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INTRODUCTION 

  

 Lattice theory is an important part of Mathematics. Distributive lattices with 

Pseudo complementation have played many roles in development of lattice theory. 

Historically, lattice theory started with Boolean distributive lattices: as a result, the 

theory of distributive lattices is the most extensive and most satisfying chapter in the 

history of lattice theory. Distributive lattices have provided the motivation for many 

results, in general lattice theory. Many conditions on lattices and on element and 

ideals of lattices are weakened forms of distributivity is imposed on lattices arising in 

various areas of mathematics, especially algebra. 

 In lattice theory there are different classes of lattices known as variety of lattices. 

Class of Boolean lattice is of course the most powerful variety. Throughout this thesis 

we will be concerned with another large variety known as the class of distributive 

Pseudo complemented lattice have been studied by several authors 

[1],[2],[3],[4],[5],[6]. 

 On the other hand extended the notion of  Pseudo complementation for meet semi 

lattices. 

 There are two concepts that we should be able to distinguish: a lattice                        

 L, ,  , in which every element has a Pseudo complement and an algebra,               

 L, , , ,0,1  where  L, , ,0,1  is a bounded lattice and where, for every a   L, 

the element a* is a Pseudo complement of a. We shall call the former a Pseudo 

complemented lattice and the later a lattice with Pseudo complementation (as an 

operation). 

 The realization of special role of distributive lattices moved to break with the 

traditional approach to lattice theory, which proceeds from partially ordered sets to 

general lattices, semi modular lattices, modular lattices and finally distributive 

lattices. 

 In order to review, we include definitions, examples, solved problems and proof 

of some theorems. This work is divided into four chapters. 
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 Chapter-one is a prelude to the main text of the thesis, related to poset and various 

types of lattices, such as sublattice, ideal of lattice, bounded lattice, complete lattice. 

 In chapter two we have discussed “Modular and distributive lattice” and this 

chapter is the concept of this work. Here we study the definition and examples of 

modular and distributive lattice. Some important theorem like “A modular lattice L is 

distributive if it has no sublattice isomorphic diagonal lattice    ”. Every modular 

lattice is distributive but converse is not true. 

 The next chapter we discuse “Prime ideal of a lattice”,  “Minimal prime ideal” 

and “Minimal prime n-ideal”. 

 Chapter four dealt with the Distributive lattices with Pseudo complementation. 

This is the main part of my work. In this chapter we have discussed some definitions 

and some important theorems like “Any complete lattice that satisfies the Join Infinite 

Distributive (JID) identity is a Pseudo complemented distributive lattice.” 
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CHAPTER I 

PRELIMINARIES 

1.1 Some Definitions of Lattices: 

Definition  1.1.1.  Let A and B be two sets and from the set     of all ordered pairs (a,b) with 

   . If A B, we write A² for A   A. Then a binary relation R on A can simply be defined as a 

subset of A². The elements a,b (a,b   A) are in relation with respect of R if (a,b)   R.                                

For (a,b)   R, we will also write “a R b or   a   b(R)” and as “ a is related to b by R ”. 

Definition  1.1.2.  A non-empty set P together with a binary relation R is said to be a partially 

ordered set or a poset if  the following conditions holds: 

  For all a,b,c   P  we have  

  (P1) a R a  i.e P is reflexive  

  (P2) a R b and b R a imply that a   b   i.e P is anti-symmetric 

   (P3) a R b and b R c imply that a R c  i.e P is transitive. 

For convenience, we generally use the symbol   in place of R. Thus whenever we say that P is a 

poset, it would be understood that   is the relation defined on P, unless another symbol is 

mentioned.  

Examples  1.1.3.       (i)  Let X be any set,then (P(x)   ) is a poset. 

       (ii) Let N be the set of natural numbers under the usual       

            is a poset. 

                 (iii) The integers, rationals and real numbers also from    

  posets under usual     

Definition 1.1.4. A poset (A ;  ) is called a chain if it satisfies the following condition (P2)               

a   b or b   a,   a, b   A. (linearity)  

 

Remark  1.1.5.  A chain is also known as a totally ordered set or a toset on a linearity ordered 

set. 

Definition  1.1.6.  Let (P,  ) be a poset and a,b   P, Then a and b are comparable if a   b or 

b   a, otherwise a and b are incomparable in notation a   b. 
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Remark  1.1.7.  A chain is therefore a poset in which there be no incomparable element.  

Definition  1.1.8.  Let   be a relation defined on a set  .Then converse of    (denoted by  ̅ ) is 

defined by a  ̅ b   b   a ;  a, b    .     

If ( , ) be a poset then the poset ( ̅, ̅) where  ̅=   and  ̅ is converse of   is called  dual of   .  

Theorem  1.1.9.  If a set   is from a poset under a relation  , then   from a poset under  ̅, the 

converse of  .  

Proof:                               

 a  ̅ a as a   a for all a     shows  ̅ is reflexive.  

Let a  ̅ b and b  ̅ a then b   a and a   b i.e a   b and b   a   a   b.  

Thus  ̅ is anti –symmetric. 

Let a  ̅ b, b  ̅ c then b   a, c   b 

Or, c   b, b   a  

Or, c   a    a   c    

Or that   ̅ is transitive and hence is a partial ordering.    

          

Remark  1.1.10.  We will use the notations  a   b =Inf{a,b} and a ∨ b =Sup{a,b} and call  , the 

meet and ∨, the joint. In lattice, they are both binary operations which means that they can be 

applied to a pair of elements of L. Thus   a map of L² into L, and so ∨. 

 

Example  1.1.11.  (i) Let X be a non-empty set. Then P(X) the power set of X under  “ contain in 

”   Relation from a poset and this poset (P(X), ) is a lattice.Here for A,B   P(X) [A, B are 

subset of X]. 

  A   B =A   B and A ∨ B = A   B.  

            As a particular case, when X={a,b} 

           P(X)= { ,{a},{b},{a,b}}   

 Then (P(X),  ) is represented by the following figure 1.1  
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Fig. 1.1 

(ii) Let the set X={1,2,4,5,10,20} of the factors of 20 under divisibility forms a lattice. It is 

represented by the following figure 1.2. When the particular ordering relation is divisibility that 

is, when we define the relation as a   b iff a/b. Then a   b=     (a,b) and a∨b=     (a,b). By 

definition a   b = Inf{a,b} and if  Inf(a,b)=x,  then we should have x   a, x   b and if y   a,        

y   b then y   x. Which implies that x/a, x/b and if y/x. Now by definition       (a,b)= c means 

c/a, c/b and if d/a, d/b then d/c. Therefore we have       (a,b). Similarly        (a,b)= a ∨ b.   

 

 

Fig. 1.2 

Theorem  1.1.12.  For any a and b in a lattice (L, ), a   a ∨ b, a   b  a 

Proof:  

  Since the join of a and b is an upper bound of L, hence a   a ∨ b. Since the meet 

of a and b is a lower bound of L, hence a   b  a.          

 

 

 

{a,b} 

{a} 
{b} 

  

20 

10 

5 

4 

2 

1 
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Theorem  1.1.13.  If L is any lattice then for any x,y,z   L, the following results hold. 

(L1)     x   x = x , x ∨ x = x       ( Idem potency ) 

(L2) x   y = y   x, x ∨ y = y ∨ x  ( Commutative ) 

(l3) x   (y   z) = (x   y)   z 

 x ∨ (y ∨ z) = (x ∨ y) ∨ z  ( Associativity ) 

(L4) x   (x ∨ y)= x 

 x ∨ (x   y)= x    ( Absorption identities )    

        

Theorem 1.1.14.  

(i) Let the poset L=(L; ) be a Lattice. Set      =Inf{     },    ∨   =Sup {     }.   

Then the algebra   =(L;  , ∨) is a lattice. 

(ii) Let the algebra L=(L;  , ∨) be a lattice. Set       iff      =   . Then   =(L; )  

is a poset and the poset    is a lattice. 

(iii) Let the poset L=(L;  , ∨) be a lattice, then      =L. 

(iv) Let the algebra L=(L;  , ∨) be a lattice, then      =L.  

Proof: 

  (i) Since L=(L; ) be a lattice, so      = Inf{     } and   ∨  = Sup {     } exist in L. 

Now        L,      = Inf{     }=   and        L,   ∨   = Sup{     }=  . i.e idempotent 

law is satisfied. 

For         L,        = Inf{     }= Inf{     }=          

Similarly     ∨   =    ∨     

  i.e satisfies the commutative law             L, 

   (        ) = Inf{      {  ,   }} = Inf{              } =             

 Similarly,   ∨(    ∨   ) =    ∨    ∨    
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   i.e so it has the associate property. 

 Finally for all         L,    (   ∨   )= Inf {             } =     

 Similarly   ∨(        )=    {             } =    

 Which is absorption law.  

 Therefore   =(L;  , ∨) is a lattice.  

   

  (ii) Here algebra L=(L;  , ∨) is a lattice.   

Now for         L,       iff         , Clearly ,”  ” is reflexive as   is idempotent.  

Suppose,       and      , then          and         . 

Thus       as   is commutative  

Hence   is anti-symmetric. 

Now, let       and      , then          and         . 

Thus          

   =              

   =              [as      associative] 

     =          

 Then       and so                   

 Therefore  (L; ) is a poset. 

Now            =             

         =             

         = (          

                    =        

 And           =            =        

 Therefore,           and           
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 Now suppose x     , x      for some     L  

 Then x = x     ,  x = x       

 Thus x = (x     )= (x     )     =x   (     ) 

 This implies x         and so      =Inf{     } 

 Hence Inf{     } exists in L. 

 Finally, for         L, 

       ∨         and       ∨     =    (by absorption law) 

 So,        ∨     and       ∨      

 Now, let      y  and      y   for some     L 

 Then         y   and          y   

 So,     ∨ y = (     y) ∨ y = y  and     ∨ y = (   ∨ y) ∨ y = y  

 Hence (  ∨   )   y = (  ∨   )   (   ∨ y) 

          = (  ∨   )   (   ∨ (   ∨ y))  

          = (  ∨   )   ((   ∨  ) ∨ y)  

          =   ∨     (absorption law) 

 This implies   ∨      y  and so   ∨   =Sup{     }  

 Therefore Sup{     } exist in L and so    =(L; ) is a lattice.                             

