
i 
 

An Analytical Technique for Solving Second Order Strongly Damped 

Nonlinear Oscillator with a Fractional Power Restoring Force 

 

 

 

 by 

  

 

 

MD. SAIFUL ISLAM 

Roll No: 1551504 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

in Mathematics 

 

 

 

 

 

 

 

Khulna University of Engineering & Technology 

Khulna-9203, Bangladesh 

March 2017 



ii 
 

 

 

 

 

Dedication 

 

 

 

 

 I dedicate this thesis work to my beloved Parents 

Md. Mokleshur Rahman & Nasima Rahman 

and 

My Elder Brother  Md. Nazmul Hasan & Younger Sister  Rabeya 

Whose affection, encouragement and pray makes me able to get such success and honor. 

 

 

 

Along with all of my respectable 

Teachers 
 

 

 

 

 

 

 

 

 

 

 



iii 
 

Declaration 

 

 

 
This is to certify that the thesis work entitled “An Analytical Technique for Solving 

Second Order Strongly Damped Nonlinear Oscillator with a Fractional Power 

Restoring Force” has been carried out by Md. Saiful Islam, Roll No: 1551504, in the 

Department of Mathematics, Khulna University of Engineering & Technology, Khulna 

9203, Bangladesh. The above thesis work or any part of the thesis work has not been 

submitted anywhere for the award of any degree or diploma. 

 

 

  

  Signature of Supervisor             Signature of Student 

 

 



iv 
 

Approval 

 

 

This is to certify that the thesis work submitted by Md. Saiful Islam, Roll No: 1551504, 

entitled “An Analytical Technique for Solving Second Order Strongly Damped 

Nonlinear Oscillator with a Fractional Power Restoring Force” has been approved by 

the board of examiners for the partial fulfillment of the requirements for the degree of 

Master of Science in the Department of Mathematics, Khulna University of Engineering 

& Technology, Khulna-9203, Bangladesh in March, 2017. 

BOARD OF EXAMINERS 

 

1. ........................................ 

Dr. Md. Alhaz Uddin 

Professor 

Department of Mathematics  

Khulna University of Engineering & Technology 

Khulna-9203, Bangladesh. 

 

 

Chairman 

(Supervisor) 

2. ........................................ 

Head of the Department 

Department of Mathematics  

Khulna University of Engineering & Technology 

Khulna-9203, Bangladesh. 

 

 

Member 

3. ........................................ 

Name: 

Department of Mathematics  

Khulna University of Engineering & Technology 

Khulna-9203, Bangladesh. 

 

 

Member 

4. ........................................ 

Name: 

Department of Mathematics  

Khulna University of Engineering & Technology 

Khulna-9203, Bangladesh. 

 

 

Member 

5. 

 

........................................ 

Name 

Department of Mathematics  

University of ………….. 

 

Member 

(External) 

 



v 
 

ACKNOWLEDGEMENT 

 

 

In the name of Allah, the Most Gracious and the Most Merciful. 

 

Alhamdulillah, all praises to Almighty Allah for the strengths and His blessing in 

completing this thesis work. Special appreciation goes to my supervisor, Prof. Dr. Md. 

Alhaz Uddin, Department of Mathematics, Khulna University of Engineering & 

Technology (KUET), for his supervision and constant support. His invaluable help of 

constructive comments and suggestions throughout the experimental and thesis works 

have contributed to the success of this research.  

I would like to express my appreciation to the Head, Department of Mathematics, KUET, 

for his support and help towards my postgraduate affairs. Not forgotten, my appreciation 

to all my respected Teachers, Department of Mathematics, KUET, for their support and 

knowledge regarding this topic.  

I am also so much grateful to the members of this thesis examination committee for their 

loving and cordial advices to prepare my final thesis paper. My acknowledgement also 

goes to all the technicians and office staffs of KUET for their co-operations. 

I would like to express my cordial veneration to my previous academic teachers of 

National Secondary School, Daulatpur Day & Night College and Govt. B. L. University 

College, Khulna for the love and blessing they have given me. 

Sincere thanks to all of my friends especially Chaitee, Saikat, Jahid, Shafiq, Bishajit, 

Masuma, Barsha and Mira for their kindness and moral support during my study. I also 

thank all the researchers and students of this department for their help in many respects.  

Last but not least, my deepest gratitude goes to my beloved parents and also to my elder 

brother & younger sister for their endless love, prayers and encouragement. 

May the Almighty Allah richly bless all of you. 

 

 

Md. Saiful Islam 

Khulna, Bangladesh 

March, 2017 



vi 
 

Abstract 

 

 

 

In this thesis, an analytical technique has been developed for solving strongly nonlinear 

damped systems with 3/1x  restoring force by combining He’s homotopy perturbation 

method (HPM) and the extended form of the Krylov-Bogoliubov-Mitropolskii (KBM) 

method. The presented method has been justified by an example. We have also 

established the relationship between amplitude and approximate angular frequency. In 

this study, the presented technique gives desired results avoiding any numerical 

complexity. Graphical representation of any physical system is important. So, 

approximate solutions are compared with those numerical solutions obtained by fourth 

order Runge-Kutta method in graphically. The results in figures show that the 

approximations are of extreme accuracy with small and significant damping. The 

presented method is simple and suitable for solving the above mentioned nonlinear 

damped systems. 
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CHAPTER  I 

 

 

Introduction 

 

 

Most of the real-life systems are modeled by nonlinear differential equations. Obtaining 

exact solutions for these nonlinear problems are very difficult and time consuming for 

scientists and researchers. Thus, we try to find new approaches to overcome some of 

these difficulties.  

