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Abstract
The main purpose of this study is to deal with the magneto-gravitational convection in
a layer of ferromagnetic fluids between two vertical non-magnetic plates. One of the
plates is kept at constant temperature. A uniform inclined external magnetic field un-
der nonzero gravity conditions has been considered. In this research both the gravita-
tional and magnetic effects are taken into account. Two distinct mechanisms, namely,
thermogravitational(buoyancy-driven) and thermomagnetic, lead to the apprearance of
various instability modes. The characteristics of all instability modes are investigated.
The three types of instability patterns relating to thermogravitational, magnetic and mag-
netogravitational convection are found to exist in a normal magnetic field. The inclined
external magnetic field conducts the preferential change of instability structures toward
the hot wall, it induces an asymmetry with the problem, and then it brings qualitative
change in the stability characteristics. It is found because of the angle of inclination of
the magnetic field, where a preferred magnetic field is kept in an orientation angle that
introduces maximum magneto-gravitational instability. The destabilizing effects due to
thermal disturbances and the variation of fluid magnetization has been found in the flow
domain. However, the related variation of a magnetic field can draw the energy from
the perturbed flow field, which is depending on the orientation of the applied field thus
playing a stabilizing role. The role of the buoyancy effects shifts from destabilizing in the
gravity-dominated flow to stabilizing in flows with strong magnetic effects is also found.
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Chapter 1
Introduction

1.1 Magnetic Fluids

Ferromagnetism is a solid state phenomena, and it happens at a high energy state (in other

words, less preferred) of the material. When the material will melt then the molecules will

rearrange themselves to a lower energy state and lose the magnetism. A magnet has mag-

netic domains aligned in a parallel fashion. This property is known as ferromagnetism.

Ferromagnetism is the property of cobalt, nickel, iron, their alloys and some minerals

that have these metals as compounds. The temperature at which certain materials lose

their permanent magnetic properties, to be replaced by induced magnetism is called the

Curie temperature or Curie point. The Curie temperature is named after Pierre Curie,

who showed that magnetism of certain materials was lost at a critical temperature. As

the temperature rises above a certain point then the atom vibrations cause a breakdown in

this alignment and above the Curie temperature this alignment no longer exists. Thus the

ferromagnetic material becomes a paramagnetic material above the Curie temperature.

Common non-conducting artificial magnetic fluids consist of magnetite colloids which

contain ferro-magnetic (e.g. magnetite(Fe3O4)) nano-particles suspended in a carrier

fluid, usually synthetic oil, water or kerosene. To prevent formation of magnetite aggre-

gates and their subsequent sedimentation a surfactant such as oleic acid is frequently used.

The industrial production of such fluids began in the 1960s. Now-a-days their manufac-
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CHAPTER 1. INTRODUCTION 2

turing technology is significantly improved which enabled the range of ferrofluid applica-

tions to widen significantly. However due to the complexity of their composition physical

properties of ferrofluids depend not only on the type of components used to make them,

but also on the conditions of their storage and use and on the hydrodynamics of flows they

are subject to introduction to thermomechanics of magnetic fluids, ferrohydrodynamics

and magnetic fluids.

Understanding of these dependencies is currently far from being complete and will be

subject of the proposed studies. Misleadingly made ferrofluids respond to an external

magnetic field nearly to natural paramangnetic and diamagnetic fluids (i.e., water, protein

solution, paramagnetic melts) and gases (i.e., oxygen). However the level of the polariza-

tion which can be accomplished in manufactured ferrofluids is many requests of extent

higher than that in characteristic magnetic fluids. The magneto-thermal mechanism of

convection allows the creation of a virtually arbitrary, controllable body force distribution

not only in ferrofluid but also in diamagnetic and paramagnetic materials. A paramagnetic

material can still be attracted by a magnetic field, but loses the ability to become a magnet

itself. The Curie temperature has always been found to be lower than the melting point of

a ferromagnetic material is non-magnetic.

In contrast to the melting point, magnetic fluids are multi-phase media containing solid

magnetic particles that can be magnetized. Such suspensions can be used to transfer heat,

and heat and mass transport in such liquid magnetics can be controlled by using an ex-

ternal magnetic field. The magnetic force is independent of gravity and its greatest utility

will surely be in microgravity environments. For example crystal growth from protein and

insulating paramagnetic melts. However, for usual diamagnetic and paramagnetic media,

the pondermotive forces exerted by a typical magnet on the earth are insignificant com-

pared to gravity-induced buoyancy ones. Thus, a magnetic fluid is very convenient liquid

for ground-based modeling of magnetic-driven convection due to its superparamagnetic

properties.

Artificial magnetic fluids, also known as ferrofluid. The term ’ferrofluid’ is a portmanteau

2



CHAPTER 1. INTRODUCTION 3

 

Figure 1.1: Surfacted ferrofluid (Tynjälä 2005). Used with permission.

of ferromagnetic and fluid and is used to describe a fluid that can be strongly magnetized

by a magnetic field. This occurs because the fluid is composed of tiny magnetic particles,

up to 100 times smaller than the wavelength of visible light. The most common minerals

used in making these magnetic particles are iron oxides such as magnetite (Fe3O4) and

hematite (Fe2O3), though other ferromagnetic or ferrimagnetic substances can be used.

The particles are usually less than 10 nm across. These tiny particles are suspended in

a liquid carrier fluid, which can be water or an organic solvent. Thus, ferrofluids can

be termed colloidal liquids, as they contain evenly dispersed microscopic particles in

another substance. A typical ferromagnetic fluid can have up to 10% of magnetic solids

and up to 10% of surfactant by volume (Odenbach 2002). Due to the demagnetization

and the chemical adsorption impact at the boundary of the magnetic core, there is a layer

of demagnetized magnetite of thickness ∼1 nm near the particle boundary.

As seen from Figure 1.1 each particle is coated with an appropriate surfactant and the

resulting fluid is known as surfacted ferrofluid. Once a magnetic field is applied to a

ferrofluid, the nanoparticles are attracted and pull the entire liquid towards the magnetic

field. However, if exposed to a strong magnetic force, some of the nanoparticles can be

ripped out from the carrier fluid, forming an incredibly fine dust. To stop the clumping of

the nanoparticles via van der Waals forces, a surfactant (usually a hydrocarbon) coating is

applied to the surface of each of the metallic particles, which overcomes the weak inter-

3



CHAPTER 1. INTRODUCTION 4

particle attraction. The particles suspended in a ferrofluid conform to Brownian motion,

which means particle movement is generally random and the liquid will not settle under

standard conditions.

However, when placed in a magnetic field, they orient along the applied field and the fluid

becomes magnetized. The degree of magnetization depends on the applied field strength

and the local temperature and concentration of magnetic particles. Magnetization is the

measure of how much the magnetic field affects a magnetizable (fluid) medium. The fer-

rofluid magnetization, under the equilibrium assumption, is a function of magnetic field

intensity vector, colloid density and dimensional temperature. The equilibrium magneti-

zation model postulates that equilibrium is achieved by the re-orientation of elementary

magnetic moments along the applied field direction.

As secondary effects such as the Lorentz force are neglected, analysis of transport phe-

nomena involving ferrofluids is intricately linked with fluid magnetization. Magnetization

also describes how a material responds to an applied magnetic field as well as the way the

material changes the magnetic field, and can be used to calculate the forces that result

from those interactions. It can be compared to electric polarization, which is the measure

of the corresponding response of a material to an electric field in electrostatics. Physicists

and engineers usually define magnetization as the quantity of magnetic moment per unit

volume. It is represented by a pseudovector.

Led by the arising Kelvin force a magnetized fluid tends to flow toward regions of a

stronger magnetic field. In this study it is assumed that the concentration of magnetic

phase remains uniform and therefore the influence of only the thermal and magnetic fields

on the flow structure will be studied. Thus the ferrofluid magnetization will be assumed

to depend only on the magnitude of the applied magnetic field as well as on the fluid

magnetic susceptibility, which is the ratio of the magnetization in fluid to strength of the

applied magnetic field.

In light of that ferrofluids discovered many practical applications in electronic gadgets, vi-

tality transformation gadgets, isolation of oil from water, scientific instrumentation, tun-
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CHAPTER 1. INTRODUCTION 5

able optical channels and deformity identification sensors and in regions, for example,

pharmaceutical, mechanical and aeronautic design, craftsmanship, and so forth. Ferroflu-

ids are widely employed in industry. In medicine, ferrofluids are used as the contrast

agents for magnetic resonance imaging and can be used for cancer detection.

1.2 Objective and Motivation

This study manages thermomagnetic convection in ferromagnetic fluids, which are like-

wise mentioned to as Ferro fluids or attractive fluids. The impacts of uniform warmth

source and attractive field are considered. Over the couple of past decades, the utiliza-

tions of magnetic and electric fields in fluid flow control picked up an extensive consider-

ation with prospects in these regions, for example, pharmaceutical, concoction designing,

atomic combination, fast silent printing and so on. The primary area relevant to this

review is Ferrohydrodynamics: the investigation of non-conducting smooth movements

brought about by forces made by magnetic fields.

To comprehend the material science of a complex flow conduct of magnetic fluids, and

furthermore to get an essential data for mechanical applications a precise review through

an appropriate hypothesis is vital. Fluids utilized as a part of the majority of the me-

chanically critical applications are non-isothermal. That is the reason the investigation of

convection and heat exchange is required. Since ferrofluids respond to both thermal and

magnetic fields, their physical and mathematical description is a challenging task. The

greater part of the accessible reviews identified with heat transfer and convection in fluids

take after Newtonian description. Normally, an arrangement of constitutive conditions is

utilized including a steady thickness statement.

The flow of ferromagnetic colloidal suspension of magnetic solid particles, for example,

magnetite in a carrier liquid between two differentially heated plates set in a uniform

outer magnetic field is considered. The instability patterns have been identified when the

applied field is typical to the plates are found to comprise of stationary magneto convec-

tion rolls and spreading thermomagnetic or thermo gravitational waves (Suslov 2008).

5



CHAPTER 1. INTRODUCTION 6

Two distinct mechanisms, thermo gravitational and thermomagnetic, are in charge of the

presence of these instability modes.

