a) If ||,)(||||)(|| yx ee 

(i) then move xω toward y (i.e. xω is adapted to m
xω) by using

))(5.0(yxx
m
x ωωpω  (4.2.12)

where xp (-0.01,0.01) (4.2.13)

35

and xp may be called a uniform adaptive probability parameter for xω [He et.

al. (2000)] .

And (ii) move yω away from xω (i.e. yω is adapted to m
yω) by using









xyyLyy

xyyUyym
y ωωωωpω

ωωωωpω
ω

when,)(

when,)(
(4.2.14)

where yp  (0.008,0.012) (4.2.15)

and yp may be called a uniform adaptive probability parameter for yω [He

et. al. (2000)].

(b) If ,||)e(||||)e(|| yx  adapt x and y in the same way as above but reverse the

order of m
x and m

yω .

(c) If ||,)(e||||)(e|| yx  no adaptation. So that

m
x = x and y

m
y ωω  .

Here uniform adaptation technique is used to adapting the relaxation factors [He et. al.

(2000)].

Step-5: Selection and Reproduction

The best N/2 individuals in population m)(kX will reproduce (i.e. each individual

generates two offspring), and then form the next generation)1(kX of N individuals.

Step-6: Halt

If the error of the population }~)~({| XxxX  ||:||emin)||(|e is less than a given

threshold η then the algorithm terminates; otherwise, go to Step -2.

The pseudo-code structure of this hybrid algorithm is shown in Fig.C.2

(Appendix C), where iteration matrix,
iH ,

iV and random functions xp

and yp are defined by Eqn.’s (4.2.10), (4.2.11), (4.2.13) and (4.2.15)

respectively.

36

4.3 Performance of the Proposed Algorithm

In order to evaluate the effectiveness and efficiency of the proposed JBUA hybrid

algorithm, numerical experiments had been carried out on a number of problems to

solve the systems of linear Eqn. (2.2.3) of the form:

bAx  (4.3.1)

The proposed JBUA hybrid algorithm, used in all of our experiments, was very

simple and had population size two (N = 2). That is, only two individuals were used.

The recombination matrix (see Eqn. (4.2.8)), in all through the experiments, was

chosen as follows:

Since only two individuals were used in a population in our experiment, if the fitness

of the first individuals was better then the second (using Eqn. (4.2.7), let

































)(

)(

)(

)(

2

1

2

1

01.099.0

00.1
k

k

ck

ck

x

x

x

x
(4.3.2)

else let

































)(

)(

)(

)(

2

1

2

1

0.00.1

99.001.0
k

k

ck

ck

x

x

x

x
(4.3.3)

The following settings were also valid all through the experiments:

The dimension of unknown variables was 100n , each individual x of population X

was initialized from the domain 30)(-30,100  randomly and uniformly. For each

experiment, a total of ten independent runs were conducted and the average results are

reported here.

Now first problem was to solve linear equations, Eqn. (4.3.1), where naii 2 and

ibi  for ni ,,1 and jaij  for ji  , nji ,,1,  (see problem P1). The problem

was to be solved with an error smaller than 1210η .

37

Table 4.1 and Table 4.2 show the numerical results achieved by the classical Jacobi-

based SR method and proposed JBUA hybrid evolutionary algorithm with initial

relaxation factors,  0.5, 1.50 and  -1.0, 1.0 respectively. Four experiments

were carried out using classical Jacobi based SR method with relaxation factors

 0.5, 1.50 and  -1.0, 1.0. And Two experiments were carried out using the

proposed algorithm, one with initial relaxation factors ω1 = 0.5 and ω2 = 1.5 and the

other with initial relaxation factors ω1 = -1.0 and ω2 = 1.0. It is very clear from the

Tables 4.1 and 4.2 that the proposed algorithm performed much better than the

classical Jacobi based SR method. Proposed JBUA algorithm with different initial

relaxation factors, ω1 and ω2, have all found approximate solutions with an error

smaller than 1210 within 1000 generations, while none of the classical Jacobi

based SR method could find an approximate solution with an error smaller than

1210η after 1000 generations, no matter which relaxation factors had been used.

After 1000 generations, there was at least eight orders of magnitude difference

between the error generated by the classical Jacobi-based SR method and that

produced by the proposed JBUA hybrid algorithm.

Iteration Jacobi based SR method with initial JBUA hybrid algorithm with initial

ω = 0.50 ω = 1.50 ω1 = 0.50 and ω2 = 1.50

01 1.83716e+04 2.36221e+04 4.3972e+04 2.26891e+04

100 3.97643e+03 2.05325e+04 9.42877e+00 3.10284e+00

200 3.14860e+01 1.83852e+02 3.52673e-03 1.02643e-03

300 1.06612e+00 4.23743e+01 2.78793e-04 1.19089e-04

400 4.43217e-02 9.54315e+00 1.23254e-05 1.02244e-06

500 1.04843e-02 6.08937e+00 1.80543e-06 1.03781e-06

600 7.55472e-03 4.28310e+00 7.15730e-08 2.43217e-08

700 2.35390e-03 2.61748e+00 3.98569e-09 1.01475e-09

800 1.02362e-03 2.12982e+00 2.25191e-10 1.03283e-10

900 7.27216e-04 1.63231e+00 8.44612e-11 5.00851e-11

1000 1.32542e-04 9.76833e-01 6.96453e-12 3.74284e-12

Table 4.1: Comparison of Jacobi-based SR method and proposed JBUA hybrid algorithm

38

Iteration Jacobi based SR method with initial JBUA hybrid algorithm with initial

ω = -1.0 ω = 1.0 ω1 = -1.0 and ω2 = 1.0

01 8.372113e+13 1.18508e+04 1.372113e+12 4.3972e+04

100 Diverge 3.89678e+03 5.22573e+2 2.36573e+2

200 Diverge 1.26643e+02 1.35920e-00 1.01321e-00

300 Diverge 1.75359e+01 2.19745e-02 1.79832e-02

400 Diverge 2.34710e+00 5.66802e-04 3.23152e-04

500 Diverge 9.83765e-01 3.47889e-05 1.89475e-05

600 Diverge 3.26554e-01 2.22358e-07 1.39126e-07

700 Diverge 5.06362e-02 5.89688e-09 3.26786e-09

800 Diverge 1.03243e-02 8.74730e-11 4.82132e-11

900 Diverge 8.68931e-03 3.57647e-12 1.32256e-12

1000 Diverge 1.23574e-03 1.23741e-13 1.19243e-13

There is another interesting observation form the Table 4.2 that when it was used

initial relaxation factor ω1 = -1.0 and ω2 = 1.0, the proposed hybrid algorithm

adapted relaxation factors and converged rapidly. Whereas in classical Jacobi based

SR methods, at relaxation factor ω = –1.0, diverged very rapidly.

Iteration Value of ω’s for 1st experiment of

JBUA algorithm

Value of ω’s for 2nd experiment of

JBUA algorithm

1 -1.0 1.0 0.5 1.5

100 0.869122 0.871368 1.039819 1.05214

200 0.972992 0.97667 1.08041 1.08407

300 1.039424 1.043368 1.094001 1.096638

400 1.057982 1.057956 1.086654 1.098117

500 1.060547 1.059654 1.072153 1.085534

600 1.072739 1.068253 1.08393 1.080362

700 1.080413 1.068221 1.082872 1.088507

800 1.085379 1.093159 1.07965 1.070871

900 1.089493 1.090912 1.087312 1.076113

1000 1.082053 1.098993 1.051892 1.054571

Table 4.3: The dynamical change of relaxation factors, ω, for corresponding individuals at
different generations for proposed JBUA hybrid algorithm

Table 4.2: Comparison of Jacobi-based SR method and proposed JBUA hybrid algorithm

39

Table 4.3 shows how relaxation factors changed dynamically as proposed JBUA

hybrid algorithm progressed.

Fig. 4.1 represents the decreasing of error, for the problem P1, produced by the

proposed JBUA hybrid algorithm with initial relaxation factors ω1 = 0.5 and ω2 = 1.5,

Classical Jacobi based SR method with relaxation factor ω=1.5 and Classical Jacobi

method (i.e. relaxation factor ω= 1.0). It is clear, from Fig. 4.1, that proposed JBUA

hybrid algorithm outperformed the classical Jacobi based SR method (ω≠1.0) as well

as Classical Jacobi method (ω=1.0). It also shows that classical SR technique was

extremely sensitive to the relaxation factor ω , while the proposed JBUA hybrid

algorithm was very less sensitive against initial values of relaxation factors. This

indicates that the simple adaptation scheme for relaxation factors had worked quite

effectively in the proposed JBUA hybrid algorithm.

To evaluate the proposed JBUA hybrid algorithm further, eleven test problems,

labeled from P1 to P11, with dimension, n=100 were considered. For each test

problem Pi : 111,2i , the elements of the coefficient matrix A and elements of

(a)

(b)

(c)

0 100 200 300 400 500 600

 1E-10

1E-8

1E-6

1E-4

 0.01

 1

 100

10000

Figure 4.1: Curve (a) represents proposed JBUA hybrid generation history, curve (b) represents
classical Jacobi-SR iteration history and curve (c) represents classical Jacobi iteration history.

E
rr

or
, |

|A
-b

x|
|

Generation (Iteration)

40

the constant vector b were all generated uniformly and randomly within given

boundaries (shown in 2nd column with corresponding rows of Table 4.4). But each

coefficient matrix A, constant vector b and initial population X were identical for

each comparison. Initial relaxation factors are set at ω1 =0.5 and ω2 =1.5 for all the

cases. For different problems P1 – P11 different threshold of errors,  , were allowed.

Table 4.4 shows the comparison of the number of generation (iteration) and relative

elapsed time needed by the GSBUA hybrid algorithm and that needed by proposed

JBUA hybrid algorithm to solve the linear equations (4.3.1) to the given preciseness,

 (see column three of Table 4.4). One observation can be made immediately from

the Table 4.4 that, the numbers of generations are comparable in each case in the

both hybrid algorithms (proposed JBUA and existing GSBUA algorithms).

L
ab

el
 o

f
T

es
t

Fu
nc

tio
n

Domain of the elements of the coefficient matrix

A & right side constant vector b of test

Problems

T
hr

es
ho

ld
 E

rr
or

,

GSBUA

Hybrid

Algorithm

Proposed JBUA

Hybrid Algorithm

Number of

Generation

Number of

Generation

P1 aii= 2n; aij =j; bi= i 10-12 530 580

P2 aii =70; aij (-10,10), bi(-70,70) 10-12 166 190

P3 aii(50,100); aij (-10,10) ; bi(-100,100) 10-12 85 91

P4 aii(1,100); aij (-2,2); bi = 2 10-12 559 586

P5 aii = 200; aij (-30,30); bi(-400,400) 10-11 156 175

P6 aii(-70,70); aij (0,4) ; bi(0,70) 10-08 801 816

P7 aii(-200,200); aij (-10,10); bi(-100,100) 10-11 189 200

P8 aii(-100,100); aij (-10,10); bi(-200,200) 10-06 5683 5711

P9 aii(10,50); aij (5,8); bi(-200,200) 10-11 618 655

P10 aii(100,300); aij (-50,50); bi(-100,100) 10-11 1508 1832

P11 aii(200,300); aij (-100,100); bi (-100,100) 10-11 798 870

Table 4.4: Comparison between existing GSBUA and proposed JBUA hybrid algorithms for
several randomly generated test problems

41

4.4 Parallel Processing

Parallel searching is one of the main properties of Evolutionary Computational (EC)

techniques. As computers can be used for parallel searching by using parallel

processors, so EC techniques can be used to solve various kinds of complex problems.

For available of parallel processors, recently, evolutionary algorithms are well

developed and successfully used to solve so many real world problems. Though

individuals of population can be implemented in parallel processing environment for

both GSBUA hybrid algorithm and JBUA hybrid algorithm. But GSBUA hybrid

algorithm cannot be implemented in parallel processing environment inherently. Since

classical Gauss-Seidel method, cannot be implemented in parallel processing

environment efficiently. Whereas, proposed JBUA hybrid algorithm can be

implemented in parallel processing environment inherently and efficiency of proposed

JBUA is near to one. Since Jacobi method can be implemented in parallel processing

environment [Gerald and Wheatley (1994)]. As a result by using parallel processors it

can be reduced large amount of times for each iteration of JBUA algorithm. For

example, if 2n processors are available, then JBUA hybrid algorithm reduces the time

for each iteration to n2log time units. This is a significant speedup over the

sequential algorithm (as GSBUA hybrid algorithm inherently), which requires 2n

time units per iteration [Gerald and Wheatley (1994)].