The subject of differential equations constitutes a large and very important branch of 

modern mathematics. Numerous physical, mechanical, chemical, biological, mechanics in 

which we want to describe the motion of the body (automobile, electron or satellite) 

under the action of a given force and many other relations appear mathematically in the 

form of differential equations that are linear or nonlinear, autonomous or non-

autonomous. Also in ecology and economics the differential equations are vastly used. 

Basically, many differential equations involving physical phenomena are nonlinear such 

as spring-mass systems, resistor-capacitor-inductor circuits, bending of beams, chemical 

reactions, the motion of a pendulum, the motion of the rotating mass around another 

body, population model, etc. 

In mathematics and physics, linear generally means "simple" and nonlinear means 

"complicated". The methods for solving linear equations are very well developed because 

linear equations are simple enough to be solvable. Usually nonlinear equations can not be 

solved exactly and are the subject of much on-going research. In such situations 

mathematicians, physicists and engineers convert the nonlinear equations into linear 

equations, i.e., they linearize them by imposing some special conditions. Small 

oscillations are well-known example of the linearization for the physical problems. But, 

such a linearization is not always possible and when it is not, then the original nonlinear 

equation itself must be considered. The study of nonlinear equations is generally confined 

to a variety of rather special cases and one must resort to various methods of 

approximations. 

At first van der Pol [1] paid attention to the new (self-excitations) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential equations 

characterizing the process. Thus, this nonlinearity appears as the very essence of these 
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phenomena and by linearizing the differential equations in the sense of small oscillations, 

one simply eliminates the possibility of investigating such problems. Thus, it is necessary 

to deal with the nonlinear differential equations directly instead of evading them by 

dropping the nonlinear terms. To solve nonlinear differential equations, there exist some 

methods such as perturbation method [2-25], homotopy perturbation method [26-36], 

harmonic balance method [37], variational iterative method [39], etc. Among the 

methods, the method of perturbations, i.e., asymptotic expansions in terms of a small 

parameter are first and foremost.  

A perturbation method known as “the asymptotic averaging method” in the theory of 

nonlinear oscillations was first introduced by Krylov and Bogoliubov (KB) [2] in 1947. 

Primarily, the method was developed only for obtaining the periodic solutions of second 

order weakly nonlinear differential systems. Later, the method of KB has been improved 

and justified by Bogoliubov and Mitropolskii [3] in 1961. In literature, this method is 

known as the Krylov-Bogoliubov-Mitropolskii (KBM) [2, 3] method.  

A perturbation method is based on the following aspects: the equations to be solved are 

sufficiently “smooth” or sufficiently differentiable for a number of times in the required 

regions of variables and parameters. The KBM [2, 3] method was developed for obtaining 

only the periodic solutions of second order weakly nonlinear differential equations 

without damping. Now a days, this method is used for obtaining the solutions of second, 

third and fourth order weakly nonlinear differential systems for oscillatory, damped 

oscillatory, over damped, critically damped and more critically damped cases by 

imposing some special restrictions with quadratic and cubic nonlinearities.  

Several authors [5-25] have investigated and developed many significant results 

concerning the solutions of the weakly nonlinear differential systems. Extensive uses 

have been made and some important works are done by several authors [5-25] based on 

the KBM method.  

The method of KB [2] is an asymptotic method in the sense that 0 . An asymptotic 

series itself may not be convergent but for a fixed number of terms, the approximate 

solution approaches toward the exact solution. Two widely spread methods in this theory 

are mainly used in the literature; one is averaging asymptotic KBM method and the other 

is multiple-time scale method. The KBM method is particularly convenient and 

extensively used technique for determining the approximate solutions among the methods 
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used for solving the weakly nonlinear differential systems. The KBM method starts with 

the solution of linear equation (sometimes called the generating solution of the linear 

equation) assuming that in the nonlinear case, the amplitude and phase variables in the 

solution of the linear differential equation are time dependent functions instead of 

constants. This method introduces an additional condition on the first derivative of the 

assumed solution for determining the solution of second order nonlinear differential 

systems. The KBM method demands that the asymptotic solutions are free from secular 

terms. These assumptions are mainly valid for second and third order equations. But 

sometimes the correction terms for the fourth order differential equations contain secular 

terms, although the solutions are generated by the classical KBM asymptotic method. For 

this reason, the traditional solutions fail to explain the proper situation of the systems. To 

remove the presence of secular terms for obtaining the desired results, one needs to 

impose some special conditions.  

Ji-Huan He [26-29] has developed a homotopy perturbation method for solving second 

order strongly nonlinear differential systems without considering any damping effects. 

Uddin et al.[30, 31] have presented approximate analytical techniques for solving second 

order strongly nonlinear oscillatory differential systems with quadratic and cubic 

nonlinearities in presence of small damping by combing the He’s [26-29] homotopy 

perturbation and the extended form of the KBM [2-4] methods. 

The KBM [2, 3] method is failed to tackle the strongly and weakly nonlinear differential 

systems with high order nonlinearity. Also He’s [26-29] homotopy perturbation technique 

is failed to handle both the strongly and weakly nonlinear differential systems in presence 

of damping. In this thesis, He’s homotopy perturbation method (HPM) has been extended 

for obtaining the approximate solutions of second order strongly nonlinear differential 

systems with a 3/1x  restoring force  in presence of small and significant damping based 

on the extended form of the KBM method. The results may be used in mechanics, 

physics, chemistry, plasma physics, circuit and control theory, population dynamics, 

economics, etc. 