For the present study, it is considered a three dimensional geometry of a wide and tall

vertical fluid layer cooled from one side, heated from the other and kept in a uniform

oblique magnetic field at an arbitrary angle to the plates. Such an experimental design

is convenient to reproduce cautiously and it allows one to concentrate on exploring the

physical phenomenon leading to a nontrivial fluid motion without being embarrassed by

boundary complications. The goal of this study is to analyze various convective instabil-

ities in ferromagnetic fluids driven by buoyancy and ponderomotive magnetic forces in

an inclined applied magnetic field. The physical way of the so-induced instability modes

and their most prominent features will likewise be resolved to give direction to the future

trial examination.

6



Chapter 2
Literature Review

Ferrofluid is a colloid in which nano sized ferromagnetic materials are suspended in a non-

magnetic fluid. The studies of magnetic properties of such colloids have been conducted

since 1930s (Elmore 1938) but they intensified noticeably in the 1960s and 1970s when

the industrial production of magnetic fluids became possible (Bashtovoy & Vislovich

1988). Nowadays a large number of literatures exists on the properties of ferrofluids,

for example, (Rosensweig 1979, 1985, Bashtovoy & Vislovich 1988, Blums et al. 1989,

1997) and references therein. In the absence of a magnetic field, the magnetic moments

of individual particles in ferrofluids are randomly oriented so that the fluids have no net

magnetization. Thus they are often categorized as superparamagnets rather than ferro-

magnets (Albrecht et al. 1997). However, when placed in a magnetic field, they orient

along the applied field and the fluid becomes magnetized. The degree of magnetization

depends on the applied field strength and the local temperature and concentration of mag-

netic particles. Led by the arising Kelvin force a magnetized fluid tends to flow toward

regions of a stronger magnetic field. In this study it is assumed that the concentration of

magnetic phase remains uniform and therefore the influence of only the thermal and mag-

netic fields on the flow structure will be studied. Such an assumption is reasonable if the

characteristic timescale of convection flows of interest is much shorter than that of mag-

netic fluid segregation due to Soret effect or thermophoresis of solid particles (Shliomis

& Smorodin 2002). Thus the ferrofluid magnetization will be assumed to depend only on

7



CHAPTER 2. LITERATURE REVIEW 8

the magnitude of the applied magnetic field as well as on the fluid magnetic susceptibility,

which is the ratio of the magnetization in fluid to strength of the applied magnetic field.

As ferrofluids are paramagnetic, they comply with Curie’s law and accordingly turn out to

be less charged at higher temperatures. Within the sight of temperature variety, magnetic

buoyancy force is prompted in a ferrofluid which prompts to fluid motion known as con-

vection. Convective heat transfer is one of the major types of heat transfer and convection

is also a major mode of mass transfer in fluids. Convective heat and mass transfer take

place both by diffusion. The relevent literature review follows three types of convective

flows stated here.

Natural convection which can only occur in a gravitational field. A natural convection

occurs because of temperature variations, which influence the fluids density and accord-

ingly relative buoyancy of the fluid. Denser ingredients will fall while less dense ones

will rise prompting to a bulk fluid motion. Gravitational convection is a type of natu-

ral convection induced by buoyancy variations resulting from material properties other

than temperature. Gravitational convection also requires a g-force environment in order

to occur. At the point when temperature sensitive ferrofluid experiences a temperature

variety in the presence of an external magnetic field, a thermomagnetic force emerges,

which drives more strenuous magnetized colder fluid particles to the areas with a stronger

magnetic field. This phenomenon is known as magneto-convection and thermomagnetic

convection the current study will be discussed focusing on.

Berkovskii & Bashtovoi (1971) examined the problem of gravitational convection for

incompressible non-directing ferromagnetic fluid coming about because of the magne-

tocaloric impact. The natural convection is equal to this problem with a vertical tempera-

ture gradient. In their review, closed form solutions for both velocity and temperature are

acquired and numerical calculations of the critical magnetic field gradients are given.

Established Rayleigh-Bénard convection (RBC) is brought about by the unsteadiness of

a fluid layer. It is kept between two horizontal plates. And it is heated from below to

propagate a fixed temperature distinction. In the standard Rayleigh-Bénard issue, the un-

8



CHAPTER 2. LITERATURE REVIEW 9

Cold

Hot

Figure 2.1: Cross-sectional schematic view of cell illustrating convection rolls.

steadiness of the fluid is driven by a density difference and brought about by a thermal

expansion. In the fluid layer, the hot fluid at the base of the cell expands and propagates

destabilizing density gradient, since fluids regularly have positive tharmal expansion co-

efficient. The hot fluid rises bringing about a convective flow which results in improved

transport of heat between the two horizontal plates if the density gradient is sufficiently

large.

There are two procedures that restrict fluids flow amplification. Firstly, viscous damping

in the fluid directly restricts the fluid flow. Secondly, decreasing the buoyancy, ther-

mal diffusion suppresses the temperature fluidity by making the temperature of the rising

flame of hot fluid to balance with that of a surrounding fluid. If the flow amplifying effect

exceeds the dissipative effects of thermal diffusion and buoyancy, the convection begins.

The rotation of the cells interchanges from counter-clockwise to clock-wise as appeared

in figure 2.1. If the temperature difference is vast, at that point the fluid rises rapidly, and

a turbulent flow may happen. If the temperature difference is not far over the onset, the

arising flow takes after upsetting of cylinders referred to as convection rolls.

Finlayson (1970) initially explained how an external uniform magnetic field connected to

a ferrofluid with differing because of a temperature gradient magnetization comes about

in a nonuniform magnetic body force, which leads to thermomagnetic convection. He

examined theoretically the impact of a magnetic field connected vertically to an initially

peaceful horizontal ferrofluid layer heated from below. He demonstrated that the magnetic

mechanism dominates over the gravitational buoyancy mechanism in thin fluid layers that

are about1 mm thick. The exact solution is obtained for some particular parameter values

9



CHAPTER 2. LITERATURE REVIEW 10

and it is demonstrated that oscillatory instability can not happen when The fluid layers

contained between two flat and free boundaries. Utilizing Galerkin technique approxi-

mate solutions for stationary instability are determined for two rigid boundaries(see ad-

ditionally (Finlayson 1970, pp. 758 and 759)). Under certain conditions his examination

predicted a solid coupling between the buoyancy and magnetic forces and demonstrated

that the applied magnetic field can be used to control magnetic convection, which is im-

portant in ferrofluid innovation.

Schwab et al. (1983) performed an experiment to examine the influence of a homoge-

neous vertical magnetic field on the Bénard convection in a ferrofluid layer. The critical

temperature difference was determined by measuring the effective thermal conductivity.

The results agree with theoretical predictions.

Vaidyanathan et al. (1991) discussed the magnetoconvective instability in a ferromagnetic

fluid using Brinkman model for saturated porous medium of very large permeability in

a vertical magnetic field and showed that only stationary convection can occur. A linear

convective instability analysis was performed accounting the critical temperature gradient

when only the magnetic mechanism was important and when both buoyancy and magnetic

mechanisms were present.

Siddheshwar (1995) concentrated a Convective instability of a ferromagnetic fluid in a

Rayleigh-Bénard situation in a transverse uniform magnetic field between fluid-permeable,

magnetic boundaries and subject to an external constraint. The fluid-permeable, magnetic

boundaries require general boundary conditions on the velocity and the scalar magnetic

potential. He utilized the Garlerkin method predicts the critical eigenvalue to be between

that of free-free and rigid-rigid boundaries. The eigenvalue for stationary convection was

gotten. The standard of trade of secure qualities was found to be substantial and oscil-

latory convection was discounted. The creator affirmed the subjective results of the past

examination (Siddheshwar 1993) that were the constraining instance of his review.

Russell et al. (1995) investigated the heat transfer in strongly magnetized ferrofluids is

calculated in the case where there was strong heating from above. The authors noticed

10
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that the convection pattern at critical conditions has a large wave number, and this used

to derive simplified equations for the temperature field in the ferrofluid. The results was

found that the heat transfer depends non-linearly on the temperature difference.

Huang et al. (1997) performed the thermoconvective instability analysis of a laterally un-

bounded nonconducting horizontal layer of paramagnetic fluid heated from below subject

to a uniform oblique magnetic field by using a linear stability analysis of the Navier-

Stokes equations complemented with Maxwell’s equations and accounting for the mag-

netic body force. The two-dimensional convective rolls with the axes parallel to the hor-

izontal component of the magnetic field were shown to lead to the onset of convective

instability.

Russell et al. (1999) analyzed the structure of two-dimensional vortices in a thin layer of a

magnetized ferromagnetic fluid heated from above in the limit of large critical wavenum-

bers. They presented a nonlinear asymptotic description of the vortex pattern that occurs

directly above the critical point in the parametric space where instability first sets in.

Lange et al. (2000) used linear stability theory to study the wavenumber selection of a free

surface instability arising in a horizontal layer of viscous magnetic fluid of a finite depth

in a normally applied magnetic field. The maximum growth rate and the corresponding

wavenumber have been computed for various combinations of viscosity and thickness of

a fluid layer. It has been found that the increase of magnetic induction leads to a mostly

linear increase of a wavenumber, which is consistent with the experimental data. Another

noteworthy results reported in Lange et al. (2000) is that in thin (film) layers of a fluid

the behaviour of the disturbance wavenumber was found to be independent of the fluid

viscosity and thus of the potential magnetoviscous effects.

Abraham (2002) analyzed the problem of Rayleigh-Bénard convection in a micropolar

ferromagnetic fluid layer permeated by a uniform magnetic field analytically with free-

free, isothermal, spin- vanishing, magnetic boundaries. The influence of the various mi-

cropolar and magnetization parameters on the threshold of stationary convection was dis-

cussed. It was found that micropolar fluid heated from below is more stable than ordinary

11



CHAPTER 2. LITERATURE REVIEW 12

fluids. The nature of the magnetization effects on convection in a micropolar ferromag-

netic fluid was found to be similar to that in Newtonian ferromagnetic fluids.