4.5 Summary

In this chapter, a new hybrid evolutionary algorithm called JBUA hybrid evolutionary

algorithm has been proposed to solve system of linear equations and have been tested

on various randomly generated test problems. This hybrid algorithm is developed on

the based of classical Jacobi-based SR method. The effectiveness of this hybrid

algorithm is compared with that of classical Jacobi based SR method and GSBUA

hybrid algorithm. This preliminary investigation has showed that this algorithm

outperforms the classical numerical methods as well as GSBUA hybrid algorithm.

Another significant property of this proposed algorithm is that this algorithm can be

implemented in parallel processing environment inherently.

42

CHAPTER 5

Gauss-Seidel Based Time Variant

Adaptive Hybrid Algorithm

5.1 Introduction

In last three decades, effectiveness of evolutionary algorithms (EAs) has induced

many people to believe that they are the methods of choice for hard real-life problems

superseding traditional search techniques. However, they are not without their

limitations. In particular, the choice of a good evolutionary operator can make a

considerable difference to the exploration and exploitation, and often the feasibility of

the evolutionary search. Moreover, the success and progress of an evolutionary search

algorithm mostly depends upon the balance between population diversity and

selective pressure [Michakewicz (1996)]. To meet these requirements, contemporary

EAs [Bäck and Schwefel (1993), Bäck et. al. (1993), Rechnberg (1994), Schwefel et.

al. (1995), Bäck et. al. (1996), Bäck et. al. (1997)] usually apply self-adaptation in so-

called strategy parameters (or internal model) of the object variables. While

optimizing the objective function, the self-adaptation techniques require optimization

of the strategy parameters as well [Poil and Logan (1996)].

But In GSBUA hybrid algorithm [He. et. al. (2000)], relaxation factors (i.e. strategy

parameters) are self-adapted by Uniform Adaptation (UA) technique and so there is

no guaranty of optimization of the strategy parameters i.e. relaxation factors. On the

other hand, empirical studies [Chellapilla and Fogel (1997), Yao et. al. (1997)]

showed that Cauchy mutations are effective for early stages of the evolution and

Gaussian mutations are essential for final stages of the evolution. Advantages of these

mutations are utilized by a linear combination of them [Chellapilla (1998a)]. But this

method is somewhat cumbersome to implement by general people.

43

To eliminate above-mentioned problems, this chapter is devoted to developing a

Gauss-Seidel based Time-Variant Adaptive hybrid evolutionary algorithm. This

algorithm uses a time-variant adaptation scheme based on observed natural

phenomena. The mutation strategy parameter i.e. relaxation factors are adapted by

time-variant function.

5.2 Development of Time-Variant Adaptive Parameters

5.2.1 Basic Notion

The inherent strength of EA – towards convergence and high precision results – lies in

the choice of the mutation steps, i.e. standard deviation [Rechnberg (1994), Fogel

(1995a), Bäck et.al. (1997), Yao et. al. (1997)]. An obvious biological evidence is that

a rapid change is observed at early stages of life and a slow changes is observed at

latter stages of life in all kind of animals/ plants. These changes are more often

occurred dynamically depending on the situation exposed to them. By mimicking this

emergent natural evidence, a special dynamic time variant adaptive operator is

proposed aiming at both improving the fine local tuning and reducing the

disadvantages of uniform adaptation [Hashem (1999), Michalewicz (1996), Bäck

et.al. (1997)]. Moreover, it can exploit the fast (but not premature) convergence. By

this mutation scheme, a natural behavioral change at the level of individuals will be

achieved. But Hashem (1999), Michalewicz (1996), Bäck et.al. (1997) discussed

about time variant mutation in global optimization problems. In this section, a new

Time-Variant Adaptive (TVA) parameter is introduced aiming at both improving the

fine local tuning and reducing the disadvantage of uniform adaptation of relaxation

factors as well as mutation for solving linear equations.

5.2.2 Formulas

The time variant adaptive (TVA) parameters are defined as

  ωxx TEp  0,0.25N (5.2.1)

and is denoted as adaptive (TVA) probability parameter of xω , and

ωyy TEp  |)0,0.25(N| (5.2.2)

44

and is denoted as adaptive (TVA) probability parameter of yω

Where)
1

1ln(


 


t
T , 10λ (5.2.3)

or )
T

(1
t

Tω  (5.2.4)

Here λ and γ are exogenous parameters, used for increased or decreased of rate of

change of curvature with respect to number of iterations; t and T denote number of

generation and maximum number of generation respectively. Also)25.0,0(N is the

Gaussian distribution with mean 0 and standard deviation 0.25.

Now xE and yE denote the approximate initial boundary of the variation of TVA

parameters of x and y respectively. And if *ω is denoted as the optimal relaxation

factor then

max|xx pE  =
)(2

~

yx

xy






, so that yyxX

m
x ωωpω ))(|5.0(max and

max|yy pE 
yU

y

Ly

y












~
or

~ **

, so that









xyyLyy

xyyUyym
y ωωωpω

ωωωpω
ω

when,)(|

when,)(|

max

max






5.2.3 Properties

The functions xp and yp return values in the range],[xx EE and],0[yE

respectively, which falls within the so-called evolution window [Rechenberg (1994),

Yao and Liu (1997)] such that probability of xp and yp tend to 0 as generation of

population increased. This property of xp and yp causes to search the space uniformly

(volume-oriented search) initially when generation, t, is small and very locally (path

oriented search) at larger t stages. Another possible identification of these two stages

of search could be correspondence of the first stage to a global reliability strategy

(coarse grain search) and the second stage to a local refinement strategy (fine grain

search) [Hashem 1999].

45

Now for Eqn. (5.2.3) i.e.))/(11(ln   tT (denoted as Lambda based TVA

parameter) characteristics of this equation for  = 20, 50, 200 are shown in Fig. 5.1. It

is observed in the Fig. 5.1 that when the value of  is small then, initially, rate of

change of the function))/(11(ln   tT is very rapid; on the other hand when

the value of  is relatively large, then initially, rate of change of the this function is

relatively slow. For all the cases, in later stages, the rate of change is slow. The

variation of px and py respectively for  = 50 are relatively fine for this function and

the graphical representations of characteristics of this function are shown in Fig.5.3

and Fig.5.4 respectively.

0 100 200 300 400 500

-0.06

- 0.04

- 0.02

 0.00

 0.02

 0.04

p
x

Generation

125.0and50  xE

Figure 5.3: Rate of change of the
variation of px for  =50 and Ex = 0.125

0 100 200 300 400 500
-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

p y

Generation

03125.0and50  yE

Figure 5.4: Rate of change of the
variation of py for  =50; Ey=0.03125

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

 = 20
 = 50
 = 200

T
ω

Generation
Figure5.1: Rate of change of the

variation of Tω for various 
Figure 5.2 Rate of change of the

variation of Tω for various 

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0
T

ω

Generation

γ = 2
γ = 12
γ = 50

46

Again for Eqn. (5.2.4) i.e. )/1(TtTω  (denoted as Gamma based TVA parameter)

the characteristics of this equation for  = 2, 12, 50 are shown in Fig. 5.2 where T is

set at 3000. It is shown in the Fig. 5.2 that when the value of  is large then initially,

rate of change of this function is very rapid; on the other hand when the value of  is

relatively small, then initially, rate of change of this function is relatively slow. The

rate of change of this function is all most constant in all stages for each value of .

The variation of px and py for  = 12, are relatively fine for this function and graphical

representations are shown in Fig.5.5 and Fig.5.6 respectively.

5.3 Proposed Method

The Gauss-Seidel based Time-variant adaptive (GSBTVA) hybrid evolutionary

algorithm is the hybridization of evolutionary algorithm with classical Gauss-Seidel

based SR method in which a time-variant adaptation (TVA) technique is used instead

of uniform adaptation (UA) (see Chapter 4). In sequel, it is described here elaborately.

5.3.1 The Basic Equations of Gauss-Seidel Based SR Method

The system of linear Eqn. (1.1.1) can be rewrite as

0 100 200 300 400 500
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

p
x

Generation

125012 .;  xEγ

Figure 5.5: Rate of change of the
variation of px for γ =12 and Ex=0.0315

0 100 200 300 400 500

0.000

0.005

0.010

0.015

p
y

Generation

4124012 /.;  yEγ

Figure 5.6: Rate of change of the
variation of py for  =12 and Ey=0.03145

47

,
1




n

j
ijij bxa  ni ,,2,1  (5.3.1)

In Gauss-Seidel based SR method (see App. C) [Engeln-Müllges, and Uhlig (1996)]

Eqn. (5.3.1) is given by









 








i

n

ij

k
jij

i

j

k
iij

ii

k
i

k
i bxaxa

a
xx

1

)(
1

1

)1()()1()1(


 , (5.3.2)

ni ,,2,1  and ,,k 10

In matrix form Eqn. (5.3.2) can be rewrite in matrix-vector equation as (see §2.5, Eqn.

(2.5.18)):

   
 VxHx  kk 1 , (5.3.3)

where H is called Gauss-Seidel iteration matrix and given by

})1{()(-111 UDILDIH ωω -    (5.3.4)

and

bDLDIV -111)( ωωω (5.3.5)

5.3.2 The Algorithm

Similar to many other evolutionary algorithms, the proposed GSBTVA hybrid

algorithm also always maintains a population of approximate solution to linear

equations. The initialization of population and recombination mechanisms of this

proposed algorithm is same as those of JBUA algorithm. Mutation is achieved by

performing one iteration of Gauss-Seidel based SR method as given by Eqn. (5.3.3).

The mutation is stochastic since ω used in each mutation step, is adapted

stochastically in each generation (iteration). The fitness of an individual is evaluated

based on the error of an approximate solution as described in § 4.2.3. The relaxation

factor is adapted after each generation, depending on how well an individual performs

(in term of error). The main steps of the GSBTVA hybrid evolutionary algorithm

described as follows:

Step 1: Initialization

Generate, randomly from n , an initial population of approximate solutions to the

linear Eqn. 5.3.1 using different relaxation factor for each individual of the

48

population. Denote the initial population as)0(X },,,{)0()0(
2

)0(
1 Nxxx  where N is the

population size. Let 0k where k is the generation counter. And initialize

corresponding relaxation factor  as:












 Nidω

i
2
dω

ω
i

L
i

1for

1for

1

(5.3.6)

Where
N

ωω
d LU 

Step 2: Recombination

Now generate  ckX },,,{)()(
2

)(
1

ck
N

ckck  xxx  as an intermediate population through

the following recombination:

 )()(kck XRX (5.3.7)

where R is a stochastic matrix (§ 4.2.3). Superscript ” ΄ ” is a transposed operator.

Step 3: Mutation

Then generate the next intermediate population  mkX from  ckX as follows: For

each individual  ck
i
x)1(Ni  in population  ckX produces an offspring according

to (see Eqn. (5.3.3))

Ni
ii

ck
iω

mk
i,2,1,)()( 

VxHx . (5.3.9)

where
iωH is called Gauss-Seidel iteration matrix corresponding iω and given by

})1{()(-111 UDILDIH ii
-

i ωω
i

   (5.3.10)

and

bDLDIV -111)( iiω ωω
i

(5.3.11)

Here iω is denoted as relaxation factor of the ith individual and)(mk
i
x is denoted as

ith (mutated) offspring, so that only one iteration is carried out for each mutation.

Step 4: Adaptation

Let  mkx and  mky be two offspring individuals corresponding relaxation factors

xω and yω and ||)(|| me x and ||)(|| me y are their corresponding errors (fitness value).

Then the relaxation factors xω and yω are adapted as follows:

49

(a) If ||,)(||||)(|| mm ee yx  (i) then move xω toward y by using

))(5.0(yxx
m
x ωωpω  (5.3.12)

and (ii) move yω away from xω using









xyyLyy

xyyUyym
y ωωωωpω

ωωωωpω
when,)(

when,)(
ω (5.3.13)

Where   ωxx Tp  0,0.25NE , and ωyy T0,0.25p  |)(N|E , as define above

(Eqn. (5.2.1) and Eqn. (5.2.2)).