   

  (iii) Is trivial from the proof of (ii) as the infimum and suprimum of a and b  

in original poset and the final poset are both equal to       and   ∨    respectively.    

Therefore the partial ordering relation L and        are identical. 

         So,       = L    
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Problem  1.1.15.  Prove that the absorption laws imply idempotency laws. 

Solution:  

  By the definition of absorption law we get  

      x   (x ∨ y) = x    (i) 

              and x ∨ (x   y) = x     (ii) 

Take  y = x   y from (i), we get 

(i)   x   (x ∨ (x   y))= x   

       x   x = x which is idempotent law. 

Therefore, absorption laws imply idempotent law.  

 

Theorem  1.1.16.  Let (L ;  ) be a poset, then (L ;   ̅̅ ̅) also a poset. 

Proof: 

  Since   is reflexive, so x   x ,   x   L. 

This implies  x   ̅̅ ̅ x,   x   L. 

i.e   ̅̅ ̅ is reflexive. 

Let x   ̅̅ ̅y and y   ̅̅ ̅x.  

Then y   x and x   y, this imply x=y as   is anti-symmetric.  

Therefore    ̅̅ ̅ is anti-symmetric. 

Suppose x   ̅̅ ̅y, y   ̅̅ ̅z 

Then y   x and x   y 

Thus x   y and y   z this implies z   x as   is transitive. 

Therefire   x   ̅̅ ̅z and    ̅̅ ̅is transitive. Hence (L ;   ̅̅ ̅) is a poset.    
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Definition  1.1.17. 

Complete lattice: A Lattice L is called complete if   H and   H exist for any subset H   L. The 

concept is self-dual and half of the hypothesis is redundant.  

Definition  1.1.18. 

Bounded lattice: A complemented lattice is a bounded lattice in which every element has a 

complement.  

 

Theorem  1.1.19.  Union of two sublattices may not be a sublattice.                                                                                           

Proof:  

  Consider the lattice L={1,2,3,4,6,8,12,24} of factors of 24 under divisibility. 

 

Fig. 1.3 

Then S={1,2} and T={1,3} are sublattice of  L. But S ∨ T={1,2,3} is not a sublattice  

as  2,3   S ∨ T but 2 ∨ 3=6   S ∨ T.    

 

Theorem 1.1.20.  A lattice L is a chain iff every non empty subset of it is a sublattice. 

Proof:  

  Let S be a non empty subset of a chain L then a,b   S implies that a,b   L implies 

that a,b comparable, let     then a   b   a    S , a ∨ b   b    S, therefore S is a sublattice.   

24 

8 

12 

4 

6 

2 

1 

3 
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Conversely,  let L be a lattice such that every nonempty subset of  L is a sublattice. We show that 

L is a chain. Let a,b  L be any elements, then {a,b} being a non empty subset of L will be a 

saublattice of L. Thus by definition of sublattice a   b   {a,b} implies that a   b or b   a .i.e.  

a,b are comparable. Hence L is a chain.        

Theorem  1.1.21.  The algebra  L;  , ∨  is a lattice iff   L;    and   L;∨  semi-lattices and 

a a   b is equivalent to b a ∨ b. 

Proof:  

  Let   and ∨ are two binary relations on L. Since   L;  , ∨   is a lattice then    

and ∨ satisfy the following conditions : For all a,b,c    L, a   a   a, a ∨ a   a ; a   b b   a,             

a ∨ b b ∨ a ; 

a   (b   c)   (a   b)   c, a ∨ (b ∨ c)   (a ∨ b) ∨ c ; so   L;    and   L; ∨  are  semi-lattices.  

Let a a   b then a ∨ b (a ∨ b) ∨ b  b. Conversely, let    L;    and   L;    are semi-lattices 

then the above three conditions hold. So we need only to show the absorption identities hold in 

L. a   (a ∨ b)  a   b a and a ∨ (a   b)  a∨a a, so   L;  , ∨    is a lattice.     
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1.2   Some algebraic concepts :  

Definition  1.2.1.  A non empty set L together with two binary composition   and ∨ is said to 

form a lattice if   a,b,c    L, the following conditions holds- 

     : Idempotency :  a   a   a, a ∨ a   a  

     : Commutativity :  a   b   b   a, a ∨ b   b ∨ a  

     : Associativity :  a  (b   c)   (a   b)   c 

            a ∨ (b ∨ c)   (a ∨ b) ∨ c 

     : Absorption :   a   (a ∨ b)   a , a ∨ (a   b)   a   

 

Definition  1.2.2.  A poset P satisfies the descending chain condition if every non-empty subset 

of p has a minimal element.  

Definition  1.2.3. Sublattice: A non-empty subset S of a lattice L is called a sublattice of L,  

              if a, b    S  

               a   b, a ∨ b     S .  

 

Example  1.2.4.  Let L be a lattice L={1,2,3,4,6,12} and S be a sublattice of L. S={1,2,3,6} 

Definition  1.2.5. Complements: Let     be any elements of a lattice L. If       and 

 ∨     then we say   is complements of   .  

Definition   1.2.6. Relative Complements: Let       be an interval in a lattice L. Let         

be any element if         such that        ∨     

We say that   is a complement of    relative to       or    is complements of    in      .  

Definition   1.2.7. Complemented: If every element   of an interval       has at least one 

complement relative to      , the interval       is said to be complemented. 

If every interval in a lattice is complemented, the lattice is said to be relatively complemented.  

Definition  1.2.8.  Let    and    be two posets. A map  :       is called an isotone if for 

a,b      with a   b    (a)    (b) in    . 
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Definition  1.2.9.  Suppose (  ,  , ∨) and (  ,  , ∨) are two lattices. A map  :       is 

called a meet homomorphism if for a,b      ,  (a   b)=  (a)    (b) in   . On the other hand 

 :       is called a join homomorphism if for a, b      ,    (a ∨ b)=  (a) ∨  (b) in   . 

Definition  1.2.10.  Suppose (  ,  , ∨) and (  ,  , ∨) are two lattices. A map  :      is 

called homomorphism if  (a b)= (a)   (b) and  (a∨b)=  (a)∨ (b) in   , for any a, b      . 
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1.3  Ideal Lattices  

Definition  1.3.1.  A non empty subset I of a lattice L is called an ideal of L is 

   (i) a,b       a ∨ b       

   (ii) a   ,    L   a          

If L is bounded then {0} is always an ideal of L and is called the zero ideal. 

Definition  1.3.2. 

Dual Ideal: A non empty subset F of a lattice L is called a dual ideal (or filter) of L iff 

   (i) x,y      x   y      

   (ii) x   ,    L   x ∨      

Definition 1.3.3.  

Principal n-ideal: Let L be a lattice and a   L be any element. Let (a]={ x    L / x  a }, then (a] 

forms an ideal of  L. It is called principal ideal generated by a.  

Prime Ideal: An ideal A of a lattice L is called a prime ideal of L if A is properly contained in L 

and whenever a   b   A then a   A or b   A. 

Theorem  1.3.4.  Intersection of two ideals is an ideal.  

Proof:  

  Let    and    are two ideals of a lattice L. Since       are non empty, there exists 

some a     , b      . Now a    , b       L implies that a   b     . Similarly a   b    . Thus 

         . Let x,y          be any elements implies that x,y      and  x,y     implies that               

x ∨ y       and x ∨ y       as   ,    are ideals. So, x ∨ y          . Again if  x        and l   be 

any elements then x    , x    ,     implies that x          and x          implies that                         

x             . Hence         is an ideal.   
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Theorem  1.3.5.  A non empty subset   of a lattice L is an ideal iff 

  (i) a,b     implies that a ∨ b     

  (ii) a  , x  a implies that x    

Proof: 

  Let   be an ideal of a lattice L. By definition of ideal (i) is satisfied. Let a   ,                

x   a   then x = a   x   . 

Conversely, we need show that a   ,      implies that a   l    since a   l    and  a    . By 

given condition a   l    . Hence   is an ideal.    

 

Theorem  1.3.6.  Every ideal of a lattice L is prime iff L is chain. 

Proof:  

  Let a,b   , so a   b   . Consider (a   b] by hypothesis I=(a   b] is prime 

implies that either a= a   b or b= a   b implies that either a   b or b   a. Hence L is chain. 

Conversely, Let L be a chain and    be an ideal of L. Suppose, a   b  , since L is chain, either 

a   b or b   a implies that a    or b   , therefore   is prime.     

Theorem  1.3.7.  Let L be a lattice the following conditions are equivalent:  

   (i)  L is distributive.  

   (ii)  For any ideal   and any filter F of L, 

       Such that    F= Φ, there exists a prime ideal P    and disjoint from F.    
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CHAPTER II 

Modular and distributive lattice 

Introduction : Distributive lattices, modular lattices and Boolean algebra has been studied by 

several authors including Katrinak [1], H. Lakser [3], A.S.A Noor & M.A Latif [7], W.H Cornish 

[8], A Davey [9], G. Gratzer [10] and Vijjay K Khanna [11]. In this chapter we discuss 

distributive lattices and modular lattices which are basic concept of this thesis. 

Definition  2.1.1.  A lattice L is called a modular lattice if   x,y,z    L, with x   y 

  x   (y ∨ z)=(x   y) ∨ (x   z)=y ∨ (x   z)    

Remark  2.1.2. 

(i) If in the above definition a = b, we find a   (b ∨ c) = a   (a ∨ c) =a 

              b ∨ (a   c) = a ∨ (a   c) =a   

   i.e the postulate is automatically satisfied. 

(ii)      If  c   b 

    Then a   b, c   b      

         a ∨ c   b, a   c   b    

     Thus a   (b ∨ c)= a   c 

    b ∨ (a   c)= a   c  

(iii) Dual of the modularity postulate will real as for a,b,c    L with a   b 

    a ∨ (b   c)= b   (a ∨ c)  

    which is nothing but the original postulate. Hence dual of a modular               

lattice is modular. 