In Chapter II, the review of literature is presented. An approximate analytical technique 

has been developed for solving second order strongly nonlinear damped oscillator with a 

3/1x  restoring force in Chapter III. Results are discussed in Chapter IV. Finally, in 

Chapter V, the concluding remarks are given. 
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CHAPTER  II 

 

 

Literature Review 

 

 

In generally, nonlinear differential equations are difficult to solve and their exact 

solutions are often difficult to determine. But mathematical formulations of many 

physical problems often results in differential equations that are linear or nonlinear. In 

many situations, linear differential equation is substituted for a nonlinear differential 

equation, which approximates the original equation closely enough to give expected 

results. In many cases such a linearization is not always possible and when it is not, the 

original nonlinear differential equation must be considered directly. During the last 

several decades in the th20  century, some famous Russian scientists like Krylov and 

Bogoliubov [2], Bogoliubov and Mitropolskii [3], Mitropolskii [4], have investigated the 

nonlinear dynamics. For solving nonlinear differential equations, there exists some 

methods. Among the methods, the method of perturbations, i.e., an asymptotic expansion 

in terms of small parameter is well known. Firstly, Krylov and Bogoliubov (KB) [2] 

considered the equation of the form 

 ),,,,(2  txxfxx    (2.1) 

where x  denotes the second order derivative with respect to t,   is a small positive 

parameter and f is a power series in  , whose coefficients are polynomials in txx sin,,   

and tcos  and the procedure was proposed by Krylov and Bogoliubov [2]. In general, f  

does not contain either   or t  explicitly. In literature, the method presented in [2, 3] is 

known as Krylov-Bogoliubov-Mitropolskii (KBM) method. Poincare [5] discussed only 

periodic solutions to describe the behavior of the oscillators by the perturbation method.  

The KBM [2, 3] method started with the solution of the linear equation, assuming that in 

the nonlinear systems, the amplitude and phase variables in the solutions of the linear 

equations are time dependent functions rather than constants. This procedure introduces 

an additional condition on the first derivative of the assumed solution for determining the 

desired results. Duffing [6] has investigated many significant results for obtaining the 

solutions of the following nonlinear damped system  

 2 32 .x k x x x      (2.2) 
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Sometimes, different types of nonlinear phenomena occur when the amplitude of the 

dynamic system is less than or greater than unity. The damping is negative when the 

amplitude is less than unity and the damping is positive when the amplitude is greater 

than unity. The governing equation having these phenomena is 

 2(1 ) 0.x x x x     (2.3) 

In literature, this equation is known as van der Pol [1] equation and which is used in 

electrical circuit theory. Kruskal [7] has extended the KB [2] method to solve the fully 

nonlinear differential equation of the following form 

 ).,,( xxFx    (2.4a) 

Cap [8] has studied nonlinear system of the form 

 ).,(2 xxFxx     (2.4b) 

Generally, F  does not contain   or t, thus the equation (2.1) becomes 

 2 ( , ).x x f x x    (2.5) 

In the treatment of nonlinear oscillations by the perturbation method, only periodic 

solutions are discussed, transients are not considered by different investigators, where as 

KB [2] have discussed transient response. 

When ,0  the equation (2.5) reduces to linear equation and its solution is obtained by 

 cos( ),x a t    (2.6) 

where a  and   are arbitrary constants and the values of a  and   are determined by 

using the given initial conditions. 

When ,0  but is sufficiently small, then KB [2] have assumed that the solution of 

equation (2.5) is still given by equation (2.6) together with the derivative of the form 

 sin ( ),x a t      (2.7) 

where a  and   are functions of t , rather than being constants. 
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In this case, the solution of equation (2.5) is considered as the following form 

 ( )cos( ( ))x a t t t   , (2.8) 

and the derivative of the solution is 

 ( ) sin( ( )).x a t t t      (2.9) 

Differentiating the assumed solution equation (2.8) with respect to time t, we obtain  

 cos sin sin , ( ).x a a a t t             (2.10) 

Using the equations (2.7) and (2.10), we get 

 cos sin .a a    (2.11) 

Again, differentiating equation (2.9) with respect to t, we have  

 2sin cos cos .x a a a          (2.12) 

Putting the value of x  from equation (2.12) into the equation (2.5) and using equations 

(2.8) and (2.9), we obtain 

 sin cos ( cos , sin ).a a f a a            (2.13) 

Solving equations (2.11) and (2.13), we have 

 ),sin,cos(sin 



aafa   (2.14) 

 cos ( cos , sin ).f a a
a


    


    (2.15) 

It is observed that a basic differential equation (2.5) of the second order in the unknown 

x , reduces to two first order differential equations (2.14) and (2.15) in the unknowns a  

and  . 

Moreover, a  and   are proportional to  ; a  and   are slowly varying functions of the 

time period 2 /T   . It is noted that these first order equations are now written in 

terms of the amplitude a  and phase   as dependent variables. Therefore, the right sides 

of equations (2.14) and (2.15) show that both a  and   are periodic functions of period 
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T . In this case, the right-hand terms of these equations contain a small parameter   and 

also contain both a  and  , which are slowly varying functions of the time t  with period 

2 /T   . We can transform the equations (2.14) and (2.15) into more convenient form. 

Now, expanding )sin,cos(sin  aaf   and )sin,cos(cos  aaf   in Fourier 

series with phase ,  the first approximate solution of equation (2.5) is obtained by 

averaging equations (2.14) and (2.15) with period 2 /T    in the following form

 

2

0

2

0

sin ( cos , sin ) ,
2

cos ( cos , sin ) ,
2

a f a a d

f a a d
a






    

 


     

 

    

    





 (2.16 a, b) 

where a  and   are independent of time t  under the integrals. KB [2] have called their 

method asymptotic in the sense that .0  Later, this technique has been extended by 

Bogoliubov and Mitropolskii [3], and has been extended to non-stationary vibrations by 

Mitropolskii [4]. They have assumed the solution of equation (2.5) in the following form 