(b) If ,||)e(||||)e(|| mm yx  then adapt xω and yω in the same way as above but

reverse the order of m
xω and mωy .

(c) If ||,)(e||||)(e|| mm yx  no adaptation. So that m
xω = xω and y

m
y ωω  .

Step 5: Selection and Reproduction

Selection mechanism is same as that of JBUA algorithm. That is, select the best N/2

offspring individuals according to their fitness values (errors). Then reproduce of the

above selected offspring (i.e. each parents individual generates two offspring). Then

form the next generation of N individuals.

Step 6: Termination

If min{||e(z)|| : zX} <  (Threshold error), then stop the algorithm and get unique

solution. If min{||e(z)|| : zX}  , then stop the algorithm but fail to get any

solution. Otherwise go to Step 2.

The pseudo-code structure of this hybrid algorithm is shown in Fig.C.2 (Appendix C),

where
iH ,

iV and adaptive probability parameters xp and yp are defined by

Eqn.’s (5.3.10), (5.3.11), (5.2.1) and (5.2.2) respectively.

5.4 Performance of the Proposed Algorithm

In order to evaluate the effectiveness and efficiency of the proposed GSBTVA hybrid

50

algorithm, numerical experiments had been carried out on a number of problems to

solve the systems of linear Eqn. (2.2.3) of the form:

bAx  (5.4.1)

The hybrid algorithms (GSBUA and GSBTVA) used in all of our experiments were

very simple and had population size N is two. That is, only two individuals were used.

Boundary of Relaxation factors Lω and Uω were set at 0 and 2 respectively so that

initial ω ’s became ω1 = 0.5 and ω2 =1.5 respectively in all of the experiments. Also

the approximate initial boundary, Ex and Ey were set at 0.125 and 0.03125

respectively in all of the experiments. Moreover for time variant parameter (TVA)

)}/(11ln{   tT , λ was set at 50 and for time variant parameter

)/(1 TtTω  , γ was set at 12.0 and maximum generation, T, was set at 2500 in all

of the experiments. The stochastic matrix R was same as Eqn.’s (4.3.2 – 3) (see §

4.3). The following settings were also valid all through the experiments:

The dimension of unknown variables was 100n , each individual x of population X

was initialized from the domain 30)(-30,100  randomly and uniformly. For each

experiment, a total of ten independent runs were conducted and the average results are

reported here.

First problem was to solve linear equations, Eqn. (5.4.1), where naii 2 and ibi 

for ni ,,1 and jaij  for ji  , nji ,,1,  (i.e. problem P1). The problem was

to be solved with an error smaller than 1210 (threshold error). Fig. 5.7 shows the

numerical results (in graphical form) achieved by the proposed time variant adaptive

(TVA) based hybrid algorithm (GSBTVA) and the Uniform Adaptation (UA) based

hybrid algorithm (GSBUA) – (A) proposed GSBTVA hybrid algorithm where TVA

parameter was defined by)}/(11ln{   tT , (B) proposed GSBTVA hybrid

51

algorithm where TVA parameter was defined by )/(1 TtTω  and (C) GSBUA

hybrid algorithm [He et. al. (2000)].

It is observed in Fig. 5.7 that the rate of convergence of proposed algorithm with both

TVA parameters is much better than that of UA-based algorithm and TVA-based

algorithm exhibits a fine local tuning. Another observation is that the TVA parameter

)}/(11ln{   tT make algorithm faster than TVA parameter )/(1 TtTω  .

Also for former TVA parameter, algorithm needs not pre-estimate maximum

generation, T. On the other hand for later TVA parameter, algorithm need pre-

estimate T.

Table 5.1 presents six test problems, labeled from P1 to P6, with dimension, 100n .

For each test problem Pi: i = 1,2 …6, the coefficient matrix A and constant vector b

were all generated uniformly and randomly within given domains (shown in 2nd

column with corresponding rows of Table 5.1). For different problems (P1–P6)

corresponding threshold errors,  , is shown in the Table 5.1. Also note that the TVA

parameter was defined as Eqn. (5.2.3). Table 5.1 shows the comparison of the number

0 500 1000 1500 2000 2250
 1E - 12

 1E - 10

1E - 8

1E - 6

0.0001

0.01

 1

 100

10000

 1000000

 A
 B
 C

E
rr

or

Generation

Figure 5.7: Curve (A) represents the evolution history of proposed GSBTVA (used Lambda
based TVA parameter) hybrid algorithm, curve (B) represents the evolution history of proposed
GSBTVA (used Gamma based TVA parameter) hybrid algorithm and curve (C) represents the
evolution history of GSBUA hybrid algorithm.

52

of generation (iteration) and relative elapsed time used by the GSBUA hybrid

algorithm and by proposed GSBTVA hybrid algorithm to the given preciseness, 

(see column three of the Table 5.1). One observation can be made immediately from

the Table 5.1, except for problem P3 where the GSBUA algorithm performed near to

same as proposed GSBTVA algorithm, proposed TVA-based hybrid algorithm

(GSBTVA) performed much better than the UA-based hybrid algorithm (GSBUA)

for all other problems.

L
ab

el
 o

f
T

es
t

P
ro

bl
em

s

Domain of the elements of the coefficient

matrix A & right side constant vector b of

test Problems
T

hr
es

ho
ld

 E
rr

or
,

GSBUA Alg. GSBTVA Alg.

E
la

ps
ed

T
im

e

G
en

er
at

io
n

(e
la

ps
ed

)

E
la

ps
ed

T
im

e

G
en

er
at

io
n

(e
la

ps
ed

)

P1 aii= 2n; aij =j; bi= i 10-12 107 1812 60 910

P2 aii(-70,70); aij (-2,2) ; bi(-2,2) 10-12 18 297 06 108

P3 aii(-70,70); aij (0,4) ; bi(0,70) 10-12 29 465 27 434

P4 aii(1,100); aij (-2,2); bi = 2 10-12 75 1260 39 445

P5 aii = 200; aij (-30,30); bi(-400,400) 10-11 35 596 21 359

P6 aii(-70,70); aij (0,4); bi(0,70) 10-09 350 5719 191 3236

 Elapsed Times are shown, in column four and in column six, just for relative comparison of two algorithms.

It is measure in second Fraction time of second is not counted.

Fig. 5.8 – 5.9 show the nature of self-adaptation of relaxation factors used in the

GSBUA hybrid algorithm and Fig. 5.10 – 5.11 show the nature of self-adaptation of

relaxation factors used in the proposed GSBTVA hybrid algorithm for ω1 = 0.5 and

ω2 = 1.5 respectively. It is observed in Fig. 5.8 – 5.9 and Fig. 5.10 – 5.11 that the self-

adaptation process of relaxation factors in TVA-based hybrid algorithm is much better

than that of in UA-based hybrid algorithm. Fig. 5.10 – 5.11 show that how ω1 = 0.5

and ω2 = 1.5 were adapted to its near optimum value by the time variant adaptive

process and reached to near optimal position for which rate of convergence was

accelerated. On the other hand, Fig. 5.8 –5.9 show that initially ω1 = 0.5 and ω2 = 1.5,

by uniform self-adaptation process, did not gradually reach to the near optimal

position.

Table 5.1
Comparison of existing GSBUA and proposed GSBTVA hybrid algorithms for several

randomly generated test problems

53

0 500 1000 1500 2000 2500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ω

Generation

Figure 5.8: Self-adaptation of 1 = 0.5 in
the UA-based Algorithm

0 500 1000 1500 2000 2500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ω

Generation

Figure 5.9: Self-adaptation of 2 = 1.5 in
the UA-based Algorithm

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
ω

Generation

Figure 5.11: Self-adaptation of 2 =1.5 in the
TVA-based Algorithm.

0 200 400 600 800 1000 1200

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ω

Generation

Figure 5.10: Self-adaptation of 1 = 0.5 in the TVA-
based Algorithm

Figure 5.12: A graphical view of self-adaptation process of relaxation factors 1 = 0.5
and ω2 = 1.5 in the GSBTVA- Algorithm

0 20 40 60 80

0.4

0.6

0.8

1.0

1.2

1.4

1.6





ω

Generation

(a)

0 5 10 15 20 25

0.4

0.6

0.8

1.0

1.2

1.4

1.6



ω

Generation

(b)

54

Fig. 5.12 shows also the graphical representation of self- adaptation process of the

relaxation factors ω1 = 0.5 and ω2 = 1.5 in the proposed GSBTVA algorithm

explicitly. It is observed that  ‘s were adapted gradually to its approximate optimal

relaxation factor 0.7

5.5 Summary

In this paper, two time-variant adaptive (TVA) parameters are developed. By these

two parameters, a Gauss-Seidel based time-variant adaptive hybrid evolutionary

algorithm has been proposed for solving linear equations. The proposed GSBTVA

hybrid algorithm integrates the classical Gauss-Seidel based SR method with

evolutionary computation techniques. The time-variant based adaptation is introduced

for adaptation of relaxation factors, which makes the algorithm more natural and

accelerates its rate of convergence. The recombination operator in the algorithm

mixed two parents by a kind of averaging, which is similar to the intermediate

recombination often used in evolution strategies. The mutation operator is equivalent

to one iteration in the classical Gauss-Seidel based SR method. The mutation is

stochastic and time variant since the relaxation factors used in mutation are adapted

stochastically and the time variant adaptation is used to adept relaxation factor ω .

The proposed TVA-based relaxation factor ω adaptation technique acts as a local fine

tuner and helps to escape from the disadvantage of uniform adaptation. This

preliminary investigation has showed that the proposed GSBTVA hybrid algorithm

performs better than the GSBUA hybrid algorithm. Also GSBTVA hybrid algorithm

is more efficient and robust than the GSBUA hybrid algorithm.

55

CHAPTER 6

Jacobi Based Time Variant Adaptive Hybrid

Algorithm

6.1 Introduction

In Chapter 4, a Jacobi based hybrid evolutionary algorithm has been proposed where a

uniform adaptation technique is used. On the other hand in chapter 5, a Gauss-Seidel

based hybrid evolutionary algorithm has been proposed where a time variant

adaptation is used. In chapter 5, it is observed that a time-variant adaptive based

algorithm outperforms the uniform adaptive based algorithm. And it is also discussed

in chapter 4, that in parallel environment Jacobi based uniform adaptive algorithm

outperforms the Gauss-Seidel based uniform adaptive algorithm.

This chapter is devoted to developing a new hybrid evolutionary algorithm. This

hybrid algorithm uses Jacobi based time variant adaptive (JBTVA) algorithm instead

of Gauss-Seidel based time variant adaptive (GSBTVA) algorithm. As Jacobi based

SR method can be implemented in parallel processing environment efficiently, so

proposed JBTVA hybrid evolutionary algorithm can be implemented in parallel

processing environment efficiently.

6.2 Proposed Method

In this section, a new hybrid evolutionary algorithm is proposed in which Jacobi

based SR method, evolutionary computation techniques and time variant adaptation

techniques are used. This proposed Jacobi-based hybrid evolutionary algorithm also

does not require a user to guess or estimate the optimal relaxation factor ω . The

proposed algorithm initializes uniform relaxation factors in a given domain and

56

“evolves” it. The proposed algorithm integrates the Jacobi-based SR method with

evolutionary computation techniques, which uses recombination, mutation and

selection mechanisms. It makes better use of a population by employing different

equation-solving strategies for different individuals in the population. Then these

individuals can exchange information through recombination and the error is

minimized by mutation and selection mechanisms.

6.2.1 The Algorithm

The main steps of the Jacobi Based Time-Variant Adaptive (JBTVA) hybrid

evolutionary algorithm are Initialization, Recombination, Mutation, Adaptation,

Selection, Reproduction and Halt respectively. Initialization, Recombination,

Selection, adaptation mechanisms and Halt criteria of this proposed algorithm is same

as those of GSBTVA algorithm (see § 5.3). And Mutation mechanism is same as that

of JBUA algorithm (see § 4.2). The pseudo-code structure of this hybrid algorithm is

shown in Fig.C.2 (Appendix C), where
iH ,

iV are defined by Eqn.’s (4.2.10) and

(4.2.11) (see § 4.2), and adaptive parameters xp and yp are defined by Eqn.’s

(5.2.1) and (5.2.2) (see § 5.2) respectively.