Suslov et al. (2008) investigated comprehensively a linear stability of convection flow in

a layer of ferromagnetic fluid between two vertical differentially heated plates placed in a

uniform external normal magnetic field. The author presented complete stability diagrams

for two- and three-dimensional disturbances. It was found that two distinct mechanisms,

thermogravitational and magnetic, are responsible for the appearance of three instability

modes. The most prominent features were identified and the physical nature of all three

modes was investigated in detail. The instability patterns were shown to depend on the

governing parameters and to consist of vertical stationary magnetoconvection rolls and/or

vertically or obliquely counterpropagating thermogravitational or thermomagnetic waves.

It was also found that the growth rate of the stationary magnetoconvective instability is

larger than that for the thermogravitational or thermomagnetic waves in a substantial part

of a parametric space.

Belyaev & Smorodin (2010) studied by the Langevin law of magnetization the linear sta-

bility of a convective flow in a flat vertical layer of ferromagnetic fluid under a transverse

temperature gradient in a uniform magnetic field perpendicular to the plates described.

The stability of flow with respect to three-dimensional perturbations was analyzed, and

the stability characteristics were obtained. The authors confirmed the existence of the sta-

tionary and two types of wave modes previously reported in Suslov et al. (2008). It was

found that thermomagnetic waves can exist for a wide range of values of the magnetic

susceptibility, Prandtl number and the Langevin parameter. The upper and lower bound-

aries of the interval of Prandtl numbers were determined where thermomagnetic waves

with the large wavenumber found in Suslov et al. (2008) are generally unsafe.

Suslov et al. (2012) investigated theoretically and experimentally thermomagnetic con-

vection flows patterns arising in a vertical differentially heated layer of nonconducting

ferromagnetic fluid placed in an external uniform transverse magnetic field and discussed

from the point of view of the perturbation energy balance. The authors investigated exper-

12
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imentally various flow patterns and confirmed the existence of oblique thermomagnetic

waves predicted by Suslov et al. (2008). It was shown that two distinct mechanisms,

thermogravitational and magnetic, are responsible for the appearance of three instabil-

ity modes. The physical nature of all three modes is investigated in detail and the most

prominent features are identified to provide guidance for future experimental investiga-

tion. It was also found that the wavenumber of the detected convection patterns depends

sensitively on the applied magnetic field and on the temperature difference across the

layer. They suggested a quantitative criterion for detecting the parametric point where the

dominant role in producing a flow instability is transferred between the thermomagnetic

and thermogravitational mechanisms based on the disturbance energy balance analysis. It

was found that such a transition occurs when Grashof and magnetic Grashof numbers are

of comparable sizes.

Rahman & Suslov (2016) studied the fluids flow stability based on gravitational condition

in a layer of ferrofluid confined between two vertical wide and tall non-magnetic plates.

It heated from one side, cooled from the other and placed in a uniform oblique exter-

nal magnetic field. There are two distinct mechanisms such as thermo-gravitational and

thermo-magnetic, are found to be responsible for the appearance of various stationary and

wave-like instability modes. The characteristics of all instability modes are investigated

as functions of the orientation angles of the applied magnetic field and its magnitude for

various values of magnetic parameters when both the thermo-magnetic and gravitational

buoyancy mechanisms are active. The original three-dimensional instability patterns are

recovered using the inverse Squire’s transformation, and the optimal field and pattern

orientations are determined.

In this study the major steps of the analyses reported in Finlayson (1970), Suslov (2008),

Belyaev & Smorodin (2010), Suslov et al. (2012) and especially in Rahman & Suslov

(2016) will be followed and focusing on the investigation of the influences of the ori-

entation of the applied magnetic field on the fluid behaviour. Theoretically it will be

clarified the observed ferrofluid motions on driving of the physical mechanisms. The

fluids with weak (paramagnetic fluids) and strong (ferrofluids) degrees of magnetisation

13
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will be obtained and the patterns resulting from the competition between thermomagnetic

and thermograviational mechanisms of convection will be discussed for the comparative

results. Further studies for this comprehensive investigation will also provide a guidance

for future experiments.

14



Chapter 3
Problem Formulation and

Governing Equations

In this chapter the geometry of the considered system along with the governing equations

and their transformations will mainly be discussed.

3.1 Problem Formulation

Let us consider a ferromagnetic fluid that is flowing in between two infinitely extended

vertical non-magnetic plates as shown in the figure 3.1. The origin of the right handed

cartesian coordinate system (x, y, z) is placed at the middle of the plates such that the

plates are at x = ±d and the gravity vector~g has the components (0,−g, 0). The plates

are maintained at constant temperatures T∗ ± Θ. An external uniform magnetic field

with intensity ~He is applied with some inclinations to the plates. Let δ be the inclination

angle with the x axis then He
x = He cos δ, and hence the component along the plates be

He sin δ, thus He
y = He sin δ cos γ and He

z = He sin δ sin γ, where γ is the angle made

by the projection with the y axis. The applied magnetic field will create and induced

magnetic field with strength ~H within the fluid i.e. there will be an induced magnetic

field ~H having |~H| = H. The magnetic field causes fluid magnetization ~M such that

| ~M| = M, which is assumed to be co-directed with the internal magnetic field: ~M =

15
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Figure 3.1: Sketch of the problem geometry.

χ∗~H, where χ∗ is the integral magnetic susceptibility of the fluid.

Assuming that the temperature difference 2Θ between the walls is sufficiently small we

adopt the Boussinesq approximation to the continuity, Navier-Stokes and thermal energy

equations that are complemented with the Maxwell equations for the magnetic field which

is written in the magneto-static form due to the negligible electrical conductivity of fer-

rofluids (Rosensweig 1985). As discussed in Suslov (2008), the non-dimensional govern-

ing equations for velocity~v = (u, v, w), temperature T, pressure p, magnetic field ~H and

magnetization ~M written as

∇ ·~v = 0 , (3.1.1)

ρ∗
∂~v
∂t

+ ρ∗~v · ∇~v = −∇p + η∗∇2~v + ρ~g + µ0M∇H , (3.1.2)

∂T
∂t

+~v · ∇T = κ∗∇2T , (3.1.3)

∇× ~H =~0 , ∇ · ~B = 0 , (3.1.4)

16



CHAPTER 3. PROBLEM FORMULATION AND GOVERNING EQUATIONS 17

where

~B = µ0( ~M + ~H) , ~M =
M(H, T)

H
~H . (3.1.5)

where t is time, T is the temperature, p is the pressure, ~B is the magnetic flux density, ρ∗

is the density, η∗ is the dynamic viscosity, β∗ is the coefficient of thermal expansion, κ∗ is

the thermal diffusivity, and µ0 = 4π× 10−7 H/m is the magnetic constant. The subscript

∗ denotes the values of the fluid properties evaluated at the reference temperature T∗

and magnetic field ~H∗. In writing equation (3.1.2) it is assumed that the fluid remains

Newtonian. It has been found in experiments of Bogatyrev & Gilev (1984) that this is

a reasonable approximation for fluids with the volume concentration of solid phase not

exceeding f = 0.1.

The last term in equation (3.1.2) represents a ponderomotive (Kelvin) force that acts on a

magnetized fluid in a nonuniform magnetic field driving it toward regions with a stronger

magnetic field as discussed in Bashtovoy & Vislovich (1988). In order to close the prob-

lem, a magnetic equation of state is required which is assumed to be in the simplest linear

form valid for small temperature and field variations within the layer,

M = M∗ + χ∆H − K∆T , ∆H ≡ H − H∗ , ∆T ≡ T − T∗ . (3.1.6)

Here H∗ and M∗ = χ∗H∗ are the magnitude of the magnetic field and the magnetisation

at the location with temperature T∗, χ = ∂M/∂H|(H∗,T∗) is the differential magnetic

susceptibility and K = −∂M/∂T|(H∗,T∗) is the pyromagnetic coefficient. Using equation

(3.1.6), rewrite equation (3.1.5) as

~M =
χH + (χ∗ − χ)H∗ − K∆T

H
~H . (3.1.7)

Equation (3.1.7) was used for computations reported in Rahman & Suslov (2015). How-

ever it leads to expressions that are algebraically quite involved. Therefore it is desirable
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to use a simplified linearized version of equation (3.1.7), namely, its linearization

~M = [M∗ + (χ− χ∗)∆H − K∆T]~e∗ + χ∗∆~H , (3.1.8)

where ~e∗ ≡ ~H∗/H∗ = (e1∗, e2∗, e3∗), χ∗ ≡ M∗/H∗, H = H∗ + ∆H and ~H = ~H∗ +

∆~H so that | ~H∗| = H∗ is the constant vector representing the major direction of the

magnetic field and ∆ denotes small increments. This was done previously in Finlayson

(1970) and Suslov et al. (2008). Here the simplified equation (3.1.8) will also be used

and the results will be compared with those reported in Rahman & Suslov (2015) for full

equation (3.1.7).

Eliminating the magnetization in favor of the magnetic field one then obtains from the

second of equations (3.1.4)

(1 + χ∗)∇ · ~H + (χ− χ∗)∇H ·~e∗ − K∇T ·~e∗ = 0 . (3.1.9)

This equation shows that thermomagnetic coupling occurs mostly when the magnetic field

and the temperature gradient have components in the same direction.

It is convenient to redefine pressure p entering the momentum equation (3.1.2) so that it

includes both a hydrostatic component and a potential of Kelvin force (detail can be found

Odenbach (2002, pp. 86, 87)). In order to do this equation (3.1.6) is used to write

µ0M∇H = µ0[M∗ + χ∆H − K∆T]∇H

= µ0∇[M∗H +
1
2

χ∆H2]− µ0K∆T∇H .

It will be demonstrated in perturbation energy balance that only the non-potential compo-

nent

FK = −µ0K∆T∇H

of Kelvin force can lead to the destabilization of a static mechanical equilibrium and result
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in magnetoconvection. Upon introducing the modified pressure

P = p− µ0

[
M∗H +

1
2

χ∆H2
]

, (3.1.10)

The standard no-slip/no-penetration and thermal boundary conditions are imposed.