 ),(),(............),(),(cos 1

2

2

1

 n

n

n Oauauauax   (2.17) 

where ,ku  ).......,,2,1( nk   are periodic functions of   with a period ,2  and the terms 

a  and   are functions of time t  and the following set of first order ordinary differential 

equations are satisfied by a  and   

 

2 1

1 2

2 1

1 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

n n

n

n n

n

a A a A a A a O

B a B a B a O

   

     





    

     
 (2.18 a, b) 

The functions kk Au ,  and ,kB  ).......,,2,1( nk   are to be chosen in such a way that the 

equation (2.17), after replacing a  and   by the functions defined in equation (2.18), is a 

solution of equation (2.5). Since there are no restrictions in choosing functions kA  and 

,kB  so it generates the arbitrariness in the definitions of the functions ku  (Bogoliubov 

and Mitropolskii [3]). To remove this arbitrariness, the following additional conditions 

are imposed 

 

2

0

2

0

( , ) cos 0,

( , )sin 0,

k

k

u a d

u a d





  

  








 (2.19 a, b) 
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Secular terms are removed by using these conditions in all successive approximations. 

Differentiating equation (2.17) two times with respect to t, substituting the values of ,x x  

and x  into equation (2.5), and using the relations equation (2.18) and equating the 

coefficients of ,k  ).......,,2,1( nk  , we obtain the following relations 

 2 ( 1)(( ) ) ( , ) 2 ( cos sin ),k

k k k ku u f a a B A         (2.20) 

and  

 
.

(0)

(1)

1 1 1 1

2 1
1 1

1
1 1 1 1 1 1 1

( , ) ( cos , sin ),

( , ) ( cos , sin ) ( cos sin ( ) )

(cos , sin ) ( )cos

(2 )sin 2 ( ( ) ( ) ).

x

x

a

f a f a a

f a u f a a A a B u

dA
f a aB A

da

dB
A B a A A u B u

da



 

   

      

   

 

 

    

   

   

 (2.21 a,b) 

where )( ku  denotes partial derivative with respect to   and ku , )1( kf   are periodic 

functions of   with period 2  which also depends on the amplitude a . Therefore, 

)1( kf  and ku  can be expanded in a Fourier series in the following form 

 

( 1) ( 1) ( 1) ( 1)

0

1

( 1) ( 1) ( 1)

0

1

( , ) ( ) ( ( )cos ( )sin ),

( , ) ( ) ( ( )cos ( )sin ),

k k k k

n n

n

k k k

k n n

n

f a g a g a n h a n

u a v a v a n a n





  

   

   



  



  

  




 (2.22 a, b) 

where 

 

2

( 1) ( 1)

0

0

1
( ) ( cos , sin ) .

2

k kg a f a a d



   


     (2.23) 

Here, 0)1(

1

)1(

1   kkv   for all values of k , since both integrals of equation (2.19) are 

vanished. Substituting these values into the equation (2.20), we obtain 

 

2 ( 1) 2 2 ( 1) ( 1)

0

2

( 1) ( 1) ( 1)

0 1 1

( 1) ( 1)

2

( ) (1 )[ ( )cos ( )sin ]

( ) ( ( ) 2 )cos ( ( ) 2 )sin

[ ( )cos ( )sin ].

k k k

n n

n

k k k

k k

k k

n n

n

v a n v a n a n

g a g a a B n h a A

g a n h a n





    

   

 

  



  

 



  

    

 





 (2.24) 
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Now, equating the coefficients of the harmonics of the same order, yield 
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 (2.25) 

These are the sufficient conditions for obtaining the desired order of approximations. For 

the first order approximation, we have 

 

2(0)

1
1

0

2(0)

1
1

0

( ) 1
( cos , sin )sin ,

2 2

( ) 1
( cos , sin )cos ,

2 2

h a
A f a t a d

g a
B f a t a d

a a





    
 

    
  

    

    





 (2.26 a, b) 

Thus, the variational equations (2.18) becomes 

 

2

0

2

0

( cos , sin )sin ,
2

( cos , sin )cos ,
2

a f a a d

f a a d
a






    




      

 

  

  





 (2.27 a, b) 

It is seen that, the equation (2.27) are similar to the equation (2.16). Thus, the first 

approximate solution obtained by Bogoliubov and Mitropolskii [3] is identical to the 

original solution obtained by KB [2]. The correction term 1u  is obtained from equation 

(2.22) by using equation (2.25) as 

 
 










 2
22

)0()0(

2

)0(

0
1

)1(

sin)(cos)()(

n

nn

n

nahnagag
u  (2.28) 

The solution equation (2.17) together with 1u  is known as the first order improved 

solution in which a  and   are obtained from equation (2.27). If the values of the 

functions 1A  and 1B  are substituted from equation (2.26) into the second relation of 

equation (2.21b), the function )1(f  and in a similar way, the functions 22 , BA  and 2u  can 

be found. Therefore, the determination of the second order approximation is completed. 

The KB [2] method is very similar to that of van der Pol [1] and related to it. van der Pol 

has applied the method of variation of constants to the basic solution 
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tbtax  sincos   of 2 0x x  , on the other hand, KB [2] have applied the same 

method to the basic solution cos( )x a t    of the same equation. Thus, in the KB [2] 

method the varied constants are a  and  , while in the van der Pol’s method the constants 

are a  and b . The KB [2] method seems more interesting from the point of view of 

applications, since it deals directly with the amplitude and phase of the quasi-harmonic 

oscillation. The solution of the equation (2.4 a) is based on recurrent relations and is 

given as the power series of the small parameter. Cap [8] has solved the equation (2.4 b) 

by using elliptical functions in the sense of KB [2]. The KB [2] method has been 

extended by Popov [9] to nonlinear damped systems represented by the following 

equation 

 ),,(2 2 xxfxxkx     (2.29) 

where xk 2  is the linear damping force and .0  k  It is noteworthy that, because of 

the importance of the Popov’s method in the physical systems involving damping force, 