6.3 Performance of the Proposed Algorithm

In order to evaluate the effectiveness of the proposed JBTVA hybrid algorithm,

numerical experiments had been carried out on a number of problems to solve the

systems of linear Eqn. (2.2.3) of the form:

bAx  (6.3.1)

The hybrid algorithms (JBUA and JBTVA) used in all of our experiments were very

simple and had population size N is two. That is, only two individuals were used.

Boundary of Relaxation factors Lω and Uω were set at 0 and 2 respectively so that

initial ω ’s became ω1 = 0.5 and ω2 = 1.5 respectively in all of the experiments. Also

the approximate initial boundary, Ex and Ey were set at 0.125 and 0.03125

respectively in all of the experiments. Moreover for time variant parameter (TVA)

57

)}/(11ln{ λtλTω  (see Eqn. 5.2.3), λ was set at 50 in all of the experiments.

Each individual was initialized from the domain 30)(-30,0 10 randomly and

uniformly. The stochastic matrix R was same as Eqn.’s (4.3.2 – 3). The following

settings were also valid all through the experiments:

The dimension of unknown variables was 100n . For each experiment, a total of

ten independent runs were conducted and the average results are reported here.

First problem was to solve linear equations, Eqn. (6.3.1), where parameters were

randomly selected from the domain aii(-70,70) and bi(0,70) for ni ,,1 and

aij (0,7); for ji  , nji ,,1,  (i.e. problem P2). The problem was to be solved

with an error smaller than 610 (threshold error). Fig. 6.1 shows the numerical results

(in graphical form) achieved by the proposed JBTVA (Jacobi based time-variant

adaptive) hybrid algorithm and JBUA (Jacobi based Uniform Adaptation) hybrid

algorithm. It is observed in Fig. 6.1 that the rate of convergence of TVA-based

algorithm are better than that of UA-based algorithm.

0 500 1000 1500 2000 2500 3000 3500 4000
1E-6

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000
 A
 B

Er
ro

r

Generation

Figure 6.1: Curve (A) represents the evolution history of proposed JBTVA hybrid algorithm
and curve (B) represents the evolution history of JBUA hybrid algorithm.

58

Table 6.1 presents ten test problems, labeled from P1 to P10, with dimension, 100n .

For each test problem Pi: i = 1, 2,. . , 10, the coefficient matrix A and constant vector

b were all generated uniformly and randomly within given domains (shown in 2nd

column with corresponding rows of Table 6.1). For different problems (P1–P10)

corresponding threshold errors,  , is shown in the Table 6.1. This table shows the

comparison of the number of generation (iteration) and relative elapsed time used by

the JBUA and proposed JBTVA hybrid algorithms to the given preciseness,  (see

column three of the Table 6.1). One observation can be made immediately from this

table, except for problem P10 where the JBUA algorithm performed near to same as

JBTVA algorithm, proposed JBTVA hybrid algorithm performed much better than

the JBUA hybrid algorithm for all other problems.

L
ab

el
 o

f
T

es
t

Pr
ob

le
m

s

Domain of the elements of the coefficient

matrix A & right side constant vector b of test

Problems

T
hr

es
ho

ld
 E

rr
or

,

JBUA Alg. JBTVA Alg.
E

la
ps

ed
 T

im
e

(i
n

Se
co

nd
)

G
en

er
at

io
n

(e
la

ps
ed

)
E

la
ps

ed
 T

im
e

(i
n

Se
co

nd
)

G
en

er
at

io
n

(e
la

ps
ed

)

P1 aii(50,100); aij (-20,20); bi(-100,100) 10-11 10.556 1765 3.068 666

P2 aii(-70,70); aij (0,7); bi(0,70) 10-6 15.797 3468 10.177 2224

P3 aii(-100,100); aij (-10,10); bi(-100,100) 10-6 20.76 5052 14.009 3060

P4 aii(2,10); aij (-2,2); bi(-5,5) 10-6 2.236 484 2.021 435

P5 aii (2,3); aij (-1,1); bi(2,5) 10-6 26.111 5743 18.896 4112

P6 aii =5 ; aij = {1, 0}; bI = 2 10-12 2.089 439 1.52 330

P7 aii =20n; aij = j ; bI = i 10-12 0.891 67 0.73 47

P8 aii= 2i2; aij =j; bi= i 10-12 1.77 277 1.248 119

P9 aii =70; aij (-10,10); bi(70,70) 10-12 0.794 53 0.641 28

P10 aii (1,100); aij (-2,2); bI =2 10-12 2.390 230 2.272 225

 Elapsed Times are shown, in column four and in column six, just for relative comparison of two

algorithms.

Table 6.1
Comparison between JBUA and proposed JBTVA hybrid algorithms for several randomly

generated test problems

59

6.4 Parallel Processing

As mention earlier (see Chapter 4) that parallel searching is one of the main properties

of evolutionary computational techniques. And since classical Jacobi based SR

method can be implemented in parallel processing environment efficiently [Gerald

and Wheatley (1994)]. So JBTVA, as like as JBUA, can also be implemented,

inherently, in parallel processing environment efficiently.

6.5 Summary

In this chapter, a new hybrid evolutionary algorithm called JBTVA hybrid

evolutionary algorithm has been proposed to solve system of linear equations and

have tested on various test problems. This hybrid algorithm is developed on the based

of classical Jacobi-based SR method. The effectiveness of this hybrid algorithm is

compared with that of JBUA hybrid algorithm. This preliminary investigation has

showed that proposed JBTVA algorithm outperforms JBUA hybrid algorithm.

Another significant property of this proposed algorithm is that parallel processors can

be implement efficiently and inherently to this algorithm.

60

CHAPTER 7

Validity of the Algorithms

7.1 Introduction

As mention earlier a solvable problem, solving by iterative method, may converge or

diverge depend on the order of system arranged (see Fig.2.1). There is no any

necessary condition of a solvable system of linear equations to solve by iterative

methods. But there are some sufficient conditions, for iterative methods, for which

system of linear equations must be converged [Chapra and Canale (1990)]. Proposed

hybrid evolutionary algorithms (JBUA, GSBTVA and JBTVA) are also one kind of

iterative method. So these hybrid algorithms follows some theorems so that the

algorithms are converged to the required solutions. This chapter is devoted to

proposed two theorems and then proved and verified the theorems. One theorem is

related to the convergence of the algorithms and another is related to the adaptation of

the relaxation factors of the algorithms. These verifications may establish the rapid

convergence of the proposed hybrid algorithms.

7.2 Theorems

The following theorem establishes the rapid convergence of the hybrid algorithms.

7.2.1 Convergence Theorem

Theorem-1: If there exist an  10  such that, for the norm of ωH ,

1 ||||H , then 


 xx)(lim k

k
,

where *x is the solution vector to the system of linear equations i.e., bAx *

61

Proof: Let)(kX be the population at kth iteration so that

},1,2,:{)k(
i

)(Nik  xX

Let)(k
ie be the error between the approximate solution)(k

ix and exact solution x i.e.

)(k
ie = *)(xx k

i

Then according to the recombination

  (k)
j

N

1j
ij

ck
i xx 



  r , ,N1,2,i 

 ||||||||)()(  xxe ck
i

ck
i

|||| *)(xx  


N

1j

k
jijr

  ||||
N

1j
ij

N

1j

k
j 







 xx rrij

 



N

1j
ijr 1 and Nirij ,,2,1,0 

  ||||)(ck
ie    ||||  xx k

jijr

    |||| xx k
jijr    |||||||| xx k

jijr

 ||||)(ck
i
e   ||||  xx k

jijr

 ||||)(ck
i
e <   },1||:{||max Njk

i e

Again according to mutation for Ni ,2,1

   
ii ω

ck
iω

mk
i VxHx  

and also since
ii ωω VxHx   then

   )(** xxHxx   ck
iω

mk
i i

     ||)(|||||| ** xxHxx   ck
iω

mk
i i

  ||)|||||| *xxH  ck
i(

i

||||
iωH ||||)(ck

i
e

|||| ωi
H   },,1;||{||max Njk

j e

   },1,;||{||max|||| (k)
j Njmk

i  ee 

Now according to the selection mechanism, we have for Ni ,,1

62

    |||||||| mk
i

1k
i

  ee   },1,j;||emax{|| k
j N

This implies that the sequence   }0,1,2,};,1,;||e{||{max 1k
j   kNj is

strictly monotonic decreasing and thus convergent. Note that, here,)(mk
ie  denotes

error of the ith individuals at kth-mutated generation. Also note that symbol m is used

just as an indicator of mutation.

7.2.2 Adaptation Theorem

The following theorem justifies the adaptation technique for relaxation factors used in

proposed hybrid evolutionary algorithms.

Theorem –2: Let)ρ(ω be the spectral radius of matrix ωH , *ω be the optimal

relaxation factor, and let xω and yω are any two relaxation factors. Assume)ρ(ω is

monotonic decreasing when *  and)ρ(ω is monotonic increasing when

*  . Also consider)ρ()ρ(yx ωω  . Then

(i))(ρ)(ρ x
m
x ωω  , when)()(0.5 yx

m
x ωωω  

where τ),(xx EE , Ex=
)(2

~

yx

xy






,

(ii))ω(ρ m
y <)ωρ(y when)sign(xyy

m
y ωωωω   , where |*|0 yωω   ,

and xy ωωω * or *ωωω yx  and

(iii))ω(ρ m
y <)ωρ(y when)*sign(yy

m
y ωωωω   , where |*|0 yωω   .

Proof: We first assume that)(ωρ is monotonic decreasing when *ωω  and)(ωρ is

monotonic increasing when *ωω  . Also let xω and yω are any two relaxation

factors and let)()(yx ωρωρ  . Then there will be four cases:

Case-1 Both *ωω,ω yx  (see Fig. 7.1):

Since)(ωρ is monotonic decreasing when *ωω  and as assume)()(yx ωρωρ  ;

63

so yx ωω  .

Now since))((yxx
m
x ωω0.5ωω   where ],[xx EE , so m

xω must go away

from xω and lies between xω and yω ; i.e. y
m
xx ωωω  (see Fig.7.1). Now as)(ωρ

is monotonic decreasing when *ωω  , so)(ρ)(ρ)(ρ x
m
xy ωωω 

i.e.)(ρ)(ρ x
m
x ωω  (Proved the part (i))

Again since yx ωω  and)sign(xyy
m
y ωωωω   where |*|0 yωω   and

*ωωω yx  . So)sign(xy ωω  is positive and therefore m
yω go away from xω and

yω to *ω . That is *ωωω m
yy  (see Fig.7.1). Now since)(ωρ is monotonic

decreasing when *ωω  , therefore)ρ()ρ(*)ρ(y
m
y ωωω 

i.e.)ρ()ρ(y
m
y ωω  . (Proved the part (ii))

Also if)*sign(yy
m
y ωωωω   , where |*|0 yωω   . Then, since in this

case, *ωω,ω yx  , so)*sign(yωω  is positive and therefore m
yω go away from

yω (as well as xω) to *ω . That is *ωωω m
yy  (see Fig.7.1). Now since)(ωρ is

monotonic decreasing when *ωω  ,

)ρ()ρ(y
m
y ωω  (Proved the part (iii))

Case-2 Both *ω,ωω yx  (see Fig. 7.2):

Since)(ωρ is monotonic increasing when *ωω  and as assuming)()(yx ωρωρ 

so yx ωω  .

ω

0 xω m
xω yω m

yω *
2

0 y
m 2

Figure 7.1: Decrease both spectral radii of
x, y when x, y < *

(


) ω

0 * m
yω yω m

xω xω 2

2

(


)

Figure 7.2: Decrease both spectral radii of
x, y when x, y > *

64

Now since))((yxx
m
x ωω0.5ωω   where ],[xx EE so m

xω must go away

from xω and lies between yω and xω ; i.e. x
m
xy ωωω  .(see Fig. 7.2). Now as

)(ωρ is monotonic increasing when *ωω  , so)(ρ)(ρ)(ρ x
m
xy ωωω 

i.e.)(ρ)(ρ x
m
x ωω  . (Proved the part (i))

Again since)sign(xyy
m
y ωωωω   where |*|0 yωω   and *ωωω yx  .

So)sign(xy ωω  is negative and therefore m
yω go away from yω (as well as xω and)

to *ω . Therefore we have y
m
y ωωω * (see Fig.7.2). Now since)(ωρ is monotonic

increasing when *ωω  , therefore)ρ()ρ(*)ρ(y
m
y ωωω 

i.e.)ρ()ρ(y
m
y ωω  . Hence proved the theorem of part (ii) completely.