~v =~0 , ∆T = ±Θ at x = ∓d (3.1.11)

for velocity and temperature, respectively. The magnetic boundary conditions are

(~He − ~H)×~n =~0 , (~Be − ~B) ·~n = 0 at x = ±d , (3.1.12)

where superscript e denotes fields outside the layer and~n = (1, 0, 0) is the normal vector

to the walls. Using equation (3.1.9) the second of the conditions in equation (3.1.12) is

rewritten as

[ ~He − {(1 + χ∗)H∗ + (χ− χ∗)∆H ± KΘ}~e∗ − (1 + χ∗)∆~H] ·~n = 0 at x = ±d .

(3.1.13)

Consistent with the Boussinesq approximation valid for small differences between the

walls the fluid density variation with temperature T is accounted for only in the buoyancy

term in equation (3.1.2) as

ρ = ρ∗[1− β∗(T − T∗)] , (3.1.14)

where β∗ is the coefficient of thermal expansion.

Pressure p entering the momentum equation (3.1.2) is redefined using the density equation

(3.1.14) and the magnetisation equation (3.1.6) and noting that

ρ~g + µ0M∇H = ρ∗[1− β∗∆T)]~g + µ0[M∗ + χ∆H − K∆T]∇H

= ∇{ρ∗(~r ·~g) + µ0[M∗H +
1
2

χ∆H2]} − (ρ∗β∗~g + µ0K∇H)∆T ,
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where~r = (x, y, z) is the position vector. Equation (3.1.2) then becomes

ρ∗
∂~v
∂t

+ ρ∗~v · ∇~v = −∇P + η∗∇2~v− ρ∗β∗∆T~g− µ0K∆T∇H , (3.1.15)

where the modified pressure P = p − ρ∗(~r ·~g) − µ0

[
M∗H + 1

2 χ∆H2
]

. The govern-

ing equations and boundary conditions are nondimensionalised by using thermal velocity.

However, in this chapter the nondimensionalisation is changed by introducing the vis-

cous velocity, which is representative of non-zero base flow velocity. The other scales

are changed consistently so that the governing equations and boundary conditions are

nondimensionalised with the reference quantities for length, velocity, temperature and

thermodynamic pressure using

(x, y, z) = d(x′, y′, z′) , ~v = η∗
ρ∗d

~v′ , t = ρ∗d2

η∗
t′ , P = η2

∗
ρ∗d2 P′ ,

∆T = Θθ′ , ~g = g~eg , ~H = KΘ
1+χ

~H′ , ~M = KΘ
1+χ

~M′ ,

where ρ∗ is the density and η∗ is the dynamic viscosity at the reference temperature T∗,

~eg = (0,−1, 0) and d is the half-distance between the vertical walls. Then omitting

primes for simplicity of notation, we will have

∇ ·~v = 0 , (3.1.16)

∂~v
∂t

+~v · ∇~v = −∇P +∇2~v−Grθ~eg −Grmθ∇H , (3.1.17)

∂θ

∂t
+~v · ∇θ =

1
Pr
∇2θ , (3.1.18)

∇× ~H =~0 , (3.1.19)

(1 + χ∗)∇ · ~H + (χ− χ∗)∇H ·~e∗ − (1 + χ)∇θ ·~e∗ = 0 , (3.1.20)

~M = [(χ− χ∗)(H − N)− (1 + χ)θ]~e∗ + χ∗~H (3.1.21)

with the boundary conditions

[~He − {(χ− χ∗)(H − N)∓ (1 + χ)}~e∗ − (1 + χ∗)~H] ·~n = 0 , (3.1.22)

~v =~0 , θ = ∓1 at x = ±1 . (3.1.23)
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Table 3.1: The typical values of experimental parameters and properties of the ferrofluid
manufactured in Scientific Laboratory of Practical Ferromagnetic Fluids, Ivanovo, Russia
under Technical Conditions 229-001-02068195-2002 and used in experiments reported
in Suslov et al. (2012) and Bozhko et al. (2013).

Notation Parameter Typical value
f Volume concentration of magnetic phase 0.1
ρ∗ Density 1.44× 103 kg/m3

β∗ Coefficient of thermal expansion 7.7× 10−4 K−1

κ∗ Thermal diffusivity 1× 10−8 m2/s
η∗ Dynamic viscosity in the absence of magnetic field 7.66× 10−3 kg/m s
K Pyromagnetic coefficient ∼ 102 A/m K
µ0 Magnetic constant 4π × 10−7 H/m
He External magnetic field 0− 3.5× 104 A/m
T∗ Average (reference) temperature in the layer 293 K
2Θ Temperature difference between the walls 1− 30 K
2d Distance between the walls 6 mm

The rest of the governing equations and boundary conditions (3.1.16)-(3.1.23) remain

unchanged. The new dimensionless parameters appearing in the problem are

Gr =
ρ2
∗β∗Θgd3

η2
∗

, Grm =
ρ∗µ0K2Θ2d2

η2
∗(1 + χ)

,

Pr =
η∗

ρ∗κ∗
, N =

H∗(1 + χ)

KΘ
, (3.1.24)

The thermal and magnetic Grashof numbers Gr and Grm characterise the importance of

buoyancy and magnetic forces, respectively, the Prandtl number Pr is the ratio of viscous

and thermal diffusion transports, and parameter N describes the strength of the magnetic

field at the reference location relative to the variation of fluid magnetisation due to ther-

mal effects. The values of Grashof numbers are chosen below to produce the complete

parametric instability regions. The flow stabilization depends on the type of fluids charac-

terized by viscosity and consequently fluids Prandtl number. We fix the value of Prandtl

number to Pr = 27.5 and choose χ = χ∗ = 3 (which corresponds to a linear magneti-

sation regime) as in experiments of (Bozhko et al. 2013). In accordence with Rahman &

Suslov (2015) we also have considered smaller values of χ = 1.5 and 0.5 and of χ = 2.5
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and 1.5 that correspond to the near-saturation magnetic regimes.

Rahman & Suslov (2015) has characterized the thermo-magnetic sensitivity of thermo-

fluids by the pyromagnetic coefficient K, which is related to the non-dimensional param-

eter N defined in equation (3.1.24) in which it has relation with the magnetic field He. As

per definition more thermomagnetically sensitive fluids are characterized by the smaller

values of N and He. Suslov et al. (2010, 2012), Bozhko et al. (2013) and Sidorov (2016)

have considered the value of the non-dimensional external magnetic field He as 100 to

compare the behaviour of fluids with different thermo-magnetic sensitivities. Where as

Rahman & Suslov (2015) has chosen He = 10 to highlight the effects caused by the

nonlinearity of magnetic field within the fluid layer.

In this investigation the inclination angle of the magnetic field is taken between 0 to 15◦

i.e 0◦ ≤ δ ≤ 15◦ is considered. And the orientation has been considered between 0 to

180◦ i.e 0◦ ≤ δ ≤ 180◦. It may be worthy to mention that the values of the Grashof

numbers Gr and Grm were not restricted.

3.2 Basic flow and linearized perturbation equations

The steady solutions of equations (3.1.16)-(3.1.23) are in the form

~v0 = (0, v0(x), 0) , θ0 = θ0(x) , P0 = P0(x) , ~H0 = (Hx0(x), Hy0, Hz0) .

They should satisfy

DP0 = −Grmθ0e10DHx0 , D2v0 = −Grθ0 , D2θ0 = 0 . (3.2.1)

(1 + χ∗)DHx0 + (χ− χ∗)e10e10∗DHx0− (1 + χ)e10∗Dθ0 = 0 , (3.2.2)

DHy0 = 0 , DHz0 = 0 , (3.2.3)
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 Figure 3.2: Pattern of basic convective flow.

and the boundary conditions

He
x − (χ− χ∗)(H0 − N)e10∗ ± (1 + χ∗)e10∗ − (1 + χ∗)Hx0 = 0 , (3.2.4)

θ0 = ±1 , Hy0(x) = He
y , Hz0(x) = He

z , at x = ∓1 . (3.2.5)

where H0 ≡
√

H2
x0 + H2

y0 + H2
z0 , M0 ≡

√
M2

x0 + M2
y0 + M2

z0 and D ≡ d
dx . Upon

introducing the unit vector ~e0(x) ≡ (e10(x), e20(x), e30(x)) =
(

Hx0
H0

,
He

y
H0

, He
z

H0

)
in the

direction of the magnetic field the basic flow solutions of equations (3.2.1) are written as

θ0 = −x , v0 =
Gr
6
(x3 − x) , P0 = Grm

∫
x̃e10DHx0 dx̃ + C , (3.2.6)

where C is an arbitrary constant. Which is shown in figure 3.2. Equations (3.2.3) along

with boundary conditions (3.2.5) result in the expressions for tangential components of

the magnetic field that are constant inside the fluid layer Hy0(x) = He
y and Hz0(x) = He

z.

So the tangential components of the applied magnetic field do not change across the layer.