 

 

 

 



15 
 

Example  2.1.3.  The lattices given by the following diagrams are modular. 

                    

 

                   Fig. 2.1 

In the first we cannot find any triplet a,b,c  such that  a b and c is not comparable with a or b. 

Hence by the remark above it is modular. By similar argument the second lattice is also seen to 

be modular.  

 

Example  2.1.4.  The pentagonal lattice is not modular. 

 

Fig. 2.2 

 Here,  x  (y ∨ z) = x   1 = x 

  (x   y) ∨ z = x ∨ z = 1 

  x   (y ∨ z)   (x   y) ∨ z 

Hence the pentagonal lattice is not modular.  
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Lemma  2.1.5.  The following inequalities hold in any lattice: 

   (i) (x   y) ∨ (x   z)   x   (y ∨ z) 

   (ii) x ∨ (y   z)   (x ∨ y)  (x ∨ z)  

   (iii) (x   y) ∨ (y   z) ∨ (z   x)   (x ∨ y)   (y ∨ z)   (z ∨ x)    

Proof:   

 (i) In any lattice (x   y)  x, (x   y)  y, y  y ∨ z implies that (x   y)  x, x  y   y∨ z 

implies that x   y is a lower bound of {x,y ∨ z}: x   y   x   (y ∨ z)   (i) 

Again in any lattice, (x   z)  x, (x   z)  z, z  y ∨ z implies that (x   z)   x, x   z   y ∨ z implies 

that x   z is a lower bound of {x,y ∨ z}.   x   z   x   (y ∨ z)    (ii) 

From (i) and (ii), we can say that x   (y ∨ z) is upper bound of { x   y, x   z }. 

Therefore x   (y ∨ z)   (x   y) ∨ (x   z).   

   

 (ii) In any lattice, x  x ∨ y, y  x ∨ y, y   z  y implies that x ∨ y  x, x ∨ y  y, y   y   z   

implies that x ∨ y  x, x ∨ y  y   z implies that x ∨ y is upper bound of {x, y   z}                                       

   x ∨ y  x ∨(y   z) implies that x ∨ (y   z)   x ∨ y     (i) 

Again, x   x ∨ z, z   x ∨ z, y   z   z implies that x ∨ z   x, x ∨ z   z, z   y   z implies that                                 

x ∨ z   x,  x ∨ z   y   z implies that x ∨ z is upper bound of {x, y   z}  (ii) 

From (i) and (ii) 

x ∨ (y   z) is a lower bound of { x ∨ y, x ∨ z}. 

Therefore x ∨ (y   z)  (x ∨ y)  (x ∨ z). 

   
   

 (iii) In any lattice, x   y   x, x  x ∨ y  

 Implies that x   y   x ∨ y        (i) 

 Again x   y  y, y   y ∨ z     

 Implies that x   y   y ∨ z        (ii) 

 Also x   y  x, x   z ∨ x 
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 Implies that x   y   z ∨ x        (iii) 

 From (i),(ii),(iii) we can say that x   y is lower bound of { x ∨ y , y ∨ z , z ∨ x }  

   x   y   (x ∨ y)   (y ∨ z)   (z ∨ x)       (A) 

 Again y   z   y, y   x ∨ y implies that y   z   x ∨ y     (iv) 

 Also y   z  z, z   y ∨ z 

 Implies that y   z   y ∨ z        (v) 

 And y   z   z, z   z ∨ x 

   y   z   z ∨ x         (vi) 

 From (iv),(v) and (vi) we can say that y   z is lower bound of { x ∨ y , y ∨ z , z ∨ x }. 

   y   z   (x ∨ y)   (y ∨ z)   (z ∨ x)       (B) 

 Similarly, z   x   (x ∨ y)   (y ∨ z)   (z ∨ x)      (C) 

 From (A),(B) and (C) we can say that (x ∨ y)   (y ∨ z)   (z ∨ x) is upper  

 bound of { x   y , y   z , z   x }. 

   (x   y) ∨ (y   z) ∨ (z   x)  (x ∨ y)   (y ∨ z)   (z ∨ x)    

 

 

Theorem  2.1.6.  Dual of a modular lattice is modular. 

  

Proof:  

  Let L be a modular lattice. Let a,b,c    L, since L is modular    . 

   a   (b ∨ c) = (a   b) ∨ (a   c)= b∨  a   c)     a, b, c   L   

 Now we have to show that dual of  L is modular 

 i.e  a ∨ (b   c) = (a ∨ b)   (a ∨ c)    a, b, c   D  

 Here D is the dual of L. Let a, b, c   D be any there element,  

 then (a   b) ∨ (a   c) = [(a   b) ∨ a]   [(a   b) ∨ c] 

             = a   b[(a   b) ∨ c] 
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           = a   [(c ∨ a)   (c ∨ b)] 

           = a   (b ∨ c) 

 Therefore D is modular. Hence dual of a modularlattice is modular.    

 

Theorem  2.1.7.  If    and    are modular iff they are Cartesian products are modular. 

Proof:  

  Let    and    be modular. Let (  ,   ), (  ,   ), (  ,   )            be three  

 elements with (  ,   )    (  ,   ). Then    ,   ,         ,          

   ,   ,         ,        and since    and    are modular.  

 We get       (   ∨   )  = (        ) ∨   , 

        (   ∨   )  = (        ) ∨    

 Thus   (  ,   )   [(  ,   ) ∨ (  ,   )] 

  = (  ,   )   [   ∨    ,   ∨    ]  

  = (     (   ∨   ) ,      (  ∨   )) 

  = ((       ) ∨   , (       ) ∨    ) 

  = ((       ,        ) ∨ (  ,   )) 

  = [(  ,   )   (  ,   )] ∨ (  ,   )] 

 Hence        is modular. 

 Conversely, Let        be modular, let   ,   ,         ,          

 And   ,   ,         ,        then (  ,   ), (  ,   ), (  ,   )           

 And (  ,   )    (  ,   ). Since        is modular .   

 We find , 

  (  ,   )   [(  ,   ) ∨ (  ,   )] = [(  ,   )   (  ,   )] ∨ (  ,   )] 

     Or ,  (  ,   )   [   ∨    ,   ∨    ] = ((       ,        ) ∨ (  ,   ))  
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 Or, (     (   ∨   ),      (  ∨   )) = ((       ) ∨   , (       ) ∨    ) 

      (   ∨   ) = (       ) ∨    

      (   ∨   ) = (       ) ∨     

      and    are modular .    

 

Problem  2.1.8.   Show that a lattice L is modular iff satisfies the identity 

  (x ∨ (y   z))   (y ∨ z) = (x   (y ∨ z)) ∨ (y   z)  

Solution:  

  Let x, y, z    L 

 Firstly, (x ∨ (y   z))   (y ∨ z) 

  =  (x   (y ∨ z)) ∨ ((y   z)   (y ∨ z))      [by definition of modularity] 

  =  (x   (y ∨ z)) ∨ (y   z)    [ (y   z)   (y ∨ z) =(y   z)]  

    (x ∨ (y   z))   (y ∨ z) = (x   (y ∨ z)) ∨ (y   z) 

Conversely , (x   (y ∨ z)) ∨ (y   z) 

  = (x ∨ (y   z)   ((y ∨ z) ∨ (y   z)) 

  = (x ∨ (y   z)   (y ∨ z)      [ (y   z) ∨ (y ∨ z) =(y ∨ z)]  

    (x   (y ∨ z)) ∨ (y   z) = (x ∨ (y   z))   (y ∨ z)  
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Theorem  2.1.9.  If a, b are any elements of a modular lattice then 

  [       ,   ]   [  ,    ∨   ]  

Proof:  

  We know an interval in a lattice is a sublattice. We establish the isomorphism.  

Define a map  : [       ,   ]        ,    ∨   ] such that  (x) = x ∨   . 

x   [       ,   ]. Then   is well defined as x    [       ,   ] implies that 

          x      implies that (       ) ∨      x ∨         ∨    implies that 

     x ∨         ∨    

Implies that x ∨       [b,    ∨   ]. Also    =    

Implies that    ∨    =    ∨     

Implies that  (  ) =  (  ), 

  is one  --  one as let  (  ) =  (  ), then    ∨    =    ∨    

Implies that      (   ∨   ) =      (   ∨   ) 

Implies that    ∨ (       ) =    ∨ (       ) implies that    =    . 

  is onto as let y    [  ,    ∨   ] be any element. 

We show that      y is the required pre-image.  

y    [  ,    ∨   ] implies that      y      ∨    

Implies that                y        (   ∨   ) implies that                y      

Implies that      y    [       ,   ].  

Also,   (     y) = (     y) ∨   , so we need show y = (     y) ∨    

Now, y      ∨    implies that y   (   ∨   ) = y 

Implies that y = y   (   ∨    ) =    ∨ (y     ). 

Hence   is onto. 

Again,         implies that    ∨          ∨    
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Implies that  (  )    (  ) 

Now,    ∨          ∨    

Implies that      (   ∨   )        (   ∨   ) 

Implies that    ∨ (       )      ∨ (       ) 

Implies that        . Thus         

Implies that  (  )    (  ).  

Hence   is an isomorphism.    

Modular and distributive lattice are so closely related to each other that some of the results 

patterning to these could be studied together.      
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2.2  Distributive Lattice : 

 

Definition  2.2.1.  A lattice L is called a distributive lattice if 

  a   (b ∨ c) = (a   b) ∨ (a   c)    a, b ,c    L 

 

Theorem  2.2.2.  A distributive lattice is always modular but converse is not true.  

Proof:  

  Suppose L is distributive, let a, b, c    L with c   a, then  

a   (b ∨ c) = (a   b) ∨ (a   c) = a ∨ (b   c), thus L is modular .  

for this converse, consider the lattice  

 

 

Fig. 2.3 

it is easy to check that    is modular. In   , a   (b ∨ c) = a   1 = a. 

(a   b) ∨ (a   c) = 0 ∨ 0 = 0. i.e., a   (b ∨ c)   (a   b) ∨ (a   c).  