Mendelson [10] and Bojadziev [11] have retrieved Popov’s [9] results. In case of 

nonlinear damped systems, the first equation of equation (2.18) has been replaced by 

 ).()(............)()( 1

2

2

1

 n

n

n OaAaAaAaka   (2.18a) 

Murty and Deekshatulu [12] have developed a simple analytical method to find the time 

response of second order nonlinear over damped systems with small nonlinearity 

represented by the equation (2.29), based on the KB [2] method of variation of 

parameters. In accordance to the KBM [2, 3] method, Murty et al. [13] have found a 

hyperbolic type asymptotic solution of an over damped system represented by the 

nonlinear differential equation (2.29), i.e., in the case k . They have used hyperbolic 

functions cosh  and sinh  instead of their circular counterpart, which are used by 

KBM [2, 3], Popov [9] and Mendelson [10]. Murty [14] has presented a unified KBM 

method for solving the nonlinear systems represented by the equation (2.29), which cover 

the undamped, damped and over-damped cases. Bojadziev and Edwards [15] have 

investigated solutions of oscillatory and non-oscillatory systems represented by equation 

(2.29) when k  and   are slowly varying functions of time t. Initial conditions may be 

used arbitrarily for the case of oscillatory or damped oscillatory process. But, in case of 

non-oscillatory systems cosh  or sinh  should be used depending on the given set of 
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initial conditions (Murty et al. [13], Murty [14], Bojadziev and Edwards [15]). Sattar [16] 

has developed an asymptotic method to solve a second order critically damped nonlinear 

system represented by equation (2.29). He has found the asymptotic solution of the 

equation (2.29) in the following form 

 ),(),(...........),()1( 1

1

 n

n

n Oauauax   (2.30) 

where a  is defined by the equation (2.18a) and   is defined by  

 )()(...........)()(1 1

2

2

1

 n

n

n OaCaCaC  . (2.18 b) 

Osiniskii [17] has extended the KBM method to the following third order nonlinear 

differential equation 

 1 2 3 ( , , ),x c x c x c x f x x x     (2.31) 

where   is a small positive parameter and f  is a given nonlinear function. He has 

assumed the asymptotic solution of equation (2.31) in the form 

 1

1cos ( , , ) ( , , ) ( ),n n

nx a b u a b u a b O             (2.32) 

where each ku  ).......,,2,1( nk   is a periodic function of   with period 2  and ba,  

and   are functions of time t, and they are given by 

 

2 1

1 2

2 1

1 2

2 1

1 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

n n

n

n n

n

n n

n

a a A a A a A a O

b b B b B b B b O

C b C b C b O

    

    

     







      

      

     

 (2.33 a, b, c) 

where  i ,  are the eigen values of the equation (2.31) when .0  

Lardner and Bojadziev [18] have investigated the solutions of nonlinear damped 

oscillations governed by a third order partial differential equation. They have introduced 

the concept of "couple amplitude" where the unknown functions ,kA  kB  and kC  depend 

on both the amplitudes a  and b . 

Alam et al. [19] have investigated a general Struble’s technique for solving nth  order 

weakly nonlinear differential systems with damping. Alam et al. [20] have developed an 

analytical tecnique to find approximate solutions of nonlinear damped oscillatory 
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systems. Alam et al. [21] have investigated a new analytical technique to find the periodic 

solutions of nonlinear systems. Nayfeh [22] has interpreted the introduction to 

perturbation techniques. Murdock [23] has interpreted the theory and methods of 

perturbation techniques. Alam [24] has presented some special conditions of over-

damped nonlinear systems. Sachs et al. [25] have developed a simple ODE model for 

tumor growth and anti-angiogenic or radiation treatment. 

The HPM was first proposed by the Chinese mathematician Ji Huan He [26]. The 

essential idea of this method is to introduce a homotopy parameter, say p , which varies 

from 0 to 1. At 0p , the system of equations usually has been reduced to a simplified 

form which normally admits a rather simple solution. As p  gradually increases 

continuously toward 1, the system goes through a sequence of deformations, and the 

solution at each stage is closed to that at the previous stage of the deformation. Eventually 

at 1p  the system takes the original form of the equation and the final stage of the 

deformation give the desired solution. 

He [26] has investigated a novel homotopy perturbation technique for obtaining a 

periodic solution of a general nonlinear oscillator for conservative systems. He [26] has 

considered the nonlinear differential equation in the form 

 ( ) ( ) 0, ,A u f r r    (2.34) 

with the boundary conditions 

 ,,0),( 



r

t

u
uB  (2.35) 

where A  is a general differential operator, B  is a boundary operator, )(rf  is known as 

analytical function,   is the boundary of the domain  .Then He [26] has written 

equation (2.34) in the following form 

 ,0)()()(  rfuNuL  (2.36) 

where L  is linear part, while N  is nonlinear part. He [26] has constructed a homotopy 

 ]1,0[:),( prv  which satisfies 

 0( , ) (1 )[ ( ) ( )] [ ( ) ( )] 0, [0,1],v p p L v L u p A u f r p r          (2.37 a) 
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or, 0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0,v p L v L u pL u p N v f r        (2.37 b) 

where ]1,0[p  is an embedding parameter, 0u  is an initial approximation of equation 

(2.34), which satisfies the boundary conditions. Obviously, from equation (2.37), it 

becomes 

 ,0)()()0,( 0  uLvLv  (2.38) 

 .0)()()1,(  rfvAv  (2.39) 

The changing process of p  from zero to unity is just that of ),( prv  from )(0 ru  to )(ru . 