It is informed (e.g. Suslov (2008)) that for a perpendicular field when~e = ~e∗ = (1, 0, 0)

the basic flow component of the magnetic field in the x direction across the layer is given

by Hx0 = N0 − x, where N0 is defined by He′ = (1 + χ∗)N0. But the nonlinear

variation of an inclined magnetic field across the fluid layer cannot be given in a closed

form and has to be computed numerically by solving the equation (3.2.2). When the field

inclination angle is small i.e when sin δ =

√
H2

y+H2
z

He → 0, this solution can also be
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written asymptotically as

Hx0 = N0 − x +
x(1 + χ∗)2 sin2 δ

2(1 + χ)(N0 − x)
[(N0 − x)(1 + χ∗) + N0(χ∗ − χ)]

− x(1 + χ∗)4 sin4 δ

8(1 + χ)2(N0 − x)3 [(N0 − x)3(1 + χ∗)(3 + χ + 2χ∗) (3.2.7)

+ (N0 − x)N0(χ∗ − χ)(3 + χ + 2χ∗)(2N0 − x)

+ N3
0 (χ∗ − χ)(1− χ + 2χ∗)] + ◦((1 + χ∗)

4 sin4 δ) ,

It can be also shown that for small non-zero inclination angles δ the nondimensional

magnetic field at the center plane of a fluid layer is

N ≈ N0

√
1 + (1 + χ∗)2 sin2 δ . (3.2.8)

This approximation remains accurate as long as (1 + χs)2 sin2 δ � 1. For example, if

χ∗ = 5 the above expression indicates that a significant change of the internal magnetic

field value is expected to occur for the field inclination angles as small as δ = 10◦. This

is also evidenced by the numerical stability results that experience a qualitative change at

similar inclinations. Then Hx0 can be given in terms of x
N0

as

Hx0

N0
= 1− x

N0
(1− 1− χ + 2χ∗

2(1 + χ)
(1 + χ∗)

2 sin2 δ

−χ2 − 3 + (3 + 2χ∗)(2χ− 4χ∗)

8(1 + χ)2 (1 + χ∗)
4 sin4 δ)

+
x2

N2
0

χ∗ − χ

2(1 + χ)
(1 + χ∗)

2 sin2 δ

(
1 + 3

(1 + χ∗)3

1 + χ
sin2δ

)
(3.2.9)

+
x3

N3
0

χ∗ − χ

2(1 + χ)
(1 + χ∗)

2 sin2 δ

×
(

1 +
9− χ + 10χ∗

2(1 + χ)
(1 + χ∗)

2 sin2 δ

)
+ · · · .
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where the asymptotic can be developed by considering N0 � x. If the magnetisation law

is linear, that is if χ = χ∗ then the equations (3.2.7) and (3.2.9) reduce to

Hx0

N0
= 1− x

N0
+

x
2N0

(1 + χ∗)
2 sin2 δ

[
1− 3

4
(1 + χ∗)

2 sin2 δ + · · ·
]

(3.2.10)

In the following sections the physical features of instability patterns and the corresponding

critical parameters will be presented for an inclined external magnetic field applied at

arbitrary angles.

The nonlinearity of the function Hx0(x) that occurs in ferrofluids with large magnetic

susceptibilities has been shown to play a symmetry-breaking role, which in turn leads

to significant qualitative and quantitative changes in stability characteristics of the con-

sidered flow. Rahman & Suslov (2015) have shown that within a ferrofluid layer the

wave-like instability that do not exist in a normal field has link to the curvature of mag-

netic field lines. In this study, it has been tried to focus how a thermomagnetically induced

symmetry breaking interacts due to the introduction of the preferred direction along the

gravity vector.

To investigate a linear stability of the basic state with respect to infinitesimal y and z-

periodic disturbances the perturbed quantities are written in a normal form

(~v, P, θ, ~H, H, ~M, M) = (~v0, P0, θ0, ~H0, H0, ~M0, M0)

+
[
(~v1(x), P1(x), θ1(x), ~H1(x), H1(x), ~M1(x), M1(x))eσt+i(αy+βz) + c.c.

]
(3.2.11)

where σ = σR + iσI is the complex amplification rate, α and β are real wavenumbers

in the y and z directions, respectively and c.c. denotes the complex conjugate of the

expression in brackets. Upon introducing the magnetic potential φ1(x)eσt+i(αy+βz) of a
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magnetic potential such that

~H1 = [Dφ1, iαφ1, iβφ1] ,

H1 = ~H1 · ~e0 = [e10D + i(αe20 + βe30)]φ1 ,

~M1 = [χ∗Dφ1 + e10∗(χ− χ∗)H1 − e10∗(1 + χ)θ1 ,

iαχ∗φ1 + e20∗(χ− χ∗)H1 − e20∗(1 + χ)θ1 ,

iβχ∗φ1 + e30∗(χ− χ∗)H1 − e30∗(1 + χ)θ1 , ] ,

M1 = ~M1 · ~e0 = [χ∗ + (χ− χ∗)(e10e10∗ + e20e20∗ + e30e30∗)]H1

−(1 + χ)(e10e10∗ + e20e20∗ + e30e30∗)θ1 .

The linearization of equations (3.1.16)-(3.1.23) about the basic state leads to

Du1 + i (αv1 + βw1) = 0 , (3.2.12)

σu1 +
(

α2 + β2 + iαv0 − D2
)

u1 + DP1 + e10GrmDHx0 θ1

+ Grmθ0e10D2φ1 + Grmθ0

(
i(αe20 + βe30) + (1− e2

10)
DHx0

H0

)
Dφ1

− iGrmθ0e10(αe20 + βe30)
DHx0

H0
φ1 = 0 , (3.2.13)

σv1 + Dv0u1 + (α2 + β2 + iαv0 − D2)v1 + iαP1 −Grθ1

+ iαGrmθ0e10Dφ1 − αGrmθ0(αe20 + βe30)φ1 = 0 , (3.2.14)
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σw1 + (α2 + β2 + iαv0 − D2)w1 + iβP1

+ iβGrmθ0e10Dφ1 − βGrmθ0(αe20 + βe30)φ1 = 0 , (3.2.15)

σθ1 +Dθ0u1 +

(
α2 + β2 − D2

Pr
+ iαv0

)
θ1 = 0 , (3.2.16)

(D2 − α2 − β2)φ1 −
1 + χ

1 + χ∗
[i(αe20∗ + βe30∗) + e10∗D]θ1

− χ− χ∗
1 + χ∗

[
(αe20 + βe30)

(
αe20∗ + βe30∗ + ie10e10∗

DHx0

H0

)
φ1 (3.2.17)

−
(

ie10(αe20∗ + βe30∗) + ie10∗(αe20 + βe30) + e10∗(1− e2
10)

DHx0

H0

)
Dφ1

− e10e10∗D2φ1

]
= 0 .

The disturbance velocity and temperature fields are subject to standard homogeneous

boundary conditions

u1 = v1 = w1 = θ1 = 0 at x = ±1 . (3.2.18)

For non-magnetic boundaries, a perturbation of a magnetic field within a fluid layer causes

perturbation of the external magnetic field as observed in Finlayson (1970). If there are no

induced currents outside the layer and a non-magnetic medium(air) fills the surrounding

space, then the external magnetic field has a potential φe
1(x)exp(σt + iαy + iβz), which

follows from equations (3.1.4) and (3.1.5), satisfies Laplace’s equation

(D2 − α2 − β2)φe
1 = 0 , (3.2.19)

in the regions x < −1 and x > 1. A physically relevant bounded solution can be written

as

φe
1(x) = Ae

√
α2−β2x , x < −1 . (3.2.20)

and

φe
1(x) = Be−

√
α2−β2x , x > 1 . (3.2.21)

On considering the equation (3.1.5), the linearization of the magnetic boundary conditions
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(3.1.12) leads to

Dφe
1 = (1 + χ∗)Dφ1 + e10∗(χ− χ∗)[i(αe20 + βe30) + e10D]φ1 , (3.2.22)

φe
1 = φ1 at x = ±1 . (3.2.23)

After eliminating A and B from equations (3.2.20), (3.2.21) and (3.2.23), the boundary

conditions for φ1 at x = ±1 becomes

(1+ χ∗)Dφ1±
√

α2 + β2φ1 + e10∗(χ− χ∗)[i(αe20 + βe30) + e10D]φ1 = 0 . (3.2.24)

Upon applying the generalized Squire’s transformations

(x, y, z) = (x̃, ỹ, z̃) , θ0 = θ̃0 , Hx0 = H̃x0 , H0 = H̃0 , σ = σ̃ , α2 + β2 = α̃2 ,

β = β̃ , u1 = ũ , αv1 + βw1 = α̃ṽ , w1 = w̃ , θ1 = θ̃ , P1 = P̃ , φ1 = φ̃ ,

αGr = α̃G̃r , Grm = G̃rm , Pr = P̃r , χ = χ̃ , χ∗ = χ̃∗ , (3.2.25)

e10∗ = ẽ10∗ , e10 = ẽ10 , αe20 + βe30 = α̃ẽ20 , αe20∗ + βe30∗ = α̃ẽ20∗ ,

and noting that αv0 = α̃ṽ0, where ṽ0 = G̃r(x̃3 − x̃)/6, the equations (3.2.12)-(3.2.17)
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become

Dũ + iα̃ṽ = 0 , (3.2.26)

σ̃ũ + (α̃2 + iα̃ṽ0 − D2)ũ + DP̃ + ẽ10G̃rmDH̃x0θ̃ + G̃rmθ̃0ẽ10D2φ̃ (3.2.27)

+ G̃rmθ̃0

[
iα̃ẽ20 + (1− ẽ2

10)
DH̃x0

H̃0

]
Dφ̃− iα̃G̃rmθ̃0ẽ10ẽ20

DH̃x0

H̃0
φ̃ = 0 ,

σ̃ṽ + Dṽ0ũ + (α̃2 + iα̃ṽ0 − D2)ṽ + iα̃P̃− G̃rθ̃ (3.2.28)

+ α̃G̃rmθ̃0(iẽ10Dφ̃− α̃ẽ20φ̃) = 0 ,

σ̃w̃ + (α̃2 + iα̃ṽ0 − D2)w̃ + iβ̃P̃ + β̃G̃rmθ̃0(iẽ10Dφ̃− α̃ẽ20φ̃) = 0 , (3.2.29)

σ̃θ̃ + Dθ̃0ũ +

(
α̃2 − D2

P̃r
+ iα̃ṽ0

)
θ̃ = 0 , (3.2.30)

(D2 − α̃2)φ̃− χ̃− χ̃∗
1 + χ̃∗

α̃ẽ20

[
α̃ẽ20∗ + iẽ10∗ ẽ10

DH̃x0

H̃0

]
φ̃

+
χ̃− χ̃∗
1 + χ̃∗

[
iα̃(ẽ10ẽ20∗ + ẽ10∗ ẽ20) + ẽ10∗(1− ẽ2

10)
DH̃x0

H̃0

]
Dφ̃ (3.2.31)

+
χ̃− χ̃∗
1 + χ̃∗

ẽ10∗ ẽ10D2φ̃− 1 + χ̃

1 + χ̃∗
[iα̃ẽ20∗ + ẽ10∗D] θ̃ = 0

with the boundary conditions

(1 + χ̃∗)Dφ̃± |α̃|φ̃ + ẽ10∗(χ̃− χ̃∗)(iα̃ẽ20 + ẽ10D)φ̃ = 0 , (3.2.32)

ũ = ṽ = w̃ = θ̃ = 0 at x̃ = ±1 . (3.2.33)