Also if)*sign(yy
m
y ωωωω   , where |*|0 yωω   . Then, since in this case

*ω,ωω yx  (and yx ωω ), so)*sign(yωω  is negative and therefore m
yω go away

from yω to *ω . That is y
m
y ωωω * (see Fig.7.2). Now since)(ωρ is monotonic

increasing when *ωω  , therefore as above)ρ()ρ(*)ρ(y
m
y ωωω 

i.e.)ρ()ρ(y
m
y ωω  (Proved the part (iii))

Case-3 If yx ωωω  * (see Fig. 7.3):

Given)(ωρ is monotonic decreasing when *ωω  and monotonic increasing when

*ωω  and)()(yx ωρωρ  .

Figure 7.3: Decrease spectral radius of x and y

when x < * < y

ω

0 xω m
xω ω m

yω yω 2

(


)

Figure 7.4: Decrease spectral radius of x and y

when x > * >y

ω

0 yω m
yω ω m

xω xω 2

(


)

65

Now since))((yxx
m
x ωω0.5ωω   where ],[xx EE so m

xω must go away

from xω and lies between xω and yω ; i.e. y
m
xx ωωω  (see Fig. 7.3). . Now as

)(xωρ must be the largest spectral radius, in this case, within the range y
m
xx ωωω 

)(ρ)(ρ x
m
x ωω  (Proved the part (i))

Again as)*sign(yy
m
y ωωωω   , where |*|0 yωω   . Then, since in this

case yx ωωω  * and so)*sign(yωω  is negative and therefore m
yω go away from

yω to *ω . That is y
m
y ωωω * (see Fig.7.3). Now since)(ωρ is monotonic

increasing when *ωω  , therefore

)ρ()ρ(*)ρ(y
m
y ωωω  i.e.)ρ()ρ(y

m
y ωω  (Proved the part (iii))

Case-4 If xy ωωω  * (see Fig. 7.4):

Given)(ωρ is monotonic decreasing when *ωω  and monotonic increasing when

*ωω  and)()(yx ωρωρ  .

Now since))((yxx
m
x ωω0.5ωω   where ],[xx EE so m

xω must go away

from xω and lies between yω and xω ; i.e. x
m
xy ωωω  (see Fig. 7.4). Now as

)(xωρ must be the largest spectral radius, in this case, within the range

x
m
xy ωωω 

)(ρ)(ρ x
m
x ωω  (Proved the part (i))

Again as)*sign(yy
m
y ωωωω   , where |*|0 yωω   . Then, since in this

case xy ωωω  * and so)*sign(yωω  is positive and therefore m
yω go away from

yω to *ω . That is y
m
y ωωω * (see Fig.7.4). Now since)(ωρ is monotonic

decreasing when *ωω  , therefore)ρ()ρ(*)ρ(y
m
y ωωω 

66

i.e.)ρ()ρ(y
m
y ωω  (Proved the part (iii))

Hence proved the theorem.

7.3 Summary

In this chapter two main theorems of hybrid evolutionary algorithms are stated and

verified. The Convergence Theorem states the sufficient condition of the convergence

of the algorithms; whatever be the initial (approximate) solution chosen and

Adaptation Theorem justifies the adaptation of relaxation factors. Considering all the

above situations, it may conclude that for a diagonally dominant coefficient matrix,

any initial solution converges to true solution within some generations. Due to

adaptation, it may also conclude that the comparatively worse relaxation factor (xω)

is always improved and the comparatively better relaxation factor (yω) is also

improved with a very high probability in each generation. Hence, the proposed

adaptation mechanism increases the rate of convergence.

67

CHAPTER 8

Discussions, Conclusions and

Recommendations

8.1 Introduction

The main goal of this thesis was to develop and analyze some new hybrid

evolutionary algorithms, which can be applied successfully to real-world problems for

solving linear equations. The understanding and applications of evolutionary

algorithms are, thereby, extended substantially by this work. Although a brief

summary for each chapter is provided at the end of respective chapter, this chapter

deals with the comprehensive discussions of the overall work in chapter basis.

Details conclusions are drawn form the perspective of hybridization of evolutionary

algorithm with classical numerical methods for solving linear equations. Possible

future works, which can be extended from this study, are also mention in this chapter.

8.2 Discussions

Evolutionary algorithms have mostly been used to solve various optimization (either

numerical or combinatorial) and evolutionary learning (supervised, reinforcement, or

unsupervised) problem. In this work, some new hybrid evolutionary algorithms have

been developed by incorporating evolutionary computational techniques in several

classical numerical methods. The algorithms came into view as novel application of

evolutionary computational techniques in equation solving by simulated evolution.

Some large sets of linear equations have been solved evolutionary by using these new

hybrid algorithms. In each of the experiment, a total of ten independent runs were

conducted and the average results are reported in this thesis. Also all the algorithms

were implemented in Borland C++ environment using Pentium IV PC (1.28GHz).

68

In Chapter 2, an attempt has been made to overview the basic constituents

and properties of system of linear equations. Some well-known classical direct

methods for solving linear equations are given in this chapter. Classical Iterative

techniques, SR technique and some important iterative methods are also discussed in

this chapter some elaborately.

In Chapter 3, another attempt has been made to overview the basic

constituents and commitments, comparisons, properties, and merits and demerits of

major evolutionary algorithms in terms of their canonical forms. Also attempt has

been made to overview the hybrid evolutionary algorithm. The Gauss-Seidel Based

Uniform Adaptive hybrid algorithm [He et. al (2000)] for solving linear equations

also discussed in brief in this chapter.

In Chapter 4 a new hybrid evolutionary algorithm called Jacobi Based

Uniform Adaptive (JBUA) hybrid algorithm has been proposed and tested on various

test problems. This algorithm can be implemented in parallel processing environment

whereas GSBUA [He et. al (2000)] hybrid algorithm cannot be implemented,

inherently, efficiently. The effectiveness of this algorithm is compared with other

available hybrid algorithm (GSBUA) as well as classical Jacobi-SR method. This

preliminary investigation has showed that this hybrid algorithm outperforms classical

Jacobi-SR method and comparable with GSBUA with respective to convergence

reliability as well as to solution precision.

In Chapter 5, another new hybrid evolutionary algorithm called Gauss-Seidel

Based Time-Variant Adaptive (GSBTVA) hybrid algorithm has been proposed and

tested on various test problems. This algorithm has utilized two new genetic

operations, which are closely resembled to natural evolved systems. The effectiveness

of this algorithm is compared with contemporary Gauss-Seidel Based Uniform

Adaptive (GSBUA) hybrid evolutionary algorithm. This elementary investigation has

showed that this hybrid algorithm is more efficient compare to contemporary GSBUA

algorithm.

In Chapter 6, another new hybrid evolutionary algorithm called Jacobi Based

Time-Variant Adaptive (JBTVA) has been proposed and tested by various test

problems. This algorithm has also utilized two genetic operations developed in

chapter 5, which are closely resembled to natural evolved systems as state earlier. The

69

effectiveness of this algorithm is compared with contemporary Jacobi Based Uniform

Adaptive (GSBUA) hybrid evolutionary algorithm. The proposed hybrid algorithm

outperforms JBUA with respect to evaluation time, solution precision and

convergence reliability.

In Chapter 7 two theorems related to the proposed hybrid algorithms are

stated and proved. The convergence theorem justifies the convergence of the hybrid

algorithms. And Adaptation theorem conforms that relaxation factors are adapted to

reducing spectral radius, so that rate of convergence are accelerated.

8.3 Concluding Remarks

Essentially, the credibility of evolutionary algorithms relies on their ability to solve

difficult, real-world problems with the minimal amount of human effort. If it cannot

make the successful transition from academic exercise to physical application it will

be abandoned in favor of other techniques. The overall goal of this thesis was to

develop and analyze a class of hybrid evolutionary algorithms, which can be applied

to real-world problems of equation solving successfully. Thus the understanding and

applications of evolutionary algorithms are clearly extended by this thesis work.

Here, three hybrid evolutionary algorithms are proposed for solving system of linear

equations. The significance of these works lies in the novel used of evolutionary

computational techniques in the area where they had seldom been used. The proposed

hybrid algorithms integrate the classical iterative (Jacobi, Gauss-Seidel) methods with

evolutionary computation techniques. The recombination operator in the hybrid

algorithms mixed two parents by a kind of averaging, which is a similar to the

intermediate recombination often used in evolution strategies [Bäck el. al. (1997)].

The mutation operator is equivalent to one iteration in the classical iterative (Jacobi,

Gauss- Seidel) methods. However, the mutation is stochastic as a result of stochastic

self- adaptation of the relaxation factor.

70

In GSBTVA and JBTVA (Chapter 5 and Chapter 6) time variant adaptive

operators is proposed abstracted on some natural metaphor and biological

observations. The time-variant based adaptation is introduced for adaptation of

relaxation factors, which makes the algorithm more natural and accelerates its rate of

convergence. The proposed time-variant adaptation technique of relaxation factor acts

as a local fine tuner and helps to escape from the disadvantage of uniform adaptation.

Numerical experiments with the test problems have shown that the proposed TVA-

based hybrid algorithms perform better than the UA-based hybrid algorithms.

There are three hybrid evolutionary algorithms are proposed, two of them are

developed based on classical Jacobi method and one of them developed based on

classical Gauss-Seidel method. As Jacobi-based hybrid algorithms can be easily

implemented in parallel computing environment efficiently [Gerald, and Wheatley

(1994]. So, if more parallel processors are available, then former (Jacobi based)

algorithms may be implemented in parallel processing environment efficiently and

reduce a significant amount of time compared to later (Gauss-Seidel-based) hybrid

algorithms But if there are unavailable sufficient parallel processors then Gauss-

Seidel based hybrid algorithm is preferable.

There are two theorems, related to the proposed hybrid algorithms, are stated and

proved. The first theorem justifies the convergence of the hybrid algorithms. This

theorem is a sufficient for convergence of the algorithms. But this is not the necessary

condition for convergence of the algorithms. The second theorem establishes that the

relaxation factors are adapted dynamically to the near optimal relaxation factor for

which the rate of convergence is increased. Therefore, these theorems justify the rapid

convergence of the proposed hybrid algorithms whatever the relaxation factor are

initially chosen. It may be also concluded that the time variant adaptive (TVA) based

adaptation technique is better than uniform adaptive (UA) based adaptation technique.

Finally it may be concluded that all the proposed hybrid algorithms are more efficient

and robust than the classical methods. The hybrid algorithms are much less sensitive

on the initial values of the relaxation factor ω . There is no need for any preliminary

experiments to estimate the relaxation factor. They are also very simple and easy to

implement.

71

8.4 Recommendations for Future Research

There are many ways in which the work in this thesis can be extended. The following

possible areas are recommended to extend the present work:

1. The number of population, all of the experiments done in this thesis, was only

two. By increasing the size of the population, the impact of population size on

performance of hybrid algorithms should be studied.

2. The recombination in all the experiments was simple and deterministic. The

impact of different recombination parameters should be investigated. The

recombination can be made stochastic by introducing random recombination. And

then performance of the algorithms should be studied.

3. The self-adaptation scheme for relaxation factors should be studied further.

4. The impact of different selection mechanisms on performance of hybrid

algorithms should be studied.

5. Comparison among the proposed with other classical methods should be studied.

6. Parallel hybrid algorithms should be investigated.

7. The concept of hybridization may be extended to solve non-linear equations and

differential equations.

72

APPENDIX A

Errors

A.1 Errors in Numerical Computation

The process of solving physical problems can be roughly divided into three phases.

The first consists of constructing a mathematical model for the corresponding

physical problem. In most cases, this mathematical model cannot be solved

analytically and hence a numerical solution is required. In which case, the second

phase in the solution process usually consists of constructing an appropriately

numerical model or approximate to the mathematical model. A numerical model is

one where every thing in principle can be calculated using a finite number of basic

arithmetic operations. The third phase of the solution process is the actual

implementation and solution of the numerical model. Each of these phases involves

some approximation. In the first phase, the real world problem is approximated by a

mathematical model, while in the second phase the mathematical model is

approximated by a numerical model and finally in the third phase the numbers are

approximated. The reliability of the final result will depend on these approximations.