Therefore L is not distributive.         
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Theorem  2.2.3.  Two lattices    and    are distributive iff        is distributive.  

Proof:  

  Let    and    are distributive, let (   ,   ), (   ,   ), (   ,   ) be any three 

elements of         then   ,   ,          and    ,   ,         .  

Now, (   ,   )   [(   ,   ) ∨ (   ,   )] = (   ,   )   (   ∨    ,    ∨   ) 

  = (     (   ∨   ) ,      (   ∨   )) 

  = ((       ) ∨ (       ) , (       ) ∨ (       )) 

  = [(        ,        ) ∨ (        ,        )] 

  = [(   ,   )   (   ,   )] ∨ [(   ,   )   (   ,   )]  

Shows        is distributive. 

Conversely, let        be distributive. 

Let    ,   ,          and    ,   ,          be any elements , then 

(   ,   ), (   ,   ), (   ,   )           and as        is distributive .  

(   ,   )   [(   ,   ) ∨ (   ,   )] 

= [(   ,   )   (   ,   )] ∨ [(   ,   )   (   ,   )]  

i.e, (   ,   )   (   ∨    ,    ∨   ) = (        ,        ) ∨ (        ,        ) 

Or, ((     (   ∨   ) ,      (   ∨   )) 

     = ((       ) ∨ (       ) , (       ) ∨ (       )) 

Which gives,      (   ∨   ) = (       ) ∨ (       ) 

                (   ∨   ) = (       ) ∨ (       )    

Implies that    and    are distributive .    
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Definition  2.2.4.  For a distributive lattice let J(L) denote the set of all nonzero joint-irreducible 

elements regarded as a poset under the partial ordering of L. For a   L set 

  r(a) = {x x   a, x    J(L)} 

         = (a]   J(L) 

 

Theorem  2.2.5.  Let L be a finite distributive lattice, then the map   x  r(x) is an isomorphism 

between L and H (J (L)).  

Proof :   

  Since L is finite, every element is the join of nonzero join-irreducible elements 

thus ,  

   X =   r(x) 

Showing that   is one-to-one. Obviously, r(x)    r(y) = r (x   y) and  

so  (x   y)  = x    y    The formula  (x ∨ y)  = x    y  is equivalent to 

  r (x ∨ y   r (x)    r(y)  

To verify this formula, note that r(x)    r(y)   r (x ∨ y) is trivial. 

Now let x    r (x ∨ y), then a = a   (x ∨ y) 

    = (a   x) ∨ (a   y) ;  

Therefore a = a   x or a = a   y, since a is joint-irreducible. Thus a    r(x) or  

a    r(y), that is a   r(x)   r(y).  

Finally, we have to show that if A    H(J(L)), then x  = A for some x    L. Set x =  a. then                  

r(x)   A is obvious. Let a    r(x) ;   

Then a = a   x = a    A=  (a   b)  b    A.  

So, a = a   b for some b    A.  

Implying that a    A since A is hereditary..        
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Theorem  2.2.6.  A modular lattice is distributive iff it does not contain any sublattice 

isomorphic to   .  

Proof :  

  Let L be modular , but non distributive , and choose x, y, z   L such that                

x   (y ∨ z)   (x   y) ∨ (x   z). The free modular lattice generated  by x, y, z is shown in figure  

 

 

Fig 2.4 

By inspecting the diagram we see that u,   ,   ,   , v from a sublattice isomorphic to   . Thus in 

any modular lattice they form a sublattice isomorphic  to a quotient of   . But    has only two 

quotient lattices:    and the one – element lattice. In the former case we have finished the proof. 

In the latter case. Note that if u and v collapse, then so do x   (y ∨ z) and (x   y) ∨ (x   z), 

contrary to our assumption .         
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Theorem  2.2.7.  Let L be a distributive lattice, let I be an ideal. Let D be a dual of L and                 

I   D = , then there exists a prime ideal P of L such that P   I. 

Proof:  

  Let X be the set of all ideals of L containing I that are disjoint form D. Clearly X 

is non empty, as I   X.  

Let C be a chain in X and let M = U { X| X    C}. If a, b    M, then a    X, b    Y, for some                       

X, Y    C. Since C is chain either X   Y or Y   X.  

Suppose X   Y, then a, b   Y since Y is an ideal a ∨ b   Y   M. Also if   a    M and b   a, then 

a   X for some X   C.   

Since X is an ideal, so b    X   M. Therefore M is an ideal contain I. Obviously M   D =  . 

Hence M    C, so by zorn’s lemma X has a maximal element, say P, we claim that P is a prime 

ideal. If P is not prime, then there exists a, b   L with a,b   P such that a   b   P. By the 

maximality of  P((a] ∨ P)   D   , ((b] ∨ P)   D   .  let  p ∨ a    D and q ∨ b   D for some 

p, q    P.                                                                                          

 Then  x = (p ∨ q)   (a ∨ b) 

   = (p   q) ∨ (a   q) ∨ (p   b) ∨ (a   b)    P   

Which implies that x    P   D. which gives a contradiction. Therefore   must be a prime ideal.            

  

 

Corollary  2.2.8.  Every ideal   of a distributive lattice is the intersection of all prime ideals 

containing it.  

Proof :   

  Let    =   ( P/P    , P is a prime ideal of L) if      , then there is an a          , 

and (corollary 3.1.2)[ L be a distributive lattice, let   be an ideal of L, and let a    L and a    . 

Then there is a prime ideal P such that   P     and a   P]. But then a   P     is a contradiction.  
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CHAPTER III 

Prime Ideal and Minimal Prime n-Ideal 

3.1  Prime ideal of a lattice: 

Introduction: Prime ideal and Pseudo complemented of a lattice have been studied by several 

authors including [7]. In this chapter we discuss prime ideals, minimal prime ideals and minimal 

prime n- ideals of a lattices. In section one of this chapter we give some basic properties of prime 

ideals which will be needed in the next part.  

In section two of this chapter we have given characterization of minimal prime ideals of a 

Pseudo complemented distributive lattice. Then we have show that every Pseudo complemented 

lattice is generalized stone. 

Definition: (Dual ideal) : A non empty subset F of a lattice L is called dual ideal of L  if (1)             

x, y    implies that x   y    

(2) x   , d    implies that x ∨ d     

Let L = {1,2,5,10} be the lattice under divisibility. Then {10},{5,10},{2,10} are all dual ideals of 

lattice L. 

                       

Fig 3.1 

A proper ideal P of a lattice L is called a prime ideal if for any x, y     and  x   y    implies 

either x    or y   . Let L= {1, 2, 3, 4, 6, 12} of factors 12 under divisibility forms a lattice 

then {1, 2, 4} be a prime ideal of L. But in the lattice {1, 2, 5, 10} under divisibility {1} input a 

prime ideal because  2   5=1   {1} But 2,5   {1}.  
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Theorem  3.1.1.  Every ideal of a lattice L is prime ideal if and only if the lattice L is chain. 

Proof:  

  Let L be chain, Let P be any proper ideal of L. If a   b   then as a, b are in a 

chain, they are comparable. Let a   b. then a   b = a.                      

Thus a   b      a      P is prime. Conversely, Let every ideal in P be prime. To show that 

L in a chain, Let a,b    be any elemants, Let P = {x   / x   a   b} then P in easily seen to be 

an ideal of L. Thus P is  a prime ideal .  

Now a   b   , P is prime, thus a    or b      a   a   b or                                                                                                

b   a   b    a   b   a   a   b or a   b   b   a   b   a  a   b or  b  a   b   a   b  or 

b  a. L is a chain.         

 

Corollary  3.1.2.  Let L be a distributive lattice, Let I be an ideal of L, and let a    be an ideal 

of L, and let a    and a   . Then there is a prime ideal P such that P     and a   P. 

 

Theorem  3.1.3.  Every ideal I of a distributive lattice is the intersection of all prime ideals 

containing it. 

Proof: 

  Let    =  { P | P    , P is a prime ideal of L} if      , then there is an  a     -  , 

and so by corollary 3.1.2. There in a prime ideal P, with P     and  a   P. But then a   P      

and is a contradiction.       
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Theorem  3.1.4.  Let P be a prime ideal of a lattice L, then L P is a dual prime ideal. 

Proof: 

  Since P is a prime ideal, therefore P is non empty,   L P is a proper subset of L.   

  Let x,y    L P. Then x,y    L, x,y   P  x   y     , x   y   P(as x   y       

x     or y     as P is prime)   x   y    L P.  

Again, let x      , I    .  Then x    , x   P, I           

   x ∨ I    , x   P,  x ∨ I    , x ∨ I   P (as x ∨ I    P   x     as x   x ∨ I ).   

 Thus x ∨ I    L P. i.e L P is dual ideal.  

 Now let x ∨ y    L P, then x ∨ y    L, x ∨ y   P   x,y    L, x   P or y   P                            

(as x,y    P   x ∨ y   )  x    L P or y    L P.         

  i.e L P is a dual prime ideal.        
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3.2  Minimal prime ideals: 

A prime ideal P of a lattice L is called minimal, if there does not exists a prime ideal Q such that 

Q   P.  

The following lemma is a fundamental result in lattice theory: e . f [7,lemma 4pp ,169]. Through 

our proof is similar to their proof, we include the proof for the convenience of the reader.  

Minimal prime ideals and stone (generalized) lattices have been studied extensively by many 

authors including [12], [13],[14],[15],[16],[17],[18] and [19]. Chen and in Gratzer [20] and [21] 

studied the construction and structures of stone lattices. Katrinak has given a new proof of 

construction theorem for stone algebras in [22] and studied these algebras in [23]. 

 

Theorem  3.2.1.  Let L be a lattice with 0. Then every prime ideal contains a minimal prime 

ideal. 

Proof:  

  Let P be a prime ideal of L and let R denote the set of all prime ideals Q contained 

in P. Then R is non-void, since 0   Q and Q is an ideal: infact, Q is prime. Indeed, if a   b   Q 

for some a, b   L, then a   b   X for all X   C; since X is prime, either a   X or b   X. Thus 

either Q=  (X a   X) or Q =   (X  b   X) proving, that a or b   Q. Therefore, we can apply to R 

the dual form of Zorn’s lemma to conclude the existence of a minimal member of R.        