Only (3.2.29) contains w̃ and β explicitly. Therefore, this equation can be split from the

rest of the transformed system and, if necessary, can be solved afterwards. By assuming

the two-dimensionality of the perturbation field and its periodicity in the y direction can be

formally obtained by setting w = β = 0, that the remaining equations form an equivalent

two-dimensional problem. This enables one to significantly reduce the computational

cost of stability calculations. However, even if β and w are set to 0 the external applied

magnetic field He
x = He cos δ, He

y = He sin δ cos γ and He
z = He sin δ sin γ still remain

three-dimensional in the above Squire-transformed linearised equations and thus the field

inclination and orientation angles δ and γ still act as independent control parameters
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entering the problem via the expressions for ẽ10. The δ angle parameterizes the deviation

of the field from the normal direction to the layer, while γ measures the azimuthal angle

from the positive y direction that is from the direction opposite to that of the gravity. The

equations have been solved by using numerical procedure and the obtained results have

been plotted whenever deemed necessary.
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Chapter 4
Results and Discussions

4.1 Comparison with Selected Previous Numerical Re-

sults

From the left plot of figure 4.1, it is evident that for each set of physical governing pa-

rameters, the problem is solved for a range of wave number α̃ to locate the maximum

of the disturbance amplification rate σ̃R. Then the values of G̃r are iteratively modi-

fied until the maximum value of σ̃R becomes smaller than the given threshold value of

10−5. Full stability diagrams discussed in Section 4.2.3 are obtained by repeating the

computational process for different values of G̃rm. The critical values of the governing

parameters for the convection threshold in a perpendicular (δ = 0◦) external magnetic

field with magnitude He=100 have been computed to compare with previous results. For

a pure gravitational convection (G̃rm = 0) threshold at Prandtl number P̃r = 0.71,

the critical values G̃r = 502.35 and α̃ = 1.405 are computed. After multiplying by

the corresponding factors of 16 and 2, respectively, which is arising due to a different

non-dimensionalisation they agree with the previously known accurate result reported in

Suslov & Paolucci (1995). For P̃r = 7, the onset of gravitational convection is also com-

puted and the set of critical values (G̃rm = 0, G̃r = 491.78, α̃ = 1.38) is obtained, which

agree closely with those critical values presented in Belyaev & Smorodin (2010). The

gravitational convection threshold is also computed for P̃r = 130. The obtained critical
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Figure 4.1: Leading disturbance temporal amplification rates σ̃R (left) and frequencies
σ̃I (right) as functions of the combined wave number α̃ for (G̃rm, G̃r) = (0, 107.825)
(onset of thermo-gravitational convection) at δ = γ = 0◦, χ̃ = χ̃∗ = 5 and P̃r = 27.5.

values G̃r = 40.9735 and α̃ = 1.2384 are identical to those reported in Suslov et al.

(2008). For the case of P̃r = 130 and χ̃ = χ̃∗ = 4, the critical values for the magnetic

convection threshold (G̃r = 0) are computed and the critical values G̃rm = 1.387 and

α̃ = 1.9278 are obtained, which agree well with the values of G̃rm = 1.385 and α̃ = 1.95

computed from the corresponding data reported in Finlayson (1970). For P̃r = 130 and

χ̃ = χ̃∗ = 5, the magnetic convection threshold is also determined and the critical val-

ues G̃rm = 1.398 and α̃ = 1.9366 are obtained, which are identical to those reported in

Suslov et al. (2008).

Moreover, for the case of Prandtl number P̃r = 130 and χ̃ = χ̃∗ = 5, the critical

values for mixed convection are computed. Two sets of critical values (G̃r = 16.69,

G̃rm = 15.775, α̃ = 1.6963) and (G̃r = 39.976, G̃rm = 1.40, α̃ = 1.2564) are obtained,

which agrees closely with those presented in Suslov et al. (2008).
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Figure 4.2: Same as Figure 4.1 but for (G̃rm, G̃r) = (6.609, 0) (onset of stationary
magneto-convection).

4.2 Flow Stability Characteristics

4.2.1 Stability Characteristics of Flows in a Normal Field

Suslov (2008) has already investigated the stability characteristics of a ferromagnetic fluid

flow in a vertical differentially heated layer placed in a normal magnetic field. Only

flow stability in linearly magnetized fluid with the specific Prandtl number P̃r = 130

has be discussed by the author. The present study contains the comprehensive stability

characteristics of convection flow for different values of Prandtl number, arbitrary field

inclination angles and both linear and non-linear magnetization of fluids.

In normal magnetic field, there exists three main types of instability patterns e.g. thermo-

gravitational, magnetic and magneto-gravitational convections. The relevent typical eigen-

value curves are shown in figures 4.1, 4.2 and 4.3 respectively.

From the figure 4.1, it is evident that, in the case of thermo-gravitational instability

(G̃rm → 0) one maximum of the disturbance amplification rate σ̃R exists with complex

conjugate eigenvalues that indicate the existence of two counter-propagating waves. From

the figure 4.2, it is also found that there is again maximum of the disturbance amplification

rate σ̃R but in this case (G̃r→ 0) the eigen-values are real and this situation corresponds
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Figure 4.3: Same as Figure 4.1 but for (G̃rm, G̃r) = (124, 41.61). In the left plot the
left and right maxima correspond to small- and large-wave number waves, respectively,
and the middle maximum corresponds to a stationary roll pattern.

to a stationary magneto-convection pattern. In the third case (G̃r 6= 0, G̃rm 6= 0) up to

three maxima of the disturbance amplification rate σ̃R (see figure 4.3) can exist, of which

the left and right most maxima correspond to small and large-wave-number waves re-

spectively while the middle one corresponds to a stationary magneto-convection pattern.

These instability modes will be identified to as Type-I, III and II, respectively. It may

be mentioned that the stabilities start with G̃r 6= 0, G̃rm = 0; G̃r = 0, G̃rm 6= 0 and

G̃r 6= 0, G̃rm 6= 0 are commonly characterized as thermo-gravitational, magnetic and

magneto-gravitational convection respectively.

Rahman & Suslov (2016) have worked with the critical values of magnetic Grashof num-

ber, G̃rm as 0, 12 and 30. They have found that for low values of G̃rmc, the wave number

α̃c increases with the increase of Prandtl number P̃r. But for high values G̃rmc, α̃c pri-

marily increases and after achieving a maximum it decreases with the increase of Prandtl

number P̃r. In this research we have considered G̃rmc as 5 and 10 as low values and 35

as high value and the same feature observed as reported in Rahman & Suslov (2016) (see

Table 4.1) i.e., in case of low G̃rmc, α̃c increases but for high values it primarily increases

and attaining to a maximum then it decreases with the increase of Prandtl number P̃r.
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In case of G̃rc = 0 i.e. in absence of buoyancy force with the increase of Prandtl number

P̃r the critical value of magnetic Grashof number G̃rmc decreases and α̃c remains con-

stant. In other words the onset of a stationary magneto-convection (for G̃r = 0) occurs

at wave number that is independent of the values of Prandtl number P̃r. The data in the

Table 4.1 also confirms that the stationary magneto-convection pattern is characterized by

the magnetic Grashof number G̃rm that is inversely proportional to P̃r. It may be noted

that the disturbance wave speed of gravitational instability modes becomes larger than the

maximum basic flow velocity in a large Prandtl-number fluid meaning that the physical

nature of instabilities has nothing to do with the basic flow velocity field. It is also ob-

served that the basic flow becomes less stable when Prandtl number increases. As Prandtl

number is the ratio of fluids viscosity and thermal diffusivity, the large Prandtl number

corresponds to small thermal diffusion. Therefore thermal disturbances dissipate slowly

in large Prandtl-number fluids. Thus based on the data presented in Table 4.1, it may

be concluded that the physical nature of instabilities observed for G̃rm = 0 is thermally

dominated and because of that Gershuni and his colleagues called these waves as thermal

(Gershuni et al. 1989). Thermal waves propagate to upwards near the hot wall and to

downwards near the cold wall(see in Table 4.2). This conclusion remains mostly true for

magneto-gravitational convection when both G̃r and G̃rm are non-zero.

In a normal magnetic field, the representative critical values of G̃r, α̃ and disturbance

wave speed c̃ for two thermomagnetic waves at G̃rm = 12 and P̃r = 27.5 are given in

Table 4.2 for various values of magnetic susceptibilities χ̃ and χ̃∗. In the case of linear

magnetization law i.e. when χ̃ = χ̃∗ the two waves propagate with equal speeds in the op-

posite directions. By the same wave number, the disturbance waves are characterized and

the basic flow becomes unstable with respect to the first and second waves simultaneously

propagating to upwards and downwards respectively.

However, when the values of χ̃ and χ̃∗ differ i.e. in the case of non-linear magnetization

law close to the magnetic saturation the symmetry of wave is broken and the first wave

near the hot wall becomes more dangerous compared to the second wave near the cold

wall (see Table 4.2). By a slightly larger wave number the first wave is characterized than
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Table 4.1: The critical values of G̃rm, G̃r, α̃, disturbance wave speed c̃ = −σ̃I/α̃ and
the maximum speed of the basic flow ṽ0 max for mixed convection in a perpendicular
(δ = 0◦) external magnetic field He = 100 at χ̃ = χ̃∗ = 5 and various values of Prandtl
number P̃r.

P̃r G̃rmc G̃rc α̃c c̃c ṽ0 max

20 5 149.980 0.824 ±9.232 9.616
27.5 5 106.487 0.969 ±6.662 6.828

55 5 62.979 1.153 ±4.040 4.038
70 5 54.044 1.200 ±3.489 3.465

130 5 37.108 1.308 ±2.423 2.379
150 5 33.967 1.333 ±2.222 2.178

20 10 149.083 0.828 ±9.172 9.559
27.5 10 105.109 0.978 ±6.568 6.739

55 10 60.389 1.183 ±3.862 3.872
70 10 50.931 1.241 ±3.274 3.266

130 10 31.987 1.401 ±2.070 2.051
150 10 28.063 1.447 ±1.815 1.799

20 35 144.378 0.845 ±8.855 9.257
27.5 35 97.399 1.025 ±6.043 6.245

55 35 38.291 1.459 ±2.354 2.455
60 35 23.748 1.651 ±1.395 1.523
65 35 11.036 1.498 ±0.535 0.708
70 35 8.733 1.350 ±0.382 0.560
75 35 7.071 1.234 ±0.269 0.453

20 9.087 0 1.936 0 0
27.5 6.609 0 1.936 0 0

55 3.305 0 1.936 0 0
70 2.596 0 1.936 0 0

130 1.398 0 1.936 0 0
150 1.212 0 1.936 0 0

that of a second wave.