He [26] has assumed the solution of equation (2.37) as a power series of p  in the 

following form 

 .2

2

10  vpvpvv  (2.40) 

The approximate solution of equation (2.34) is given by setting 1p  in the form 

 .210  vvvu  (2.41) 

The series (2.41) is convergent for most of the cases, and also the rate of convergence 

depends on how one choose )(uA . 

He [27] has developed a coupling method of a homotopy technique and a perturbation 

technique for nonlinear problems. He [28] has presented a new nonlinear analytical 

technique. Also, He [29] has presented a new interpretation of homotopy perturbation 

method. Uddin et al. [30] have presented an analytical technique for solving second order 

strongly nonlinear differential systems with damping by combing the He’s [26-29] 

homotopy perturbation and the extended form of the KBM [2-4] methods. Uddin et al. 

[31] have also developed an analytical approximate technique for solving a certain type of 

fourth order strongly nonlinear oscillatory differential systems with small damping and 

cubic nonlinearity based on He’s homotopy perturbation [26-29] and the extended form 

of the KBM [2-4] methods. Ludeke and Wagner [32] have obtained the solutions of 

generalized Duffing equation with cubic nonlinearity in presence of large damping 

effects. Lim et al. [33] have obtained accurate high-order analytical approximate 

solutions to large amplitude oscillating systems with a general non-rational restoring 

force. Bojadziev [34] has presented the damped nonlinear oscillations modeled by a 3-
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dimensional differential system. Belendez et al. [35] have applied He’s homotopy 

perturbation method to obtain higher order approximation of an 1/3x  force nonlinear 

oscillator. Arya and Bojadziev [36] have presented a time depended oscillating systems 

with damping, slowly varying parameters and delay. Chatterjee [37] has also presented 

the harmonic balance method based on averaging method for solving strongly nonlinear 

cubic oscillator with damping effects. Mickens [38] has analyzed the nonlinear oscillators 

having non-polynomial elastic terms. In another paper, Mickens [39] has developed an 

iteration method for solving second order conservative nonlinear differential systems with 

an 3/1x  force oscillators. Yamgoue and Kofane [40] have investigated an approximate 

analytical technique for determining the solutions of damped nonlinear systems. Recently, 

Dey et al. [41] have developed an analytical technique for solving second order strongly 

nonlinear damped system with slowly varying coefficients. 



15 

CHAPTER  III 

 

 

An Analytical Technique for Solving Strongly Nonlinear Damped Systems with 

Fractional Power Restoring Force 

 

 

3.1  Introduction  

It is very difficult to solve nonlinear problems either numerically or theoretically. 

Nonlinear oscillation problems are very important in the physical science, mechanical 

structures and other kind of mathematical sciences. This is so due to the fact that 

nonlinear phenomena play vital role in applied mathematics, physics, plasma physics, 

economics and engineering. Mathematical methods are aimed for obtaining approximate 

solutions of nonlinear differential equations arising in various fields of science and 

engineering and have appeared in the research literature [2-5, 7-41]. However, most of 

them require a tedious analysis and laborious work to handle these problems [7-25]. 

The most common methods for constructing the approximate analytical solutions to the 

nonlinear differential systems are the perturbation methods. Some well known 

perturbation methods are the Krylov-Bogoliubov-Mitropolskii (KBM) [2, 3] method, the 

Lindstedt-Poincare (LP) method [22, 23], the method of multiple time scales [22] and the 

harmonic balance [22, 23] method which are valid even for rather large amplitudes of 

oscillations. Almost all perturbation methods are based on an assumption that small 

parameter and linear term must exist in the equations. In general, the perturbation 

approximations are valid only for weak nonlinear differential systems in presence of 

linear term in the equation. The perturbation techniques [1-24] which are, in principle, 

applicable if there exists small parameters in the equations. The parameters are expanded 

into power series of the parameters. The coefficients of the series are obtained as 

solutions of a set of linear equations. But in both science and engineering, there exist 

many nonlinear differential systems without small parameters. 

Most of the authors [27-29, 33, 35, 38, 39] have developed analytical techniques for 

solving strongly nonlinear differential systems without considering any damping effects 

for which the elastic restoring forces are non-polynomial functions of the displacement. 

But numerous physical and oscillating systems encounter in presence of small damping in 

nature.  To fill this gap, we have developed an analytical technique for solving second 



16 

order strongly nonlinear damped systems with a 3/1x  restoring force based on the HPM 

[27-29, 30, 31, 35] and the extended form of the KBM [2-4] method. The solutions are 

obtained containing only two lower order harmonic terms, which measure satisfactory 

results with small and significant damping forces. The advantage of the presented method 

is that the first approximate solutions show a good agreement with the corresponding 

numerical solutions in presence of significant small damping in the whole solution 

domain. 

 

3.2  The method 

Let us consider a second order strongly nonlinear damped system with a fractional power 

restoring force [33, 35, 38, 39] in the following form 

 ),(2 xfxkx    (3.1) 

with the initial conditions 

 ,0)0(,)0( 0  xax   (3.2) 

where “dots” denote differentiation with respect to time ,t  k2 is the linear damping 

coefficients, )(xf  is a given 3/1x  restoring force and oa  is usually a given constant and 

known as the initial amplitude. 

To changing the independent variable, we are going to use the following substitution [30]  

 .)()( tketytx   (3.3) 

Differentiating equation (3.3) twice with respect to time t  and putting xx  ,  and x  into 

the original equation (3.1) and then simplifying them, we obtain  

 ).(2 tktk eyfeyky   (3.4) 

Now equation (3.4) can be re-written as  

 ),(2 tktk eyfeyyy    (3.5) 
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where 

 .22 k   (3.6) 

Herein   is known as the angular frequency of the nonlinear oscillator and the unknown 

constant   can be obtained by eliminating the secular terms. The angular frequency   is 

a time dependent function for a nonlinear damped systems and it varies slowly with time 

t . 