Hence estimating the error in each of the phases is an integral part of the solution

process. Without an error estimate or bound, the solution is of little use. Each of these

three phases of solution process introduces errors in the final result [Antia (1991),

Krishnamurthy and Sen (1989)]. In this section, we give a brief introduction to

various sources of errors in numerical computations.

(a) Modeling Error: - In the first phase, the errors could be either due to our

inadequate understanding of the physical problem, or else the system is so

complicated that we have to introduce some approximations in order to make the

problem tractable. This error is referred to as the modeling error [Antia (1991),

Krishnamurthy and Sen (1989)].

73

(b) Truncation Error: - In the second phase, error could be introduced when an

essentially infinite process like summing an infinite series or evaluating an

integral is approximated by a finite numerical process. This error is referred to as

truncation error, since it is usually due to truncating an infinite process. This

error of course, depends on the mathematical model. The rate, at which the

truncation error tends to zero as the parameters of the method vary, is usually

referred to as the order of convergence. The truncation error  xe is said to be

  xfO (this is called big Oh notation) as x tends to L, if

 
  

 xf

xe
lim

Lx

Here x is the parameter of the method, which is usually selected to be the number

of points or steps n, in which case the limit is taken as n [Antia (1991),

Krishnamurthy and Sen (1989)].

(c) Round off Error: - In the third phase, involving the actual numerical

computation, there are errors due to finite precision with which the calculations

can be carried out. This type of error is called round off error. It is known that at

most 2s different real numbers can be represented using a s-bit word in computer

[Antia (1991), Krishnamurthy and Sen (1989), Wilkinson (1963)]. However,

between any two distinct real numbers, there are infinite real numbers. Obviously,

all these numbers cannot be represented in the computer. Hence, the computer’s

number system is necessarily “quantized” in some sense. The quantization of

number system necessarily introduces some uncertainty in numerical calculation,

which is the round off error [Antia (1991), Krishnamurthy and Sen (1989)]. The

round off error depends on the number and the bound on the magnitude of this

error depends on the exponent part of the number being represented. For floating

point representation, using a base b with s-digit fraction part, the largest fraction

part that can be represented in the machine is given by

 sb
b

x

x

2



where xδ is the round off error in representing x [Antia (1991), Krishnamurthy

and Sen (1989)]. For a machine using binary arithmetic the largest fraction part

s 2 . Thus, in quantum arithmetic  is not a universal constant, but varies

74

from machine to machine. Note that  is either the smallest positive number

which if added to one gives a result greater than one or it is the largest positive

number which if added to one gives a result equal to one [Antia (1991),

Krishnamurthy and Sen (1989)].

The effect of round off error is significant in various arithmetic operations. It

may be noted that an iterative method for numerical computation does not

usually converge to an accuracy better than that permitted by round off error.

Hence, such methods give ready estimate of round off error. Probably the best

way of estimating error in numerical calculation is to repeat the computations

using a different algorithm.

(d) Blunder: - In the first phase, we may overlook some basic assumption required to

obtain the mathematical model, or there could be an error in deriving the

mathematical equations, or the input data could be completely wrong. Similar

error could occur in the second phase of the solution process also. These errors

are known as blunder [Antia (1991)]. The blunders mainly occur at the

programming stage.

(e) Bugs: - The programming errors are usually referred to as bugs [Antia (1991)].

75

APPENDIX B

Definitions and Theorems

B.1 Some Definition of Matrices

Those definitions for real matrices are assembled that are needed or associated with

this thesis.

(a) Square Matrix: - A matrix][ikaA is said to be square matrix if it has equal

number of rows and column i.e. m = n. If a square matrix has n rows then it is

called a square matrix of order n or n-square matrix. The elements iia ,

n,,,i 21 are called main diagonal elements. Lower adjacent elements of main

diagonal are called sub-diagonal elements. And upper adjacent elements of main

diagonals are called supper-diagonals elements [Ayres (1997, Anton and Rorres

(1994))].

(b) Singular Matrix:- a square matrix][ikaA is said to be singular if its

determinant is zero [Ayres (1997)]i.e.

|A| =0 (B.1.1)

(c) Non-singular Matrix:- a square matrix nn)(A (i.e. n-square matrix A) is said to be

non-singular if its determinant is not equal to zero [Ayres (1997, Anton and

Rorres (1994))]i.e.

|A| 0 (B.1.2)

(d) Strictly Non-singular:- a square matrix nn)(A (i.e. n-square matrix A) is said to

be strictly non-singular if its all leading principle diagonal minors are different

from zero i.e.

nkkk ,,2,1,0|| A

(e) Zero Matrix:- Matrix A , every element of which is zero, is called a zero matrix

[Ayres (1997, Anton and Rorres (1994))]i.e.

0A  (B.1.3)

76

(f) Upper Triangular Matrix: - A square matrix][ikuU whose elements 0iku

for ki  is called upper triangular matrix. Thus

























nn

n

n

u

u

uuu

uuuu











00

00

0

33

22322

1131211

U (B.1.4)

is a upper triangular matrix [Ayres (1997, Anton and Rorres (1994))].

(g) Strictly Upper Triangular Matrix: - A square matrix][ikuU whose elements

0iku for ki  is called strictly upper triangular matrix. Thus

























000

000

00

0

223

11312











n

n

uu

uuu

U (B.1.5)

is strictly upper triangular matrix [Burder and Faires (1997), Jain et. al. (1985)].

(h) Lower Triangular Matrix: - A square matrix][iklL whose elements 0ikl

for ki  is called lower triangular matrix. Thus

























nnnn lll

lll

ll

l











21

333231

2221

11

00

000

L (B.1.6)

is lower triangular matrix [Ayres (1997, Anton and Rorres (1994))].

(i) Strictly Lower Triangular Matrix: - A square matrix][iklL whose elements

0ikl for ki  is called strictly upper triangular matrix. Thus

























0

0

000

0000

21

3231

21











nn ll

ll

l

L (B.1.7)

is strictly lower triangular matrix[Ayres (1997, Anton and Rorres (1994))].

77

(j) Diagonal Matrix: - A square matrix][ikaA whose elements 0ika for ki 

is called diagonal matrix. Thus

























nna

a

a

a

000

00

000

000

33

22

11











A (B.1.8)

is diagonal matrix[Ayres (1997)].

(k) Identity Matrix:- A square matrix][ikaA whose elements 1ika for ki 

and 0ika for ki  is called identity matrix and is denoted by I. Thus

























1000

100

0010

0001











I (B.1.9)

is identity matrix[Ayres (1997)].

(l) The Transpose of a Matrix: - The matrix of order mn obtained by

interchanging the rows and columns of a matrix nm is called the transpose of A

and is denoted by A [Ayres (1997)].

(m)The Inverse of a Matrix: -If A and B are square matrices such that AB = BA = I,

then B is called the inverse of A and express 1 AB (B equals A inverse). The

matrix B also has A as its inverse and we may write 1 BA . Necessary condition

of a matrix A to be invertable [Ayres (1997)]. So it is nonsingular i.e. |A| 0.

(n) Symmetric Matrix: - A square matrix A, such that AA  , is called symmetric.

Thus a square matrix][ikaA is symmetric provided kiik aa  for all value of k

and i[Ayres (1997)].

(o) Band Matrix: - An n-square matrix][ikaA , n,,,k,i 21 is called a bend

matrix, if its entries vanish outside of a band parallel to the main diagonal. Let lm

be the number of the sub-diagonals of A and um be the number of supper-

diagonals of A that are not all zero. Then 0ika for lmki  and umik 

where 20  nml and 20  nmu . The number 1 ul mmm is the

78

bandwidth of A. A matrix A of bandwidth m can have almost m+1 non-zero

elements in any one row. The following are the special band matrices.

(i) Diagonal matrices for 0 ul mm

(ii) Bi-diagonal matrices for 01  ul m,m or 10  ul m,m

(iii) Tri-diagonal matrices for 1 ul mm

(iv) Five-diagonal matrices for 2 ul mm

Matrices of this kind appear naturally in discretizations of elliptic boundary value

problems [Burder and Faires (1997), Jain et. al. (1985)].

(p) Cyclically Tri-diagonal Matrix: An n-square matrix][ikaA , n,,,k,i 21 is

called cyclically tri-diagonal [Burder and Faires (1997), Jain et. al. (1985)] if

0ika for 11  n|ki|

(q) Sparse Matrix: A matrix][ikaA is called sparse matrix if maximum entries

ika are fill up with zeroes [Burder and Faires (1997), Jain et. al. (1985)].

Matrices of this kind appear naturally, when finite-difference techniques are used

to solve boundary value problems, a common application in the numerical

solution of partial-differential equations and in circuit analysis.

(r) Diagonally Dominant Matrix:- : An n-square matrix][ikaA , n,,,k,i 21

is called diagonally dominant if






n

ik
k

ikii aa
1

|||| for all n,,,i 21

and at least one index i the strictly inequality holds[Burder and Faires (1997),

Jain et. al. (1985)].

(s) Strictly Diagonally Dominant Matrix:-: An n-square matrix][ikaA , is called

strictly diagonally dominant[Burder and Faires (1997), Jain et. al. (1985)] if






n

ik
k

ikii aa
1

|||| for all n,,,i 21

(t) Positive Definite and Positive Semi-definite Matrices:- A symmetric n-square

matrix t
ika AA ][, n,,,k,i 21 is called positive definite if

0)Q( Axxx t: for all n,  x0x

And it is called positive semi-definite, if

79

0:)Q( Axxx t for all nx

If A is positive definite then 0iia for all i [Burder and Faires (1997), Jain et.

al. (1985)].

Equivalent conditions for positive definiteness of a symmetric matrix tAA  if:

(i) It is strictly diagonally dominant with positive diagonal entries 0iia for

all i.

(ii) It is diagonally dominant with positive entries 0iia for all i and 0ika

for all ki  .

(iii) It is tri-diagonal and diagonally dominant with 0iia for all i and 0ika

for 1 |ki| .

B.2 Some Definitions Related to Iterative Methods

Some important definitions related to iterative methods are discussed below:

(a) Vector Norms: - Let n be the n-dimensional real vector space and x a vector in

n . The norm function ||||  : n  assign a nonnegative real number to

|||| x , nx and fulfill the following vector norm [Burder and Faires (1997),

Jain et. al. (1985)].

(i) 0|||| x for all nx with 0x  (positive define),

(ii) 0||x || if and only if 0x  ,

(iii) |||||||||| xx αα  for all nx and α (homogeneous),

(iv) ||| |y||||x||||yx  for all nyx, (triangular inequality).

Example for vector norms

(i) ||max||||
1

i
ni

x
x (maximum norm),

(ii) 



n

i
ix

1
1 |||||| x (absolute norm) and

(iii) 



n

i
ix

1

2
2 |||||| x (Euclidean norm).

80

(b) Matrix Norms: - For an n-square matrix A, the matrix norm ||A|| of A is a non

negative real number which satisfy the following matrix norm axioms [Engeln-

Müllges and Uhlig (1996), Burder and Faires (1997)]:

(i) 0|||| A for all n-square matrices (positive define).

(ii) 0|||| A if and only if 0A  ,

(iii) |||||||||| AA αα  for all matrices and α (homogeneous),

(v) |||||||||||| BABA  for all n-square matrices BA, (triangular

inequality), and

(iv) |||||||||||| BAAB  for all n-square matrices BA, (sub-multiplication).

Examples of matrix norms are:

(i) 

n

k
ik

ni
a

1
1

||max|||| A (row sum norm),

(ii) 



n

i
ik

nk
a

1
1

1 ||max|||| A (column sum norm),

(iii) 



n

ki
ika

1,

2
2 |||||| A (Frobenious/ Spectral / Hilbert norm),

A matrix norm is compatible with the vector norm if for every matrix A and

vector x the inequality

||x||||A||||Ax||  (B.2.1)

holds.

If ||||  is a vector norm on n , then

||||max||||
1||||

AxA
x 

 (B.2.2)

is called the natural or induced , matrix norm associate with the vector norm

[Burder and Faires (1997), Jain et. al. (1985)].