4.2.2 Wave-like Instabilities in Oblique Fields

Tables 4.3 and Tables 4.4 represent the similar critical values of G̃r, α̃ and c̃ for the first

and second waves respectively of mixed convection at G̃rm = 12, γ = 0◦, P̃r = 27.5,

He = 100 (odd-numbered lines), He = 10 (even-numbered lines), and various values of
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Table 4.2: The critical values of G̃r, α̃ and disturbance wave speed c̃ = −σ̃I/α̃ for
leading two waves of mixed convection in a normal magnetic field(δ = 0◦) for G̃rm =
12, γ = 0◦, P̃r = 27.5, He = 100 and various values of χ̃ and χ̃∗ .

Upward propagating wave Downward propagating wave

χ̃ χ̃∗ α̃c G̃rc c̃c α̃c G̃rc c̃c

5 5 0.981 104.54 6.530 0.981 104.54 -6.530
3 5 0.979 105.43 6.582 0.976 106.07 -6.623
3 3 0.982 104.25 6.510 0.982 104.25 -6.510

1.5 2.5 0.984 104.19 6.502 0.981 104.73 -6.538
1 2 0.982 104.47 6.519 0.978 105.36 -6.577

0.5 1.5 0.977 105.77 6.599 0.968 107.64 -6.720

χ̃ and χ̃∗. In those tables the critical values have been plotted for different values of δ for

χ̃ and χ̃∗. As follows data in the Tables 4.3 and 4.4 the basic follow becomes more stable

with the increases of the field inclination angles. The wave number of disturbance waves

decreases with the increases of the field inclination angles and consequently, the distance

between two instability rolls becomes longer. By the increases of the field inclination

angles the disturbance waves propagate quicker.

The inclined magnetic field leads to the asymmetry in wave propagation compared to

the normal field regardless of fluid magnetization is linear or not in the flow domain

presented in the Tables 4.3 and 4.4. It is seen that the upward propagating wave for various

inclined magnetic fields are always characterized by larger wave number than that of the

downward propagating wave. The basic flow is less stable for the upward propagating

wave compared to the downward propagating wave in the case of linear magnetization

law. Consequent, the upward propagating waves remain the most dangerous in inclined

magnetic fields. The upward wave propagates slowly compared to the downward wave.

However, the destabilizing characters of the upward and downward waves swap near the

magnetization saturation in the case of non-linear magnetization law. Thus, generally it

is concluded that the strength of the applied arbitrary oblique magnetic field can charge

quantitatively the stability characteristics.

It is noted that the equation (3.1.24) represents the magnitude of the non-dimensional
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Table 4.3: The critical values of G̃r, α̃ and disturbance wave speed c̃ = −σ̃I/α̃ for first
wave of mixed convection at G̃rm = 12, γ = 0◦, P̃r = 27.5, He = 100 (odd-numbered
lines), He = 10 (even-numbered lines), and various values of χ̃ and χ̃∗ .

δ = 5◦ δ = 10◦ δ = 15◦

χ̃ χ̃∗ α̃c G̃rc c̃c α̃c G̃rc c̃c α̃c G̃rc c̃c

5 5 0.989 104.50 6.539 0.976 107.38 6.734 0.964 109.64 6.885
0.993 103.98 6.506 0.979 106.90 6.704 0.966 109.38 6.868

3 5 0.990 104.93 6.575 0.975 108.08 6.790 0.963 110.23 6.932
0.992 105.05 6.578 0.973 108.23 6.801 0.962 110.24 6.933

3 3 0.991 103.61 6.476 0.986 105.12 6.583 0.976 107.12 6.718
0.993 103.34 6.459 0.989 104.74 6.558 0.978 106.81 6.697

1.5 2.5 0.994 103.27 6.453 0.987 104.91 6.573 0.978 106.87 6.706
0.995 103.07 6.441 0.990 104.69 6.555 0.980 106.87 6.702

1 2 0.994 103.24 6.450 0.990 104.37 6.538 0.983 106.04 6.653
0.995 103.12 6.442 0.993 104.27 6.527 0.981 106.18 6.662

0.5 1.5 0.992 103.80 6.485 0.993 104.09 6.524 0.989 105.13 6.600
0.993 103.77 6.483 0.992 104.06 6.524 0.989 105.09 6.598

magnetic field is proportional to parameter N, which is reciprocally proportional to the

pyromagnetic coefficient that characterizes the sensitivity of the fluid magnetization to the

temperature variation. The weaker temperature dependence fluids magnetization charac-

terized by the large value of non-dimensional magnetic field and vice versa. It is con-

cluded that the strength of the external stronger and weaker magnetic field corresponds

to thermo-magnetically less and more sensitive fluids. From the Tables 4.3 and 4.4 it

has been found that when an oblique magnetic field is applied the upward propagating

wave in a thermo-magnetically more sensitive fluid is characterized by a larger wave

number and the basic flow becomes less stable there than in a thermo-magnetically less

sensitive fluid regardless of whether the fluid magnetization is linear or not. It has been

also seen that whatever the fluid magnetization law is, the upward disturbance wave in a

less thermo-magnetically sensitive fluid propagates quicker than that in a more thermo-

magnetically sensitive fluid. Where as, in the case of the downward propagating wave

in more thermo-magnetically sensitive fluid is characterized by a smaller wave number

compared to that in a less thermo-magnetically sensitive fluid in an arbitrarily inclined

magnetic field regardless of whether the fluid magnetization is linear or not. The basic
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Table 4.4: Same as Table 4.3 but for second wave.

δ = 5◦ δ = 10◦ δ = 15◦

χ̃ χ̃∗ α̃c G̃rc c̃c α̃c G̃rc c̃c α̃c G̃rc c̃c

5 5 0.987 104.64 -6.548 0.975 107.49 -6.742 0.963 109.70 -6.889
0.981 105.42 -6.597 0.970 108.04 -6.777 0.961 109.97 -6.906

3 5 0.989 105.44 -6.603 0.971 109.04 -6.845 0.959 111.14 -6.984
0.985 105.39 -6.606 0.973 108.87 -6.834 0.960 111.12 -6.982

3 3 0.990 103.68 -6.481 0.985 105.22 -6.589 0.975 107.20 -6.723
0.988 104.04 -6.504 0.981 105.69 -6.619 0.973 107.55 -6.745

1.5 2.5 0.992 103.48 -6.469 0.988 104.95 -6.572 0.978 107.04 -6.714
0.990 103.72 -6.484 0.985 105.22 -6.592 0.976 107.06 -6.718

1 2 0.992 103.59 -6.475 0.991 104.46 -6.539 0.982 106.37 -6.669
0.990 103.70 -6.483 0.988 104.57 -6.551 0.983 106.25 -6.661

0.5 1.5 0.988 104.52 -6.536 0.994 104.39 -6.535 0.987 106.05 -6.649
0.988 104.45 -6.533 0.995 104.35 -6.532 0.987 106.05 -6.649

flow in a more thermo-magnetically sensitive fluid becomes more stable with respect to a

downward propagating wave and its disturbance wave speed becomes quicker than those

in a less thermo-magnetically sensitive fluid.

The figures 4.4, 4.5 and 4.6 represent the comparison among the critical parameter values

of G̃r, α̃ and c̃ i.e., the flow stability characteristics as functions of the field inclination

angle δ and orientation angle γ for G̃rm = 12, He = 100, P̃r = 27.5 and the values of

magnetic susceptibilities, χ̃ = χ̃∗ = 3, χ̃ = χ̃∗ = 5 and χ̃ = 1.5, χ̃∗ = 2.5, respectively.

In the all figures the plots(a) describe the Grashof number G̃r (the flow is stable under the

respective curves), (b) wave number α̃ and (c) wave speed c̃ as functions of the inclination

angle γ from 0 to 180◦.

In the plot(a) in figure 4.4 the stability results are computed for a particular value of

G̃rm = 12 to analyze the influence of the field orientation angle γ. Under the larger

field inclination angles δ the basic flow becomes more stable regardless of the effect of

field orientation angle γ. With the increase of the field inclination angle δ the wave

number decreases and the distance between the instability rolls increases. It follows from

figures 4.4(c) that as the field inclination angle increases the wave speed also increases.

The numerical results for a stronger magnetizable fluid with the value of χ̃ = χ̃∗ = 5
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Figure 4.4: Comparison among the critical parameter values: (a) Grashof number G̃r
(the flow is stable under the respective curves), (b) wave number α̃ and (c) wave speeds c̃
as functions of the field inclination angles δ and γ for G̃rm = 12, He = 100, P̃r = 27.5
and χ̃ = χ̃∗ = 3.
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Figure 4.5: Same as figure 4.4 but for χ̃ = χ̃∗ = 5.
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Figure 4.6: Same as figure 4.4 but for χ̃ = 1.5 and χ̃∗ = 2.5.
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Figure 4.7: Comparison of the critical parameter values for the first (solid line) and sec-
ond (dashed line) waves: (a) Grashof number G̃r (the flow is stable under the respective
curves), (b) wave number α̃ and (c) wave speeds c̃ as functions of the azimuthal angle γ
for G̃rm = 12, He = 100, P̃r = 27.5, δ = 5◦ and χ̃ = χ̃∗ = 3.

are presented in the figure 4.5. It is noticed that, generally the basic flow becomes more

stable for stronger magnetizable fluid compared to the weaker magnetizable fluid in the

inclined magnetic field at any arbitrary angles. The wave speed propagates faster where

as the wave number becomes smaller with the increase the strength of magnetic field in

the case of linear magnetization law. In figure 4.6 the critical values of the parameters for

the case of non-linear magnetization law closer to magnetic saturation i.e., for χ̃ 6= χ̃∗

is presented. The comparison with the figures 4.4 and 4.5 does not allow one to make

general comment on the flow stability but indicates that the stability parameters have

dependencies on a particular combination of the values of δ, γ, χ and χ∗.