Theorem 3.2.2: Let L be a distributive lattice with 0, the following conditions are equivalent.  

(i) L is normal. 

(ii) Each prime ideal of  L contains a unique minimal prime ideal. 

(iii) Each prime filter of  L is contained in a unique ultrafilter of L. 

(iv) Any two distinct minimal prime ideals are comaximal. 

(v) For all x,y    L, x   y= 0 implies (x]* ∨ (y]* = L. 

(vi) (x   y]* = (x]* ∨ (y]* for all x,y    L.          

Remark: Here (x]* we means relatively Pseudo complement of (x].  

Dense set: D(L) = { a   L : a*= 0}, D(L) is called the dense set.  
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Theorem  3.2.3.  In a stone algebra every prime ideal contains exactly one minimal prime ideal. 

Proof:  

  Let L be a Stone algebra and let P be a prime ideal of L.We need prove that P 

contains exactly one minimal prime ideal. Suppose P contains two distinct minimal prime ideals 

   and   . Choose x         (      , since    is minimal and    =   , hence         

  );  

Since x   x* = 0    , x      and    is prime, so x*     , L      is maximal dual prime ideal, 

hence it is a maximal dual ideal of L. 

Thus, (L     ) ∨ [x) = L and so, x   a =0 for some a    L     , therefore, x*   a    L      

implies that x*     . Hence x*           . Similarly, x*     , so x* and x** both contained in 

p. implies that 1 = x* ∨ x**    P,  which is a contradiction that P is a prime ideal of L. Thus in a 

Stone algebra  every prime ideal contains exactly one minimal prime ideal.          

 

Theorem  3.2.4.  Let L be a sectionally Pseudo complemented distributive lattice and p be a 

prime ideal in L. Then the following conditions are equivalent: 

(i) p is minimal                                               

(ii) x    p implies (x]*   p                                                                             

(iii) x    p implies (x]**   p                                                                                                 

(iv) p   D(L) =   

Proof :  

(i) implies (ii) 

Let P be minimal and (ii) fail, that is a*    P for some a   P. Let D = (L P)   [a), we  claim 

that 0   D. Indeed, if 0    D, then q   a = 0 for some q    L P, which implies that q    a    P, a 

contradiction. Thus there exists a prime ideal Q disjoint to D. Then Q   P since Q   (L P) =  , 

and Q   P since a   Q, contradicting the minimality of  P. 

(ii) implies (iii)  

Indeed, x*   x** = 0    P for any x    L thus if x    P then by (ii) x*    P, implying that x**   P. 

(iii) implies (iv) 

If a    P   D(L) for some a   L, then a** = 1   P, a contradiction to (iii), thus P   D(L) =  . 
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(iv) implies (i) 

If P is not minimal, then Q   P for some prime ideal Q of L. Let x   Q P. Then x   x* = 0   Q 

and x   Q: then x*  Q P which implies that x ∨ x*   P. As x ∨ x*  D(L); thus we obtain                  

x ∨ x*   P   D(L), contradicting (iv). Hence P is minimal.           

 

Definition:  

(stone lattice): A distributive  Pseudo complemented lattice L is  called a stone lattice if for each 

a   , a* ∨ a** =  . 

 

Fig. 3.3 

 

Theorem  3.2.5.  A prime ideal P of a stone algebra L is minimal iff  P =            . 

Proof:  

  Suppose P is minimal, let x             . Then x   r for some r           

implies that r   P and r   S(L) implies that r   P implies that  x   P implies that         

                 P       (i)  

Again let x   P, since P is minimal so, x**   P, Then x            , as x   x**.                    

so x               implies that P                    (ii)      

From (i) and (ii) P =             Conversely, let P =             and let x   P then x   r  

             for some r                        

implies that x**   r** = r implies that x**   P. Hence P is minimal.     

  

1 
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Theorem  3.2.6.  A distributive lattice with Pseudo complementation is a Stone algebra iff every 

prime ideal contains exactly one minimal prime ideal (G. Gratzer and E. T. Schmidt [1957b]). 

Proof:  

    Let L be distributive lattice with Pseudo complementation. If  L is a Stone algebra, 

every prime ideal contains exactly one minimal prime ideal. 

Conversely, let L is not a Stone lattice and let a   L such that a* ∨ a**   1. Then there exist a 

prime ideal R such that a* ∨ a**   R. We claim that (L-R)∨ a*) = L then there exist an x   L-R 

such that x   a* = 0.                  

Then a**   x   L R   implies a**   L R. Which is a contradiction. So (L-R) ∨ [a*)   L. Let F 

be a minimal dual prime ideal containing (L R) ∨ [a*) and let G be a minimal dual prime ideal 

containing (L R) ∨ [a*). We set P = L F and Q = L G. Then P and Q are minimal prime 

ideals such that P, Q   R. Moreover P   Q, because a*   F = L P and hence  a*    P; thus                 

a**    P but a**   Q.              

 

Theorem  3.2.7.  Let L be a distributive with 0 and 1. For an ideal I of L. We set I* = {x|x   i= 0 

for all i  I}; Let P be a prime ideal of L. Then P is minimal prime ideal iff x   P implies that 

(x]*   P (T.P. Speed). 

Proof:  

  By the definition of  I*,(x]* ={y|y   x =0} as x*   x =0 implies that x*   (x]* 

implies that  (x*]   (x]*, again let z   (x]*, then then z   x =0 implies that z   x* implies that                   

z   (x*] implies that (x]*   (x*] implies that  (x]* = (x*]. Now suppose P be a minimal prime 

ideal and x    P, then by  the theorem x*   P implies that  (x*]⊈ P implies that (x]*   P. 

Conversely, if for  x    P, (x]* ⊈ P and if possible. Let P is not minimal then there exist a prime 

ideal Q such that Q  P. Let x   P  Q. 

Now, x*   x = 0   Q  implies that x*    Q implies that x    P implies that  (x*]   P implies that 

(x]*   P which is a contradiction. Hence the proof.           
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Theorem  3.2.8.  Every Boolean lattice is a Stone lattice. But the conversely is not necessary 

true.  

Proof :  

  Let L be a Boolean lattice. Then for each a    L, its complement a′ is also the 

Pseudo complement of a. Moreover, a* ∨ a** = a′ ∨ a″ = a′ ∨ a =1. Hence L is also Stone.  

Observe that 3-elements chain is a Stone lattice. 

For  a* ∨ a** = 0 ∨ 0* = 0 ∨ 1=1. But it is not Boolean, as a has no complement.  

 

Fig. 3.4 

In theorem 3.2.3, we have proved that in a Stone lattice every prime ideal contains a unique 

minimal prime ideal. In the following lattice, observe that (c] is a prime ideal and it contains two 

minimal prime ideals (a] and (b]. Hence it is not a Stone lattice. 

 

Fig. 3.5 

Also by 3.1.1, we know that in a Stone lattice L, a ∨ b  S(L) for all a, b   L. In above lattice 

observe that a ∨ b = c   S(L). Hence L is not Stone.  

Let L be a Stone lattice, then S(L) = { a*|a   L } is called skeleton of  L. The elements of S(L) 

are called skeletal. L is dense if S(L) = {0,1},   S(L) ;  , ∨,*,0,1   is a Boolean algebra.   

 

1 

a 

0 

1 

c 

b a 

0 
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Definition:                                          

(Generalized stone lattice): A lattice L with 0 is called generalized stone lattice if                    

(x]* ∨ (x]** = L for each x   L. 

 

Theorem  3.2.9.  A distributive lattice L with 0 is a generalized stone lattice if and only if each 

interval [0,x], 0   x   S is a stone lattice. 

Proof :  

  Let L with 0 be a generalized stone and let P   [0,x]. Then (p]* ∨ (P]** = L. So             

x   (p]* ∨ (P]** implies x = r ∨ s for some r    (p]*,  s   (p]**. Now r    (p]* implies r   P = 0 

also 0   r   x. Suppose t   [0,x] such that t   P = 0, then t   (p]* implies t   s = 0. Therefore,                     

t   x = t   (r ∨ s) = (t   r) ∨ (t   s) = (t   r) ∨ 0 = (t   r) implies t = (t   r) implies t   r. So r is 

the relative Pseudo complement of P in [0,x], i.e r=p* since s   (p]** and r   (p]*, So s   r = 0. 

Let q   [0,x]. Such that q   r = 0. Then as x = r ∨ s, so q   x = (q   r) ∨ (q   s) implies q = q  s 

implies q   s. Hence, s is the relative Pseudo complement of r = p* in [0,x] i.e s = p** implies                  

x = r ∨ s = p* ∨ p**. Thus [0,x] is a stone lattice.  

Conversely, suppose [0,x]. 0   x   L is a stone lattice. Let p   L, then  p   x    [0,p]. Since [0,p] 

is a stone lattice, then (p   x)* ∨ (p   x)** = p, where (p   x)* is the relative Pseudo complement 

of (p   x) in [0,p].  

Therefore p   ((p]   (p   x]* ∨ ((p]   (p   x]**, So, we can take p = r ∨ s, for  r   (p   x]*,                       

s    (p   x]**. Now, r    (p   x]* implies r   p   x = 0 implies r   x = 0 implies r    (x]* and                    

s    (p   x]**. Now p   x   x implies (p   x]**  (x]**, and so s    (x]**. Therefore                                                                      

p = r ∨ s    (x]* ∨ (x]** and  so, L   (x]* ∨ (x]**. But (x]* ∨ (x]**   L is obvious.  

Hence  (x]* ∨ (x]** = L and so L is generalized stone.         

 

 

Theorem  3.2.10.  A distributive Pseudo complemented lattice is a Stone lattice L if and only if 

for any two minimal prime ideals P and Q. P ∨ Q = L. 