(c) Conditional Number: -The conditional number is normally defined as the

product of two matrix norms [Burder and Faires (1997), Jain et. al. (1985)]:

||||||||)(1 AAACondition (B.2.3)

(d) Ill-conditioned Systems: - A matrix A is called ill-conditioned if there exists a

vector b for which small perturbations in the coefficients of A or b will produce

large changes in bAx 1 . The system is ill conditioned when A is ill conditioned

[Mathews (2001), Engeln-Müllges and Uhlig (1996)]. When the condition number

for the coefficient matrix A, of a systems of linear equations, is very large then the

81

systems are ill conditioned. In ill-conditioned systems, numerical methods for

computing an approximate solution are prone, due to round off, to have more

errors. For well-conditioned systems of linear equations, the condition number for

the coefficient matrix A is small.

(e) Eigen Values and Eigen Vectors: - For a given matrix][ikaA the eigen value

problems consist of finding non-zero vector x so that Ax is parallel to the vector x.

Such a vector is called eigen vector of A. It satisfy the eigen value-eigen vector

equation of a scalar  called eigen value:

xAx  (B.2.4)

The equation (2.4.4) has nontrivial solution if matrix IA  is singular, i.e. if

0)-del()P( IA  (B.2.5)

The equation 0)P( is called the characteristic equation of the matrix A.

(f) Spectral Radius: - The spectral radius)(ρ A of a matrix A is defined by

||max)( A [Burder and Faires (1997)], where θ is an eigen value of A

if A is a square matrix , then

(i) 1/2
2)](ρ[AAA t||||  ,

(ii) ||||)(ρ AA  , for any natural norm |||| 

(g) Definition of Convergence: - A sequence }2,1,;{)(kkx of vectors in n is

said to be converge to x with respect to norm ||||  if, given any 0 , there exist

an integer)(N such that

 ||||)(xx k for all)(Nk  , (B.2.6)

(h) Theorem of Convergence: - The sequence of vectors }{ (k)x converges to x with

respect to norm ||||  if and only if i
k

i
k

xxLim 


)(for each n,,,i 21 .

(i) Scaling: - Scaling is the operation of adjusting the coefficients of a set of

equations so that they are all of the same order of magnitude. It has utility in

minimizing roundoff error for those cases where some of the equations in a

system have much larger coefficients than others coefficients. Such situations are

frequently encounter in engineering practices when widely different units are used

in the development of simultaneous equations [Gerald and Wheatley (1994),

Chapra. and Canale (1990)].

82

B.3 Some Theorems Related to Iterative Methods

Some important theorems related to iterative methods are discussed below:

(a) Sufficient Condition for Convergence of Iterative Process: - The process of

iteration will converse if in each equation of the system the absolute value of the

largest coefficient is greater than the sum of the absolute values of all the

remaining coefficients in that equation. Mathematically (if the coefficient matrix

A is rearranged so that diagonal entries are the largest in each row) then the

sufficient condition may be express as

niaa
n

k
ikii ,,2,1allfor,||||

1




(B.3.1)

i.e. the systems are diagonally dominant [Scarbough (1966), stoer and Bulirsch

(1992), Gourdin and Boumahrat (1996), Burder and Faires (1997)]. Fortunately

many engineering problems of practical importance fulfill this requirement.

(b) Theorem: - For any n)0(x the sequence 
0

)(}{ k
kx defined by.

VHxx  )1()(kk , for each 1k converge to a the unique solution of

VHxx  if and only if 1)(ρ H [Scarborough (1966), Jain et al. (1985),

Gourdin and Boumahrat (1996), Burder and Faires (1997)].

(c) Theorem: - If A is strictly diagonally dominant, then for any choice of n)0(x ,

both the Jacobi and Gauss-Seidel methods give sequences 
0

)(}{ k
kx that converge

to the unique solution of bAx  [Scarbough (1966), Jain et al. (1985), Gourdin

and Boumahrat (1996), Burder and Faires (1997)].

(d) Theorem (Stein-Rosenberg):- If 0ika for each ki  and 0iia for each

n,,,i 21 then one and only one of the following statement holds [Burder and

Faires (1997)]:

(i) 1)()(0 jg  HH 

(ii))()(1 gj HH  

(iii) 0)()(gj  HH 

(iv) 1)()(gj  HH 

where)(jH and)(gH are denoted as spectral radius measured from Jacobi

method and Gauss-Seidel method respectively.

83

(e) Residual Vector/Correction Vector: - Suppose nx~ is an approximation to

the solution of the linear system defined by bAx  . The residual

vector/correction vector for x~ with respect to this system is xAbz ~ [Engeln-

Müllges and Uhlig (1996), Jain et al. (1985), Burder and Faires (1997) Cheney

and Kincaid (1999)].

(f) Theorem (Kahan): - If 0iia for each n,,,i 21 then |1|)ρ( H . This

implies that the SR technique can converge only if 20  ω [Engeln-Müllges and

Uhlig (1996), Gourdin and Boumahrat (1996), Burder and Faires (1997)].

(g) Theorem: - A sufficient condition for convergence of the successive relaxation

technique when A is strictly diagonally dominant is 1<<0 ω [Gourdin and

Boumahrat (1996)].

(h) Theorem: - For symmetric and positive-defined matrix A the relaxation technique

converges if and only if 2<< ω0 [Gourdin and Boumahrat (1996)].

(i) Theorem: - (Ostrowski-Reich): - If A is a positive definite matrix and 20<ω< ,

then SR technique converge in the both Jacobi and Gauss-Seidel methods for any

choice of initial approximation vector (0)x [Burder and Faires (1997)].

(j) Theorem: - No eigen value of a matrix A exceeds the norm of a matrix, i.e.

)(ρ AA |||| [Jain et al. (1985)].

(k) Theorem: - A necessary and sufficient condition for convergence an iterative

method is that the eigen values of the iteration matrix satisfy

nii ,,2,1,1|)(| H [Jain et al. (1985)].

84

APPENDIX C

ALGORITHMS

C.1 Some Algorithms of Classical Iterative methods

C.1.1 Algorithm of Jacobi Method

INPUT: Given][ikaA ,][ibb ; set initial approximation solution][)0(
ixx ; set

threshold error η , maximum number of iteration T.

Step 1: set k=1, // Here k is denoted as Iteration counter

Step 2: While)(Tk  do steps 3-6

Step 3: For ni ,,2,1 

set















 




i

n

ij
j

jij
ii

i bxa
a

x
1

1

Step 4: if |||| ()x k

then OUTPUT: solution xx  (procedure completed successfully)

STOP.

else

Step 5: set k=k+1

Step 6:For ni ,,2,1 

set ii xx 

Step 7: OUTPUT (maximum number of iteration exceeded; Procedure completed

unsuccessfully)

STOP.

85

C.1.2 Algorithm of Gauss-Seidel Method

INPUT: Given][ikaA ,][ibb ; set initial approximation solution][)0(
ixx ;

Set threshold error η , maximum number of iteration T.

Step 1: set k=1, // Here k is denoted as Iteration counter

Step 2: While)(Tk  do steps 3-6

Step 3: For ni ,,2,1 

set 







 






i

n

ij
jij

i

j
jij

ii
i bxaxa

a
x

1

1

1

1

Step 4: if |||| ()x k

then OUTPUT: solution xx  (procedure completed successfully)

STOP.

else

Step 5: Set k=k+1

Step 6:For ni ,,2,1 

set ii xx 

Step 7: OUTPUT (maximum number of iteration exceeded; Procedure completed

unsuccessfully)

STOP.

C.1.3 Algorithm of Jacobi based SR Method

INPUT: Given][ikaA ,][ibb ; set initial approximation solution][)0(
ixx ,

relaxation factor ω ; Set threshold error η , maximum number of iteration T.

Step 1: set k=1, // Here k is denoted as Iteration counter

Step 2: While)(Tk  do steps 3-6

Step 3: For ni ,,2,1 

Set 







 


j

n

iji
ii

xa
a

ω
xx

1j
ii b

Step 4: if η(|||| k)x

then OUTPUT: solution xx  (procedure completed successfully)

86

STOP.

else

Step 5: Set k=k+1

Step 6:For ni ,,2,1 

set ii xx 

Step 7: OUTPUT (maximum number of iteration exceeded; Procedure completed

unsuccessfully)

STOP.

C.1.4 Algorithm of Gauss-Seidel based SR Method

INPUT: Given][ikaA ,][ibb ; set initial approximation solution][)0(
ixx ,

relaxation factor ω ; Set threshold error η , maximum number of iteration T.

Step 1: set k=1, // Here k is denoted as Iteration counter

Step 2: While)(Tk  do steps 3-6

Step 3: For ni ,,2,1 

set 







 






i

n

ij
jij

i

j
jij

ii
ii bxaxa

a
xx

1

1

1

)1(




Step 4: if |||| ()x k

then OUTPUT: solution xx  (procedure completed successfully)

STOP.

else

Step 5: Set k=k+1

Step 6:For ni ,,2,1 

set ii xx 

Step 7: OUTPUT (maximum number of iteration exceeded; Procedure completed

unsuccessfully)

STOP.

87

C.2 Some Evolutionary Algorithms

C.2.1 A Pseudo-code Structure of Evolutionary Algorithms

Algorithm_EA()

begin

0t ; /* Initialize the generation counter */

Initialize population:         0,,0,00 21 ψψψ  ;

/* Here )0(iψ i-th individual at zeroth generation */

Evaluate population:             0,,0,00 21  ψψψ  ;

While (not termination-condition) do

begin

Select individuals for reproduction

Apply operators:

Crossover:     ttc   ; /* if exist */

/* Superscript c denotes Crossover */

Mutation:     tt cm   ; /* if exist */

/* Superscript m denotes Mutation */

Evaluate newborn offspring:

            tttt mmmm
 ψψψ ,,, 21 

Selection:     Qtt m   ; /* Here,   t,Q  0 */

1 tt ; /* Increase the generation counter */

end

end

Figure C.1: A pseudo-code structure of evolutionary algorithms

88

C.2.2 A Pseudo-code Structure of Hybrid Evolutionary Algorithms

Algorithm_HYBRID_EA()

begin

0t ; /* Initialize the generation counter */

Initialize population:)0(X },{ (0)(0(0)
N

)
21 xxx  ;

/* Here i
t

i
)(x i-th individual at t-th generation */

Evaluate population: })({| XzzX  ||:||e)||(|e ;

While (not termination-condition) do

begin

Select individuals for reproduction

Apply operators:

Crossover:  )()(kck XRX ;

/* R is stochastic matrix & Superscript c denotes Crossover */

Mutation:
ii

ck
iω

mk
i VxHx  )()(;

/* Superscript c denotes Crossover & iωH is iteration matrix */

Evaluate newborn offspring: }~)~({| mkmkmkmk ||:||e)||(|e   XxxX

Adaptation of ω :),,(xyxxx pf   &),,(yyxyy pf  

/* xp and yp are adaptive probability functions */

Selection and reproduced:)()()1(mkk   XX 

1 kk ; /* Increase the generation counter */

end

end

Figure C.2: A pseudo-code structure of hybrid evolutionary algorithms

89

Publications

1. Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (accepted), “Solving

Linear Equations Using a Jacobi Based Time-Variant Adaptive Hybrid

Evolutionary Algorithm”, The 7th International Conference on Computer

and Information Technology (ICCIT-04), Bangladesh, 26-28 Dec. 2004.

2. Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (accepted), “An

Approach to Solve Linear Equations Using Time-Variant Adaptive Based

Hybrid Evolutionary Algorithm”, The Jahangirnagar University Journal of

Science, Jahangirnagar University, Bangladesh, Vol. 27 (2004).

3. Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (2003), “An Approach

to Solve Linear Equations Using a Jacobi-Based Evolutionary Algorithm”

Proceeding of the ICEECE, December 22–24, Dhaka, Bangladesh, pp.

225-230.

90

References

1. Antia, H. M., (1991), “Numerical Methods for Scientist and Engineers”, Tata

McGraw-Hill, New Delhi, pp. 01 – 109.

2. Anton, H. and C.Rorres (1994), “Elementary linear Algebra, Application

Version (7th edition.)”, John Weley & Sons, New York, pp. 01 – 375.

3. Ayres, J. F (1997), “Schaum’s Outline of Theory and Problems of Matrices”,

McGraw-Hill, London, pp. 01 – 90.

4. Bäck, T. (1992), “The Interaction of Mutation Rate, Selection, and Self-

adaptation within a genetic Algorithm, in Parallel Problem Solving

from Nature”, Ino Procs. of the 1st European Conference on Artificial

Life (F. J. Varela and P. Bourgine, Eds) MIT press, MA, pp. 263 –

271.