In this method, an artificial perturbation equation is constructed by embedding an 

artificial parameter ]1,0[p . According to the homotopy perturbation method [27-29, 

30, 31, 35], equation (3.5) can be written as  

 )],([2 tktk eyfeypyy    (3.7) 

where p  is the homotopy parameter. 

When ,0p  equation (3.7) becomes a linear differential equation for which an exact 

solution can be calculated as 0 cosk tx ae  . When 1p , equation (3.7) turns out to be 

the original one. To handle this situation, we are going to use the extended form of the 

KBM [2, 3] method which was developed by Mitropolskii [4]. According to this 

technique, we choose the first approximate solution of equation (3.7) in the following 

form 

 1cos ( , ),y a pu a    (3.8) 

where a  and   represent the amplitude and phase variable of the system and 1u  is the 

correction term. In presence of damping, a  and   are changing functions with time t . 

The functions for time varying amplitude a  and phase   are obtained by the following 

set of first order ordinary differential equations 

 

2

1 2

2

1 2

( , ) ( , ) ,

( ) ( , ) ( , ) ,

a p A a p A a

p B a p B a

 

    

  

   
 (3.9) 

where ,, 21 AA  and ,, 21 BB  are unknown functions, and tp  is the slow time. 
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Differentiating equation (3.8) twice with respect to time t , utilizing the relations equation 

(3.9) and neglecting )( 2pO , we get 

 
2

2 2 1
1 1 12

sin 2 ( sin cos ) ,
u

y y p a p A a B p u      


 
      

 
 (3.10) 

where   denotes the differentiation with slow time  . 

By using equations (3.10) and (3.8) into equation (3.7) and then equating the coefficients 

of p , we obtain 

 

2
2 1

1 1 12
sin 2 ( sin cos )

cos ( cos ).k t k t

u
a A a B u

a e f a e

     


  

 
     

 

 

 (3.11) 

It was early imposed by Krylov and Bogoliubov [2] that 1u  does not contain secular 

terms. In general, )( 0xf  can be expanded as a Fourier series [33, 35] in  , where 

0 cosk tx ae   and then we impose a restriction that the no secular terms required in the 

particular solution. Then the variational parameters 1 2, ,A A  and 1 2, ,B B  are obtained 

by equating the fundamental terms on both sides and the rest of the terms are included to 

the partial differential equation involving the correction term 1u  and solving them for 

these unknown. 

In general, KBM solutions are useful when nonlinearity is very small. Sometimes it gives 

desired results even for strong nonlinear differential systems for a damped solution [10, 

20]. Usually, the integration of equation (3.9) is performed by well-known techniques of 

calculus [22] with the values of the variational parameters 1 2, ,A A  and 1 2, ,B B ; but 

sometimes they are also solved by a numerical procedure [9-21, 26-30]. Finally putting 

equation (3.8) in equation (3.3) we get 

  1( ) cos ( , ) .k tx t e a pu a    (3.12) 

Thus, the first approximate analytical solution of equation (3.1) is completed. 
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3.3. Example 

As an example of the above procedure, we are going to consider a second order strongly 

nonlinear damped system for which the elastic force term is proportional to 3/1x  [33, 35, 

38, 39] in the following form 

 1/32 ,x k x x    (3.13) 

where 3/1)( xxf  . Now using the transformation equation (3.3) into equation (3.13) and 

then simplifying them, we get 

 .3/23/12 tkeyyky   (3.14) 

According to the homotopy perturbation method [27-29, 30, 31, 35], equation (3.14) can 

be rewritten as 

 ],[ 3/23/12 tkeyypyy    (3.15) 

where   is given by equation (3.6). 

Now according to the extended form of the KBM [2-4] method, the solution of equation 

(3.15) is given by equation (3.8) and the amplitude a  and the phase   are obtained by 

equation (3.9). Substituting equation (3.8) into the right side of equation (3.15) and 

neglecting )( 2pO , we get 

 2 1/3 2 /3 1/3[ cos cos ].k ty y p a a e       (3.16) 

Expanding 1/3cos   as the Fourier series [33, 35] in the following form  

 1/3

2 1

0

cos cos[(2 1) ]n

n

b n 






  , (3.17) 

where 

 
/2

1/3

2 1
0

4
cos cos[(2 1) ] ; 0,1,2,3 .nb n d n



 


     (3.18) 

Inserting equation (3.17) into equation (3.16), we obtain  

 2 1/3 2 /3

1 3[ cos ( cos cos3 )].k ty y p a a e b b          (3.19) 
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To avoid the secular terms in particular solution of equation (3.19) requires that the 

coefficients of the cos  term must be zero. Then we have 

 .03/23/1

1  tkeaba  (3.20) 

As we are seeking non-trivial solution )0( a  then equation (3.20) leads to 

 3/23/2

1

tkeab  . (3.21) 

Putting the value of   from equation (3.21) into equation (3.6), we obtain 

 .23/23/2

1

2 keab tk    (3.22) 

This is a time dependent angular frequency equation of the given nonlinear damped 

system with a 3/1x  restoring force. As 0t , equation (3.22) yields 

 23/2

010 )0( kab   , (3.23) 

where 0  is known as the constant angular frequency. 

The Fourier coefficients can be evaluated by using symbolic software such as 

MTHEMATICA, then we obtain 

 

/2
1/3

1
0

/2
1/3

3
0

4 3 (7 / 6)
cos cos ,

(2 / 3)

4 3 (7 / 6)
cos cos3 .