Proof:  

  Suppose L is a Stone lattice and P, Q are two minimal prime ideals. If P ∨ Q   L 

then there exists a prime ideal R containing P ∨ Q. This means that R contains two minimal 

prime ideals, which is a contradiction to theorem 3.2.6 as L is a Stone, therefore  P ∨ Q = L. 
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Conversely, suppose the given condition holds and R is a prime ideal of L. Then R cannot 

contain two minimal prime ideals P and Q, as otherwise R   P ∨ Q = L. Therefore again by 

theorem 3.2.6, L is Stone.   
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3.3  Minimal prime n-ideal 

Minimal prime ideals and Stone (generalized) lattices have been studied extensively by many 

authors including [12], [13], [14], [15]. Chen and in Gratzer [16] and [17] studied the 

construction and structures of Stone lattices. Katrinak has given a new proof of construction 

theorem for Stone algebras in [18] and studied these algebras in [19], [20] and [21]. 

In this part we introduce the concept of minimal prime n-ideals and generalize some of the 

results on minimal prime ideals. Then we used these results to generalize several important 

results on stone and generalized stone lattices in lattices in terms of n-ideals. 

A prime n-ideal P is said to be a minimal prime n-ideal belonging to n-ideal I if ,  

  (i) I   P,  and 

  (ii) There exists no prime n-ideal Q such that Q   P and I   Q   P.  

A prime n-ideal P of L is called a minimal prime n-ideal if there exists no prime n-ideal Q such 

that  Q   P and Q   P. Thus a minimal prime n-ideal is a minimal prime n-ideal belonging to 

{n}.  

 

Theorem  3.3.1.  Let L be lattice with medial element n. Then every prime n ideal contains a 

minimal prime n-ideal. 

Proof:  

  Let p be a prime n-ideal of L and let R be the set of all prime n-ideal Q contained 

in p. Then R is non-void, since P   R. If C is a chain in R and  Q =  (x:x    C), then Q is a non-

empty as n   Q and Q is an n-ideal, in fact, Q is prime. 

Indeed, if m(a, n, b)   Q for some a, b    L, then m(a, n, b)   x for all X   C. since X is prime, 

either a   x or b   x. Thus, either Q =  (x:a   x) or Q =  (x:b    x), proving that a   Q or b   Q.  

Therefore, we can apply to R the dual form of zone’s lemma to conclude the existence of a 

minimal member of R. 

If L is a distributive lattice with n   L, then we already know that   (L) is a distributive lattice 

with {n} as the smallest element. So we can talk on the sectionally Pseudo complementness of  

  (L) is called sectionally Pseudo complemented if each interval [{n}, <  ……………..  >n] is 

Pseudo complemented. 

That is for {n}   <   ……………..  >n   <  ……………..  >n. relative Pseudo-complement                 

<   ……………..  >n in [{n}, <  ……………..  >n] belongs to   (L). 
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Now we give a characterization of minimal prime n-ideals of a distributive lattice L. when   (L) 

is seasonally Pseudo complemented. To do this we establish the following theorem.             

 

Theorem  3.3.2.  Let L be a distributive lattice and n   L be a medial element. Then for any                    

i, j      (L), (     J)*     = J*   . 

Proof:  

  Since     J   J. So R.H.S   L.H.S. To prove the reverse inclusion, let x    L.H.S. 

Then X     and m(x, n, t) = n for all t      J. Since x   , So m(x, n, j)      J. Thus                                        

m (x, n, m(x, n, j)) = n. But it can be easily seen that m (x, n, m(x, n, j)) =  m(x, n, j). Thus implies 

m(x, n, j) = n for all j   J. Hence x   R.H.S  and so L.H.S   R.H.S. Thus (     J)*     = J*   .  

  

 

Theorem  3.3.3.  Suppose n is medial element of a lattice L. If I   J. I, J      (L) then                                 

(i)   =  *   J and (ii)  ** =  **   J. 

Proof :  

  (i) is trival. For (ii), using (i) we have,  ** = ( *)*   J = ( *   J)*. Thus,                              

 ** =  **   J.    

 

Theorem  3.3.4.  Let n be a medial element of a distributive lattice L. Suppose   (L) is 

sectionally Pseudo complemented distributive lattice and p is a prime n-ideal of L. Then the 

following conditions are equivalent.                  

(i) P is minimal. 

(ii) x   P implies     *  P.  

(iii) x    P implies  x   **   P.                            

(iv) P D(    )=   for all t    L–P,  where D(    )= { x    L    :     * = {n} } 
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Proof:  

(i)   (ii)  

suppose P is minimal. If (ii) fails, then there exists x   P such that     *   P. since P is a 

prime n-ideal, then P is a prime ideal or a prime filter. Suppose P is a prime ideal. Let                             

D = (L   P) ∨ [x). We claim that  n   D. If n    D, then n = q   x for some q    L – P. 

Then          =        ∨        ∨          ={n} implies          *  

P. Thus q    P which is contradiction. Hence n   D. Then there exist a prime n-ideal Q with                     

Q   D =  . Then Q   P as Q   (L P) =   and Q   P, since x   Q. But this contradicts the 

minimality of  P.  

Hence       *   P. Similarly, we can prove that      *   P if P is a prime filter.  

(ii)   (iii)  

Suppose (ii) holds and x   P. Then      *   P. Since      *     ** = {n}   P and P 

is prime, so      **   P. 

(iii)   (iv)  

Suppose (iii) holds and t   L – P. Let x    P   D(    ), Then x    P, x    D(    ). Thus 

     * = {n} and so      **=      By (iii) x   P implies     **  P. Also by 

theorem,     **     **     . Hence      **      =       and so                          

          **  P. That is t    P, which is a contradiction. Therefore P   D(    ) =   

for all   t    L – P. 

(iv)    (i)   

Suppose P is not minimal. Then there exists a Prime n-ideal q   P Let x    P   Q. Since        

             = {n}   Q so      *  Q   P. Thus       ∨      *   P.  

       

Choose any t   L – P, then      (     ∨     *   P) Now      (     ∨

      *)=(         )∨(         *)=           ∨(         )* 

    =             ∨ (           *        )=           ∨           *  

where            * is the relative Pseudo complement of             in     . Since 

  (L) is sectionally Pseudo complemented            * is finitely generated and so 

           ∨           * is a finitely generated n-ideal contained in     . 
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Therefore             ∨            * =      for some r         Moreover,   

    *=                         * * = {n}. Thus, r    P   D(    ). Which is a 

contradiction. Therefore, P must be minimal.    
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CHAPTER IV 

Distributive Lattice with  Pseudo complementation 

Introduction: In lattice theory there are different classes of lattices known as variety of lattices 

class of Boolean lattice is of course the most powerful variety. Throughout this chapter we will 

be concerned with another large variety known as the class of distributive Pseudo complemented 

lattice. Pseudo complemented lattice have been studied by several authors. [2],[3],[4],[8],[5],[6]  

A Pseudo complemented distributive lattice is a distributive lattice L with 0, 1 such that for each 

a   L there is a greatest element a* which is disjoint with a. The problem referred to above is 

then: what is the most general Pseudo complemented distributive lattice in which a* ∨ a** = 1.  

We shall deal exclusively with Pseudo complemented distributive lattices. There are two 

concepts that we should be able to distinguish: a lattice <L;  , ∨> in which every element has a 

Pseudo complement, and an algebra <L;  ,∨,0,1 > where <L ; ,∨,0,1> is a bounded lattice and 

where for every  a    L. The element a is a Pseudo complement of a. We shall call the former a 

Pseudo complemented lattice and the latter a lattice with Pseudo complementation (as an 

operation) the same kind of distinction that we make between Boolean lattices and Boolean 

algebras. Thus a Pseudo complementation is an algebra < 2,2 >, where as a lattice with Pseudo 

complementation is an algebra of type < 2,2,1,0,0 >. To see the difference in viewpoint, consider 

the finite distributive lattice of the following figure. As a distributive lattice has twenty-five 

sublattices and eight congruences, as a lattice with  Pseudo complementation has three sub 

algebras and five congruences.  

 

Fig. 4.1 

Thus , for a lattice with Pseudo complementation L, a subalgebra    is a {0,1} sublattice of L 

closed under   (i.e a       implies that a*      ). A homomorphism Φ is a {0,1} homomorphism 

that also satisfies (x,Φ)*=x*Φ. If there is any danger of confusion, we call such a homomorphism  

a-homomorphism. similarly, a congruence relation   will have the substitution property also for 

  : a   b   implies that a*   b* ( ). 
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Definition :                                                           

Pseudo complemented element : Let L be a lattice with 0 and 1 for an element x   L, element 

x*   L is called Pseudo complement of x if  x   x* = 0 and x   y = 0 (  y   L) implies y   x*. 

Definition :                                                                         

Pseudo complemented lattice : Let L be a bounded distributive lattice, let  a    L, an element 

a*   L is called a Pseudo complemented of a in L if the following conditions hold    i) a   a* = 0  

(ii)   x   L , a   x = 0 implies that x   a*. 

 

Fig 4.2 

Also bounded lattice L is called Pseudo complemented if its every element has a Pseudo 

complement. 

For a lattice L with 0 we can talk about sectionally Pseudo complemented lattice. 

A lattice L with 0 is called sectionally Pseudo complemented if interval [0,x] for each x    L is 

Pseudo complemented of course every finite distributive lattice is sectionally Pseudo 

complemented.  

Example :   

 

Fig. 4.3 

The lattice L = {0,a,b,c,1} shown by the fig. 4.3 is Pseudo complemented. 

S(L):                   = Set of all pseudo complemented lattice.  

1=0* 

c=a* 
c*=b 

0=1* a=c* 
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1. Introduction of some stone algebra : A complete lattice is called algebraic if every element 

is the join of compact elements. 

Example : Let L be a join semi lattice with 0 then I(L), the set of all ideas of L under “   ” is an 

algebraic lattice. 

In the literature, algebraic lattice are also called compactly generated lattice. Just as for lattices a 

nonvoid subset I of a join semi lattices S is an ideal if, for a,b   S, we have a ∨ b   I iff                                

a and b   I. Again I(S) is the poset of all ideals of S partially ordered under set inclusion. If S has 

a zero, then I(S) is a lattice.   