5. Bäck, T. (1997), “Self-adaptation, in Handbook of Evolutionary

Computation”, Oxford University Press.

6. Bäck, T., G. Rudolph, and H-P. Schwefel. (1993), “Evolutionary

Programming and evolution Strategies: Similarities and Differences”,

In. Procs. of the 2nd Annual conference on Evolutionary

Programming. MIT Press, San Diego, CA. pp. 11-22.

7. Bäck, T. and H-P. Schwefel. (1993), “An overview of Evolutionary

Algorithms for Parameter Optimization”, IEEE Trans. on Evolutionary

Computation, 1(1), pp. 1-23.

8. Bäck, T., M. Schutz and S. Khuri (1996), “Evolution Strategies: An

alternative evolutionary Computation Method”, In. Procs. of the 2nd

Annual Conference on Evolutionary Programming (M.J. Alliot, E.

Luttin, E. Ronald, M. Schoenhauer and D. Rogers, Eds.), Springer-

Verlag, Berlin, pp. 3-20.

9. Bäck, T., U. Hammel, and H-P. Schwefel (1997), “Evolutionary Computation:

Comments on the History and Current State”, IEEE Trans. on

Evolutionary Computation, 1(1), pp. 3-17.

91

10. Beyer, H.-G. and K. Deb (2001), “On Self adaptive features in Real-

Parameter Evolutionary Algorithm”, Transactions on Evolutionary

Computation, 5(3), pp. 250-270.

11. Blickle, T. (1997), “Theory of Evolutionary Algorithms and Application to

System Synthesis”, A Doctoral Dissertation, Diss. ETH No. 11894,

Swiss Federal Institute of Technology, Zurich, Switzerland.

12. Burder R. L., and J. D. Faires (1997), “Numerical Analysis (6th edition)”,

Brooks/Cole – Thomson Learning, USA, pp. 250-472.

13. Carre`, B.A. (1961), “The Determination of the Optimum Accelerating Factor

for Successive Over-Relaxation”, The Computer Journal, Vol 4, pp. 73-78.

14. Chapra, S. C. and Canale, R. P. (1990), “Numerical Method for Engineers

(2nd edition)”, McGraw-Hill, New York.

15. Chellapilla, K (1998)], “Combining Mutation Operations in Evolutionary

Programming”, IEEE Trans. On Evolutionary Computation, 2(3), pp.

91-96.

16. Chellapilla, K. and D. B. Fogel (1997), “Two New Mutation Operators for

Enhanced Search and Optimization in Evolutionary Programming,. In:

Applications of Soft computing” (B. Bosacchi, L. C. Bezdek and D. B.

Fogel, Eds), Procs. of the SPIE, Vol. 3165, pp. 260-269.

17. Chellapilla, K., H. Birro and S. S. Rao (1998), “Effectiveness of Evolutionary

programming”, In: 3rd Annual conference on Genetic Programming

(GP’98), duly 22-25, Univ. of Wisconsin, Madision.

18. Cheney, W., and D. Kincaid (1999), “Numerical Mathematics and computing

(4th edition)”, Brooks/Cole – Thomson Learning, USA pp. 240-316.

19. Dongarra, J. J., Bunch, J. R., Moler, C.B. and Stewart, G.W. (1997),

“LINPACK User’s Guide”, SIAM, Philadeiphia.

20. Engeln-Müllges, G. E., and F. Uhlig (1996), “Numerical Algorithms with C”,

Springer-Verlag, Heidlberg, pp. 59 – 142.

21. Faddeev, D. K. and V. N. Faddeeva (1963), “Computational Methods of

Linear Algebra”. (Trans. R. C. Williams& W. H. Freeman), San

Francisco.

22. Fogel, D. B (1995), “Evolutionary Computation: Towards a New Philosophy

of Machine Inelegance”, IEEE Press, Piscataway, N J.

92

23. Fogel, D. B. and W. J. Atmar (1990), “Comparing Genetic Operators with

Gaussian Mutations in Simulated Evolutionary Process Using Linear

Systems”, “Biol” Cybernet, 63 (2), pp.111-114.

24. Fogel, L. J., A. J. Owens and M. J. Walsh (1966), “Artificial Intelligence

through Simulated Evolution”, Wiley, New York..

25. Forsythe, G. E. and C. B. Moler (1967), “Computer Solution of Linear

Algebraic Systems”, Prentice-Hall, Englewood Cliffs, New Jersey.

26. Gantmacher, F. R. (1990), “The Theory of Matrices (2nd edition.)”, Vol. 2,

Chelsea, New York.

27. Gerald, C. F., and P. O.Wheatley (1994), “Applied Numerical Analysis (5th

edition.)”, Addison-Wesley, New York. pp. 102-209.

28. Gourdin, A. and M. Boumahrat (1996), “Applied Numerical Methods”,

Prentice Hall of India, New Delhi, pp. 212-232.

29. Gregory, R. T. and D. L. Karney (1969), “A collection of Matrices for Testing

Computational Algorithms”, Wiley- Inter-science, New York.

30. Hagaman, L. A. and D. M. Young (1981)’ “Applied Iterative, Methods”,

Academic press, New York.

31. Hashem, M. M. A. (1999), “Global Optimization Through a New Class of

Evolutionary Algorithm”, Ph.D. dissertation, Diss. No. 19, Saga

University, Japan, pp. 1-30.

32. He, J., J. Xu, and X. Yao (2000), “Solving Equations by Hybrid Evolutionary

Computation Techniques”, Transactions on Evolutionary

Computation, .4(3), pp. 295-304.

33. Holland, J. H. (1962), “Outline for a Logical Theory of Adaptive Systems”,

Journal of the Association for Computing Machinery, 3, pp. 297-314.

34. Jain, M. K., S. R. K. Iyengar and R. K. Jain. (1985), “Numerical Methods for

Scientific and Engineering Computation (2nd edition)”, Wiley Eastern,

India.

35. Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (2003), “An

Approach to Solve Linear Equations Using a Jacobi-Based

Evolutionary Algorithm”, Proceeding of the ICEECE, December 22–

24, Dhaka, Bangladesh, pp. 225-230..

93

36. Kim, J. H. and H. Myung (1997), “Evolutionary Programming Techniques for

Constrained Optimization Problems”, IEEE Trans. on evolutionary

Computation, 1(2), pp. 129 – 140.

37. Koza, J. R. (1994), “Genetic Programming on the Programming of Computers

by Means of Natural Evolution”, MIT Press, Massachusetts.

38. Kreyszig, E. (1993), “ Advanced Engineering Mathematics (7th edition)”,

John Wiley & Sons, New York, pp. 326 359.

39. Krishnamurthy, E. V. and S. K. Sen (1989), “Numerical Algorithms

computations in Science and Engineering”, Affiliated East-West Press

New Delhi, pp. 157-259.

40. Lang, S. (1987), “Linear Algebra. (3rd edition)”, Springer, New York..

41. Mathews, J. H. (2001), “Numerical Methods for Mathematics, Science, and

Engineering, (2nd edition. & 6th reprint)”, Prentice-Hall of India,

New Delhi.

42. Michalewicz, Z.(1994), A Hierarchy of Evolution Programs, “An

Experimental Study, Evolutionary Computation”, 1(1), pp. 51 – 76.

43. Michalewicz, Z. (1994a), “Evolutionary Computation Techniques for

Nonlinear Programming Problems”, International Trans. On

Operation Research, 192), pp. 223- 240. (http:// www.coe.uncc.edu

/~zbyszek/papers.html).

44. Michalewicz, Z. (1996), “Genetic Algorithms + Data Structure = Evolution

Programs, (3rd Rev., and extended edition)”, Springer-Verlag, Berlin..

45. Michalewicz, Z. and N. F. Attia (1994)’ “Evolutionary Optimization of

Constrained Problems”, Procs. of the 3rd. Annual Conference on

Evolutionary Programming, River Edge, NJ, World Scientific, pp. 98-

108.

46. Pissanetzky , S. (1984), “Sparse Matrix Technology”, Academic press,

London.

47. Press, W. H., B. P. Flannery, S. A. Teukoisky and W. T. Vetterling (1988),

“Numerical Recipes in C: The Art of Scientific Computing”,

Cambridge University Press Cambridge.

94

48. Rechenberg, I. (1973), “Evolutions Strategies: Optimierung technisher

Systeme nath Prinzipien des Biologischen Evolution”, Fromman-

Holzbook Verlag, Stuttgart.

49. Rechenberg, I. (1994), “Evolution Strategy, In. Computational Intelligence:

Imitating Life” (J.M. Zurada, R.J. Marks II and C.J. Robinson,Eds.),

IEEE Press, New York, NY, pp. 147-159.

50. Salomon, R. (1998), “Evolutionary Algorithms and Gradient Search:

Similarities and Differences”, IEEE Trans. on Evolutionary

Computation, 2 (2), pp. 45 – 55.

51. Salomon, R and J. L. V. Hemmen (1996), “Accelerating Back Propagation

Through Dynamic Self-adaptation”, Neural Networks, 9(4), pp. 589-

601.

52. Scarborough, J. B. (1966), “Numerical Mathematical Analysis (6th edition)”,

Oxford &IBH, New Delhi.

53. Schoenauer, M and Z. Michalewicz. (1997), “Evolutionary Computation”,

Control and Cybernetics 26(3), pp. 303-388.

54. Schwefel, H.-P. (1995), “Evolution and Optimum Seeking”, New York,

Wiley.

55. Schwefel, H.-P., G. Rudolph and T. Bäck. (1995), “Contemporary Evolution

Strategies in Advances Artificial Life”, Third International Conference

on Artificial Life. Vol. 929 of lecture Notes in Artificial Intelligence,

Springer-Verlag, Berlin, Germany. pp. 893-907.

56. Smith, J. and T. C. Fogary (1996)), “Self-adaptation Mutation Rates in a

Steady State Genetic Algorithm”, In Proceedings of 1996 IEEE

International Conference on Evolutionary Computation. Piscataway,

NJ. IEEE Press, pp. 318-323.

57. Stoer, J. and R. Bulirsch. (1991/92), “Introduction to Numerical Analysis (2nd

edition)”, Springer, New York.

58. Tewarson, R. P. (1973), “Sparse Matrices”, Academic Press, New York.

59. Varga, R. S. (1962), “Matrix Iterative Analysis”, Prentice-Hall, Englewood

Cliffs, New Jersey.

60. Wilkinson, J. H. (1963), “Rounding Errors in Algebraic Processes”, HMSO,

London.

95

61. Yao, X., and Y. Liu (1997), “Fast Evolutionary Strategies”, Control and

Cybernetics, Special Issue on Evolutionary Computation, 26(3),

pp.467 – 497.

62. Young, D. (1954), “Iterative Method for Partial Difference Equations of

Elliptic Type”, Trans. American Math. Soc, Vol 7(6), pp. 92-111.

63. Young, D. (1971), “Iterative Solution of Large Linear System”, Academic

Press, Now York.

64. Young, D. M. and T. G. Frank (1963), “A Survey of Computer Methods for

Solving Elliptic and Parabolic Partial Differential Equation”, ICC

Bulletin, Vol. 2, pp. 1-61.

65. Yuret, D. (1994), “From Genetic Algorithm to Efficient Optimization”, MIT,

A.I. Technical Report No. 1569.

	0.2.pdf (p.1)
	0.3.pdf (p.2)
	0.4.pdf (p.3-4)
	0.5.pdf (p.5)
	0.6.pdf (p.6-7)
	0.7.pdf (p.8)
	0.8.pdf (p.9)
	01Abstr i.pdf (p.10)
	1CHAPTER 1-8.pdf (p.11-18)
	2CHAPTER 9-19.pdf (p.19-29)
	3CHAPTER 20-30.pdf (p.30-40)
	4CHAPTER 31-41.pdf (p.41-51)
	5CHAPTER 42_54.pdf (p.52-64)
	6CHAPTER 55-59.pdf (p.65-69)
	7CHAPTER 60-66.pdf (p.70-76)
	8CHAPTER 67-71.pdf (p.77-81)
	9APPEN A72-74.pdf (p.82-84)
	9APPEN B75-83.pdf (p.85-93)
	9APPEN C84-88.pdf (p.94-98)
	10.pdf (p.99-105)
	0.1.pdf (p.106)