The comparison of all three Figures 4.4, 4.5 and 4.6 indicates that stability of the basic

flow is influenced more by the value of the differential magnetic susceptibility χ compared

to the value of the integral susceptibility χ∗, and generally the basic flow becomes more

stable for stronger magnetizable fluids and it’s instabilities patterns are characterised by

smaller wave numbers and quicker wave speeds compared to weaker magnetizable fluids

for all magnetic fields inclination and orientation angles.

As follows the figures 4.7, 4.8 and 4.9 the comparison the critical parameter values of G̃r,

α̃ and c̃ for the upward and downward waves as function of the azimuthal angle γ from

0 to 180◦ is presented for G̃rm = 12, He = 100, P̃r = 27.5, δ = 5◦ and the values

χ̃ = χ̃∗ = 3, χ̃ = χ̃∗ = 5 and χ̃ = 1.5, χ̃∗ = 2.5 respectively.
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Figure 4.8: Same as figure 4.7 but for χ̃ = χ̃∗ = 5.
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Figure 4.9: Same as figure 4.7 but for χ̃ = 1.5 and χ̃∗ = 2.5.

The critical parameter curves for both waves have qualitatively similar forms when the

fluid’s magnetization law is linear regardless of the degree of fluid magnetization. The

results are compared for χ = 3 and χ = 5 shown in figures 4.7, 4.8 respectively. For the

two waves the differences between the critical parameters quantitatively are likely same

for γ < 90◦ that is when magnetic field lines cross the fluid layer from hot to cold wall

upward. For such a field orientation the wavelength of the upward propagating waves be-

comes slightly shorter than that of the downward waves. The basic flow becomes unstable

for γ > 90◦ of both waves almost at the same values of the parameters. The main quanti-

tative difference between the results obtained for χ = 3 and χ = 5 is in the values of the

optimal field orientation angle γmin. In case of a weaker magnetizable fluid with χ = 3

the orientation angle nearly 0◦ while for χ = 5 the orientation angle close to 43◦. The

strength of magnetic effects increases when the optimal field orientation angle approaches

90◦. In case of non-linear fluid’s magnetization law the main qualitative observation is
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Figure 4.10: Comparison of the critical parameter values for thermo-magnetically less
(He = 100, solid line) and more (He = 10, dashed line) sensitive fluids: (a) Grashof
number G̃r (the flow is stable under the respective curves), (b) wave number α̃ and (c)
wave speeds c̃ as functions of the azimuthal angle γ for G̃rm = 12, P̃r = 27.5, δ = 5◦

and χ̃ = χ̃∗ = 3. Type-I instability.

that the critical values of the two waves are clearly distinguishable irrespective of the

value of the field orientation angle. Thus in regimes near the fluid magnetic saturation the

degree of the up-down symmetry breaking increases.

The stability characteristics of the basic flow with respect to the wave-like disturbances for

thermo-magnetically less (He = 100) and more (He = 10) sensitive fluids are compared

in figures 4.10, 4.11 and 4.12 respectively. The critical parameters for only the upward

propagating waves are presented in these figures. It is seen that, the thermo-magnetically

less sensitive fluids are more stable than those of there more sensitive counterparts. The

distinction in the critical values of magnetic Grashof number, wave number and wave

speed are more noticeable for the field orientation angles about 0◦ to 90◦ with the regard-

less of linear magnetization law.

It is also seen that, the wave-like instability patterns arising in a more thermo-magnetically

sensitive fluid are characterised by a larger wavenumber and thus by convection structures

that are closer packed in the direction of gravity. Furthermore, instability waves arising in

a thermo-magnetically less sensitive fluid have a somewhat greater wave speed.
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Figure 4.11: Same as figure 4.10 but for χ̃ = χ̃∗ = 5.
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Figure 4.12: Same as figure 4.10 but for χ̃ = 1.5 and χ̃∗ = 2.5.

4.2.3 Stability Diagrams

In this section the parametric regions where the different physical mechanisms lead to

the threshold of instability in the considered problem geometry will be identified and

discussed. To described the physical phenomenon the stability diagrams for an equivalent

two-dimensional problem are analyzed here.

Flow instabilities those arise for different values of G̃rc with respect to G̃rmc and corre-

sponding wave number and wave speed are presented in Figure 4.13 where the values of

He = 100, P̃r = 27.5, γ̃ = 0◦, χ̃ = χ̃∗ = 5 have been considered in a normal magnetic

field. This stability diagram has three branches representing the three type of instabili-

ties. The solid line in plot (a) in Figure 4.13 represents the instability of Type-I(solid line)

starting at G̃rmc = 0 and G̃rc is approximately 108 which is different from the finding of

Rahman & Suslov (2016) as there considered P̃r = 55. The corresponding wave numbers
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Figure 4.13: (a) Stability diagram for an equivalent two-dimensional problem; (b) the
critical wave number α̃c and (c) the corresponding wave speeds along the stability bound-
aries shown in plot (a) for He = 100, P̃r = 27.5 and χ̃ = χ̃∗ = 5 in a normal magnetic
field (δ = 0◦).
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Figure 4.14: (a) Stability diagram for an equivalent two-dimensional problem; (b) the
critical wave number α̃c and (c) the corresponding wave speeds along the stability bound-
aries shown in plot (a) for He = 100, P̃r = 55 and χ̃ = χ̃∗ = 5 in a normal magnetic
field (δ = 0◦) [Figure 12, Rahman & Suslov (2016)].

are presented in plot (b) and wave speed in plot (c) in Figure 4.13. From plot (c) it is clear

that there are two counterpropagating waves. The instability of Type-II identified by the

dashed line starts from G̃rc = 0. The Type-III instability identified by dash dotted line

shown in this figure. It is clear that Type-I instability occurs for low wave number, Type-II

instability occurs at moderate wave number and Type-III instability arises for higher wave

number. The obtained plots in Figure 4.13 are qualitatively similar to those in Figure 12

(where δ = 0◦) in Rahman & Suslov (2016) but quantitatively difference as different

P̃r. The stability diagram in plot (a) in Figure 4.13 confirms that fluid convection flow is

stable under the solid line and above the dash and dash dotted lines.

The figures 4.15 and 4.16 plotted for the same parameter values as figure 4.13 but with
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Figure 4.15: (a) Stability diagram for an equivalent two-dimensional problem; (b) the
critical wave number α̃c and (c) the corresponding wave speeds along the stability bound-
aries shown in plot (a) for He = 100, P̃r = 27.5 and χ̃ = χ̃∗ = 5 in an inclined magnetic
field for δ = 5◦ and γ̃ = 0◦.
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Figure 4.16: (a) Stability diagram for an equivalent two-dimensional problem; (b) the
critical wave number α̃c and (c) the corresponding wave speeds along the stability bound-
aries shown in plot (a) for He = 100, P̃r = 27.5 and χ̃ = χ̃∗ = 5 in an inclined magnetic
field for δ = 10◦ and γ̃ = 0◦.

different values of δ. The stability diagrams in inclined magnetic fields for δ = 5◦ and

δ = 10◦ are shown in figures 4.15 and 4.16 respectively. Here again resemblance are

found to this figure 12 (where δ = 5◦ and δ = 10◦) shown in Rahman & Suslov (2016)

qualitatively but quantitatively they are different. It is clear from the diagrams show

in figures 4.13, 4.15, 4.16 that the magnetic inclination angle plays significant role in

instability characteristics in the flow domain. The solid and dashed stability boundaries

shown in Figures 4.13 and 4.15 were distinguishable in Figure 4.13 but merged in case of

Figure 4.15 i.e.,the distinction between Type-I and Type-II instabilities blurred when the

magnetic field is inclined in a small angle to the vertical plane and Type-III instability is

hardly detected with the increase of the field inclination angle. With the further increase
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of the field inclination angle the solid line and dashed line are separated completely. The

feature matches with the observation reported in Rahman and Suslov(2016). Thus, it can

be noted that a change in the Prandtl number has affected the flow stabilization.

Overall discussion about this thesis, it is clearly noted that the basic flow becomes more

stable and wave propagates more quicker in lower Prandtl number of fluids compared to

the higher Prandtl number of fluids reported in Rahman & Suslov (2016). However, the

propagating wave is characterized by smaller wave number in lower Prandtl number of

fluids compared to those in higher Prandtl number of fluids.
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Conclusions

The thermomagnetic convection in a vertical layer of ferromagnetic fluid under inclined

magnetic field has been analyzed and compared to that reported in Rahman & Suslov

(2016). For the analysis purpose the considered fluid has the Prandtl number Pr = 27.5.

Both the normal and inclined(at different angles) magnetic fields have been considered

to verify it’s effect to the previous results. The stability characteristics of basic flow for

thermo-magnetically less(He = 100) and more(He = 10) sensitive fluids are investi-

gated. The critical values of thermal Grashof number, wave number and wave speed have

been computed for various magnetic susceptibilities. From the result and discussions the

following conclusions can be drawn:

(1) For pure gravitational convection the obtained critical values of thermal Grashof num-

ber and wave number for different Prandtl number agree with the earlier researches.

(2) At the onset of stationary magneto convection, the wave number is independent of the

Prandtl number.

(3) The first(upward propagating) wave remains the most dangerous compared to the sec-

ond(downward propagating) wave in both (thermo-magnetically more and less sensitive)

types of fluids in all regions of flow domain.

(4) With the increasing of the strength of the applied inclined magnetic field, generally,

the stability characteristics can change qualitatively.
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(5) A comparison between critical parameters (thermal Grashof number, wave number

and wave speed) for certain values of other parameters for the considered problem are

qualitatively similar to those reported in Rahman & Suslov (2016) but have a quantita-

tively difference.

(6) A comparison of the obtained stability diagram with those reported in Rahman &

Suslov (2016) confirms that the basic flow is more stable with the smaller Prandtl numbers

of fluid for both the normal and inclined magnetic field.
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