 

Theorem  4.1.1.  A lattice L is algebraic iff it is isomorphic to the lattice of all ideals of a join 

semi-lattice with 0. 

Proof:  

  Let S be a join semi lattice with 0, we have to prove that I(S) is a complete lattice, 

we claim that   a   S, [a] is a compact in I(S). 

Let X   I(S) and (a]     (I| I    X) now   (I| I    X) ={ x|x       ………    ,         ,       X} 

Therefore a       …………….     ,         ,       X Thus with    = {   ………….   }(a]    (   

       X) Therefore (a] is compact in I(S). Now for any I   I(S), I =  ((a] | a    L) Hence I(S) 

is algebraic and so any lattice L is isomorphic to I(S) is also algebraic. 

Conversely,  let L be an algebraic lattice and let S be the set of all compact elements of L 

obviously 0   S. 

Moreover clearly join of two compact elements is again a compact element. So S is a join semi 

lattice with 0. Now consider the map  :L  I(L) is define by   (a) = {x    S |x   a} obviously   

maps L into I(S). By the definition of an algebraic lattice a =     (a) and so   is one-one. 

To prove that   is onto, let  I   I(S), a =   I then  (a)   I. Now, let x    (a), then x   S,                        

x   a ∨ L. By compactness of x there exists a finite subset     I such that x       . This implies  

x   I and so I    (a). Therefore   is onto. 

Also  (a   b)  = {x    S |x   a   b}                

 = {x    S |x   a }  {x    S |x   b }=  (a)    (b) 

Also   (a ∨ b) = {x    S |x   a ∨ b}               

 = {x    S |x   a } ∨ {x    S |x   b }=  (a) ∨  (b)       

    is a homomorphism. Therefore it is an isomorphism.           



44 
 

 Theorem  4.1.2.  Every distributive algebraic lattice is Pseudo complement. 

Proof:  

  Let L be a distributive algebraic lattice. Then L       for some distributive join 

semilattice S with 0,      is complete. Let  ,          , we have to show that     (   )= (      ) 

of course   (      )       (   )        (i)          

Let x        (   ) then, x      and x        implies that  x      
 ………………….    

 for some 

   
      

,    
…………….   

       
 implies that x     

 ………………     
       

implies that x       (   
 ………………     

)= (       
)   ………………  (      

)            

implies that     (    )    (      )        (ii)  

     

From (i) and (ii)   (      ) =     (   ) implies that      holds JID implies that      is Pseudo 

complemented implies that L is Pseudo complemented .          

Theorem  4.1.3.  Let L be a Pseudo complemented meet semi-lattice. S(L) = {a*/a  L}. Then the 

partial ordering of L partially orders S(L) and makes S(L) into a Boolean lattice. For                           

a, b   S(L) we have a   b   S(L)  and the join in S(L) is described by a ∨ b = (a*   b*)*. 

Proof:  

  The following result have been proved in congruence part. 

 (i) a   a**                                       

 (ii) a   b implies that a*   b*                              

 (iii) a* = a***                                              

 (iv) a    S(L) iff a = a**                                           

 (v) a,b    S(L) implies that a   b   S(L)                                           

 (vi) For a,b   S(L)      (L) {a,b} = (a*   b*)* 

For a, b   S(L) define a ∨ b = (a*   b*)*, then (v) and (vi)   S(L);   ∨    is a bounded lattice.  

Since for a   S(L) a   a* = 0 and (a ∨ a*) = (a*   a**)* = 0* = 1 implies that S(L) is 

complemented lattice. Now we need only to show that S(L) is distributive.                                             

For x, y, z   S(L), x   z  x ∨ (y   z) and y   z  x ∨ (y   z)  Therefore x   z  (x ∨ (y   z))* = 0 

implies that x   (z  x ∨ (y   z))* = 0  implies that z   (x ∨ (y   z))*   x*                       

Again y   z  (x ∨ (y   z))* = 0                                                         

or y   (z  x ∨ (y   z))* = 0                                                              

  z   (x ∨ (y   z))*   y* 
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We can write z   (x ∨ (y   z))*   x*   y*  consequently, z   (x ∨ (y   z))*   (x*   y*)* = 0, 

Which implies that z   (x*   y*)*   (x ∨ (y   z))** Now the left hand side is z   (x ∨ y) [by for 

a, b   S(L) 

    (L){a,b}=(a*   b*)*] and the right hand side is x ∨ (y   z) [by a   S(L) iff a=a**].                

Thus we have z   (x ∨ y)   x ∨ (y   z) which is distributive.         

Definition: A distributive Pseudo complemented lattice L is called a stone lattice if x* ∨ x** = 1 

for each x    L. 

 

Fig. 4.4 

A finite distributive lattice with only one atom is a stone lattice. A distributive lattice with 

Pseudo complementation L is called a stone algebra if and only if it satisfies the condition.  

   a* ∨ a** = 1 

which is called stone identity.  

 

Theorem  4.1.4.  A distributive  Pseudo complemented lattice is a stone lattice iff (a ∨ b)** = 

a** ∨ b**  for a,b    L. 

Proof:  

Let L be a stone lattice then we have (a   b)* = a* ∨ b* for all a, b    L.                                                 

Now (a ∨ b)**  = ((a ∨ b)*)*                     

=  (a*   b*)* = a** ∨ b**. 

Conversely, let (a ∨ b)** = a** ∨ b** for a, b    L. 

1 

c d 

b 

a 

0 
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Since L is a Pseudo complemented lattice, then for a    L, a   a* = 0 implies that                                       

(a   a*)** = 0** implies that a**   a*** = 0  implies that a**   a* = 0                     

Now (a ∨ a*)* = a*   a** = 0 implies that (a ∨ a*)** = 0*     

implies that a** ∨ a*** = 1                                                                                                             

implies that a** ∨ a* = 1 

L is a stone lattice.          

 

Theorem  4.1.5.  Let L be a Pseudo complemented meet semi lattice and let a,b   L then                              

(a   b)* = (a**   b)* = (a**   b**)*. 

Proof:  

  Since L is a Pseudo complemented meet semi lattice, then a   a** implies that                        

a   b  a**   b implies that (a   b)*  (a**   b)*      (i) 

Again b  b** implies that a**   b  a**   b** implies that  a**   b  a**   b**                                       

implies that (a**   b)*   (a   b)***                                                                                                                   

implies that (a**   b)*   (a   b)*         (ii)  

From (i) and (ii) we have, (a   b)* = (a**   b)*     (iii)                    

Again, b    b** implies that a**   b   a**   b**                                                                                           

implies that (a**   b)*   (a**   b**)*       (iv) 

Again, a**  a**** implies that a**   b**  a****   b**                                         

 = (a**   b)**                                                                                                                             

implies that (a**   b**)*   (a**   b)***                                                                                                   

implies that (a**   b**)*   (a**   b)*       (v) 

From (iv) and (v)                                                                          

(a**   b)* = (a**   b**)*         (vi) 

From (iii) and (vi)                                                                             

(a   b)* = (a**   b)* = (a**   b**)*.            
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Theorem  4.1.6.  Let L be a Pseudo complemented distributive lattice, then for each a    L, (a] 

is Pseudo complemented distributive lattice in fact the Pseudo complement of x   (a] in (a] is              

x*   a. 

Proof:  

  Let x   (a] then x   (x*   a) = (x   x*)   a= 0 Further if x   t = 0 then t   x* 

implies that t   a   x*   a implies that  t   x*   a implies that  x*   a is the Pseudo complement 

of x. Implies that (a] is a Pseudo complemented distributive lattice.            

 

Theorem  4.1.7.  For a distributive lattice L with Pseudo complementation, the following 

conditions are equivalent. 

   (i) L is a stone algebra. 

   (ii) (a   b)* = a* ∨ b* for a, b    L. 

   (iii) a, b    S(L) implies that  a ∨ b    S(L). 

   (iv) S(L) is a subalgebra of L. 

Proof:  

(i) implies (ii)  

Let L be a Stone algebra, we shall show that a* ∨ b* is the Pseudo complement of a   b.                           

indeed, (a   b)   (a* ∨ b*) = (a   b   a*) ∨ (a   b   b*)      

               = (0   b) ∨ (a   0)       

                   = 0 ∨ 0         

                = 0. 

    If (a   b)   x = 0, then (b   x)   a = 0,                                    

and so b   x   a*. Meeting both sides by a** yields b   x   a**   a*   a** = 0;                                          

that is, b   (x   a**) = 0, implying that, a**   x   b* 

   We have, a* ∨ a** = 1, by Stone’s identity.                                             

   x = x   1 = x   (a* ∨ a**) = (x   a*) ∨ (x   a**)  a* ∨ b*.      

implies that a* ∨ b* is the Pseudo complement of a   b                                  

implies that (a   b)* = a* ∨ b*. 
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(ii) implies (iii)            

Let a, b    S(L), then a = a** , b = b**                                      

  a ∨ b = a** ∨ b** = (a*   b*)* = (a ∨ b)**                                      

implies that a ∨ b    S(L). 

   

(iii) implies (iv)  

For a, b    S(L), a ∨ b    S(L)                                                                         

Also a* = a**, b* = b**                                                                  

Now, a ∨ b = a** ∨ b** = (a*   b*)*        

        = (a ∨ b)**                                   

        = a ∨ b  

i.e., S(L) is a sub-algebra of  L.         

 

(iv) implies (i)  

Let S(L) is a sub algebra of  L.                                                                 

Then a* ∨ a** = (a   a*)* = 0* = 1. Hence L is a Stone algebra.                      
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4.2 Induction and congruence 

Construction of Pseudo complemented lattice : An algebra,   L; ,∨, ,0,1  where  , ∨ are 

binary operation,   is a unary operation, 0, 1 are nullary operations is called a lattice with Pseudo 

complementation if 

   (i)   L;  , ∨, 0, 1  is bounded lattice. 

   (ii)   is a unary operation i.e.  a    L there exists a* such that   

      a   a* = 0 and a   x = 0 implies that x   a* = x   x    L. 