5 (2 / 3)

b d

b d





  
 

  
 


 




  







 (3.24) 

Relation between 1b  and 3b  are obtained as 

 .
5

1

1

3 
b

b
 (3.25) 

Now equation (3.19) can be rewritten in the following form with the help of equation 

(3.11) 

 

2
2 1

1 1 12

1/3 2 /3

3

sin 2 ( sin cos )

cos3 .k t

u
a A a B u

a b e

     




 
     

 

 

 (3.26) 
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Equating the coefficients of sin  and cos  on both sides and then solving them, we get 

 ,0,
2

11 


 B
a

A



 (3.27) 

and 

 
2

2 1/3 2 /31
1 32

cos3 .k tu
u a b e 



 
   

 
 (3.28) 

Solving equation (3.28) we obtain 

 
1/3 2 /3

3
1 2

cos3
.

8

k ta b e
u




  (3.29) 

By integrating equation (3.9) with the help of equation (3.27), we get 

 

0
0

0
0

,

( ) ,
t

a a

dt





   



  

 (3.30 a, b ) 

where 0)0( aa   and 0(0)   are constants of integration which represent the initial 

amplitude and initial phase of the nonlinear systems. 

Now putting equation (3.30 a) into equation (3.22), we obtain the following frequency 

equation 

 .23/2

3/1

0

3/2

01

2 keab tk 







 




  (3.31) 

Neglecting 2k  as the damping is small, then solving equation (3.31) for   with the help 

of MTHEMATICA and taking 3/1

010 /)0( ab , we obtain 

 .5/23/1

01

tkeab    (3.32) 

Using the equations ( 3.25) and (3.32) in equation (3.29), we get 
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3
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cos3 cos3
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8 40
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Finally putting equation (3.33) in equation (3.12), the first approximate solution of 

equation (3.13) becomes 

 ( ) (cos cos3 ).
40

k t p
x t ae     (3.34) 

Using equation (3.32) and solving equation (3.30 b), the amplitude and phase equations 

are reduced to 

 
 

/3

0

1/3
2 /31 0

0

,

3
1 .

2

k t

k t

a a e

b a
e

k
 








  
 (3.35 a, b) 

Thus, the first approximate solutions of equation (3.13) is given by the equation (3.34) 

with the help of equation (3.35). 
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CHAPTER  IV 

 

 

Results and Discussion 

 

 

The approximate solutions of equation (3.13) are compared with the numerical 

(considered to be exact) solutions for testing the accuracy of the presented technique. The 

approximate solutions have been obtained for several small and significant damping and 

it is seen that approximate results are converging rapidly to numerical solutions which are 

shown in graphically. Furthermore, the presented method is simple and the advantage of 

this method is that the first approximate solutions show good agreement (see also Figs. 

4.1, 4.2) with the corresponding numerical solutions for strong nonlinear damped systems 

with imbedding parameter 0.1p  but the method presented in [24] is laborious and 

tedious work. The figures indicate that the approximate solutions almost coincide with the 

numerical solutions for several small and significant damping (Figs. 4.1, 4.2) but it 

deviates from the numerical solutions for large damping (Fig. 4.3). The initial 

approximation can be freely chosen, which is identified via various methods [10-21, 26-

37]. 

 

 

Fig. 4.1: First approximate solution of equation (3.13) is denoted by   (dashed lines) 

by the presented method with the initial conditions ]10175.0)0(,97500.0)0([  xx   or 

0,0.1 00  a  when 15960.1,1.0,0.1 1  bkp  and 3/1xf  . Corresponding 

numerical solution is denoted by              (solid line). 
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Fig. 4.2: First approximate solution of equation (3.13) is denoted by   (dashed lines) 

by the presented method with the initial conditions ]15265.0)0(,97500.0)0([  xx   or 

0,0.1 00  a  when 15960.1,2.0,0.1 1  bkp  and 3/1xf  . Corresponding 

numerical solution is denoted by             (solid line). 
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Fig. 4.3: First approximate solution of equation (3.13) is denoted by   (dashed lines) 

by the presented method with the initial conditions ]25471.0)0(,99750.0)0([  xx   or 

0,0.1 00  a  when 15960.1,25.0,0.1 1  bkp  and 3/1xf  . Corresponding 

numerical solution is denoted by             (solid line).  
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CHAPTER  V 

 

 

Conclusions 

 

 

The determination of solution, amplitude and phase of nonlinear differential systems is 

very crucial in mechanics. In this thesis, we have applied an analytical approch to find an 

appoximate solutions for strongly nonlinear differential systems with a 3/1x  elastic force 

in presence of significant small damping. The presented method does not require a small 

parameter and linear term in the equation like the classical one and the solution procedure 

is very simple and easy to understand but the method presented in [24] is complicated. 

The presented method has been successfully implemented to illustrate the effectiveness 

and convenience for solving second order strongly nonlinear damped systems for which 

the elastic force is proportional to 3/1x . 

From the figures (Figs. 4.1, 4.2), it is clear that the first approximate solutions show good 

agreement with those solutions obtained by the fourth order Runge-Kutta method with the 

several small and significant damping in the whole solution domain for imbedding 

parameter 0.1p . It is also noticed that He’s HPM is incapable for solving nonlinear 

differential systems in presence of any damping and KBM method is fail to handle 

strongly nonlinear differential systems. Both limitations have been overcome by the 

presented method. 

This method is effective for solving second order strongly nonlinear damped physical 

problems with a 3/1x  restoring force and converging rapidly to the exact solutions. 

Whereas Lim et al. [33], Belendez et al. [35] and Mickens [38, 39] have developed 

approximate techniques for handling nonlinear differential systems with a 3/1x  restoring 

force without damping. So our presented method can serve as a useful mathematical tool 

for dealing damped nonlinear oscillators with a 3/1x  restoring force. 
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