 

 

Fig 4.5 

To see the difference in view point, consider the finite distributive lattice of Fig. (4.4). As a 

distributive lattice it has twenty five sublattice and eight congruences; as a lattice with Pseudo 

complementation it has three sub algebras and five congruences. L as lattice: 

Sublattice: {0},{a},{b},{c},{1},{0,a},{0,c},{0,b},{0,1},{0,a,b,c},L,{a,c},{a,c,1},{b,c},{b,c,1}, 

{a,1},{b,1},{c,1},{0,a,1},{0,b,1},{0,c,1},{0,a,c},{0,b,c},{0,a,c,1},{a,b,c,1} = 25 

L as a lattice with Pseudo complementation {0,1}, L, {0,c,1} 

Congruence : As a lattice,                                      

  = {0},{a},{b},{c},{1}                                                           

  = {0,a},{b,c},{1}                                                            

  = {0,a},{b,c,1}                                                                  

Ψ = {0,b},{a,c},{1}                                                                       

  = {0,b},{a,c,1}                                                                           

  = {0,a,b,c},{1}                                                                                                  

 ={c,1},{a},{b},{0}                                                                                                                                                       

   = {0,a,b,c,1}  
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Congruences as a lattice with Pseudo complementation.                                                              

                 

  

Theorem  4.2.1.  Let L be a Pseudo complemented distributive lattice                                       

S(L) = {a*/a    L} and D(L) = {a/a* = 0} then for a, b    L                                 

(i) a   a* = 0                                                  

(ii) a   b implies that a*   b*                                  

(iii) a   a**                                                

(iv) a* = a***                                                   

(v) (a ∨ b)* = a*   b*                                           

(vi) (a   b)** = a**   b**                                           

(vii) a   b = 0 iff a**   b** = 0                                          

(viii) a   (a   b)* = a   b*                                              

(ix) 0* = 1 and 1* = 0                                               

(x) a    S(L) iff a = a**                                               

(xi) a,b    S(L) implies that a   b   S(L)                                             

(xii)         {a,b} = (a ∨ b)**                                          

(xiii) 0,1    S(L), 1   D(L) and S(L)   D(L) = {1}                                        

(xiv) a, b   D(L) implies that a   b    D(L)                                           

(xv) a   D(L) and a   b imply that b   D(L)                                                       

(xvi) a ∨ a*   D(L)                                              

(xvii) x x** is a meet – homomorphism of L onto S(L) 

Proof :   

(i) By the definition of Pseudo complement a   a* = 0   a   L 

(ii) For b   b* = 0 and a   b   a   b* = 0 which implies a*   b* 

(iii) By the definition of  Pseudo complement a   a* = a*   a = 0. Similarly, a*   (a*)* = 0   

a*   a** = 0 and a*   a = 0   a   a**, Hence a   a**.   

(iv) From (iii), a   a** implies that  a*   a***  (A) [by (ii)]                                      

 Again  a*   a** = 0. i.e., a**   a* = 0.     

 Similarly a**   (a**)* = 0 implies that a**   a*** = 0                                     

and a**   a* = 0 implies that a*  a***   (B)                             

From (A) and (B)                                                  

we have a* = a***. Hence a* = a***. 
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(v) we have (a ∨ b)   (a* ∨ b*) = (a   a*   b*) ∨ (b   a*   b*)     

  =  (0   b*) ∨ (a*   0)  [by(i)]        

  = 0 ∨ 0          

  = 0 

Let (a ∨ b)   x = 0                             

implies that (a   x) ∨ (b   x) = 0                                                  

implies that a   x = 0 and b   x = 0                                         

implies that x   a* and x   b*                                     

implies that x   a*   b*                                              

Therefore a*   b* is the Pseudo complement of a ∨ b.                                                    

Hence (a ∨ b)* = a*   b*. 

(vi) Let a, b   L implies that  a*,b*   L implies that a** ,b**   S(L) implies that a** b**  S(L). 

But a**   b** is the smallest element of S(L) containing a   b. So (a   x)** = a**   b**.   

           

(vii) If a   b = 0 by (vi) then a**   b** = (a   b)** = ()**=()                                                         

So, a**   b** = 0.                                                  

Conversely, if a**   b** = 0 by (iii) a   a**, b   b**    a,b   L                                                   

then, a   b   a**   b** = 0                                                           

  a   b = 0. Hence a   b iff a**   b** = 0. 

(viii) Since a   b   b so (a   b)*   b* and so a   (a   b)*   a   b*     (A) 

Again (a   b)   (a   b)* = 0 implies that                                                                             

(a   (a   b)*)   b = 0, therefore  a   (a   b)*   b*                                                    

implies that  a   a   (a   b)*   a   b* implies that                                                              

a   (a   b)*   a   b*             (B)                                       

From (A) and (B) a   (a   b)* = a   b*.                                                  

Hence a   (a   b)* = a   b*. 

(ix) We have 0   x = 0  x    L  and 0   1 = 0                                          

But x   1  x    L. Hence 0* = 1                                      

Again, 0* = 1 implies that 0** = 1*   implies that 0 = 1*   1* = 0. 

(x) If a    S(L) then, a = b* for some b    L, but a* = a***,  a    L                           

Now, a** = b*** = b* = a Hence, a** = a                                                              

Conversely, if a = a** then a = b*, thus a    S(L).                                                  

Hence a   S(L) iff a = a** 

 



52 
 

(xi) Let a, b   S(L) then a = a**, b = b**.                       

Since a   b   a implies that (a   b)**   a** = a   a   (a   b)**      

Again, since a   b   b implies that (a   b)**   b** = b                          

  (a   b)**   b implies that b   (a   b)** implies that                                 

a   b   (a   b)**              (A)                                  

But a   b   (a   b)**            (B)                                              

From (A) and (B)  a   b = (a   b)** implies that a   b    S(L).                                        

If x    S(L) such that x   a and x   b then x   a   b.                             

i.e., a   b is a greatest lower bound of S(L).                             

Therefore a   b =         {a, b}   S(L). 

(xii) For a, b    S(L) since a*   a*   b* implies that                             

a**   (a*   b*)* [by (ii)] implies that a   (a*   b)* [by (i)]                                

Again b*   a*   b* implies that  b**   (a*   b*)* [by (ii)]                                   

implies that b   (a*   b*)* [by (i)]                                              

  (a*   b*)* is a upper bound of {a, b} in S(L).                                   

Let x   S(L) such that a   x, b   x then a*   x*, b*   x* [by (ii)]                               

  a*   b*   x* implies that  (a*   b*)*   x** = x                                               

implies that (a*   b*)*   x.                                                 

  (a*   b*)* is a least upper bound of {a, b} in S(L)                                    

        {a, b} = (a*   b*)*.                                     

Again (a ∨ b)** = ((a ∨ b)*)* = (a*   b*)*                                   

Hence         {a, b} = (a ∨ b)** = (a*   b*)*.             

                                                                                                                  

(xiii) From (ix) we have 0* = 1, 1* = 0 then 0,1   S(L) and 1  D(L). Let x    S(L)   D(L)      

then x    S(L) and x    D(L) such that x = x**, x* = 0                                                                 

then  x = (x*)* = 0* = 1.            

Hence S(L)   D(L) = {1} 

(xiv) Let a, b    D(L) then a* = 0, b* = 0 implies that a** = b** = 0* = 1.                               

Now, (a   b)** = a**   b** = 1   1 = 1. By (iv) (a   b)* = (a   b)*** = 1* = 0    

implies that a   b   D(L). 

 

(xv) If a   D(L) then a* = 0 and a   b implies that a*   b*.         

implies that b*   a* = 0 implies that b* = 0. Hence b   D(L). 

(xvi) From (v) we have (a ∨ a*)* = a*   a** = a*   (a*)* = 0.      

Hence a ∨ a*    D(L). 
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(xvii) Let  : L   S(L) defined by  (x) = x**.              

Then,  (x   y) = (x   y)** = x**   y** =  (x)    (y).                   

    is a meet homomorphism .           

 

Theorem 4.2.2. Any complete lattice that satisfies the Join Infinity Distributive Identity (JID) is 

a Pseudo complemented distributive lattice. 

Proof :  

 Let L be a complete lattice. For a    L set a* =   (x|x   L, a   x = 0). Then, by (JID),         

a   x* = a     (x|a   x = 0) =   (a   x|a   x = 0 ) =  (0) = 0 suppose a   x = 0, then x   a* by 

the definition of a*; thus a* is the Pseudo complement of a and so L is Pseudo complemented.    

  

 

Remark  4.2.3.  The theorem shows that for stone algebra, the behavior of the skeleton and 

dense set is decisive. This conclusion leads us to form  the goal of research for stone algebras 

and for all distributive lattice with Pseudo complementation.  

Let L be a distributive lattice with Pseudo complementation. For a congruence relation Θ of  L. 

Let    and    denote the restrictions of Θ to S(L) and D(L) respectively. Obviously,    is 

congruence relation of D(L). In S(L) the operations are x   y, x ∨ y = (x*   y*)* and *, therefore 

   is clearly a congruence relation of S(L). Thus <  ,  >    C(S(L)) x C(D(L)). 

An arbitrary pair <    >   C(S(L)) x C(D(L)) will be called a congruence pair if a   S(L),    

u   D(L), u   a and a   1( ) imply that u = 1(Ψ).               

 Corollary 4.2.4. Let L be an arbitrary lattice, then C(L) is an algebraic lattic. 

Proof :  

  We already know that C(L) is a complete distributive lattice. Suppose Θ   C(L) 

observe that Θ = ( (a, b)|a  b Θ, a, b   L). Sinceevery principal congruence is compact, So 

C(L) is algebraic. 

 

 

 



54 
 

Theorem  4.2.5. Let L be a distributive lattice with Pseudo complementation. Then every 

congruence relation Θ of L determines a congruence pair <  ,  >. 

Conversely every congruence pair <  ,  > uniquely determines a congruence relation Θ on L 

with    =    and    =    by the following rule   x   y (Θ) iff (i) x*   y* (  )  and (ii) x ∨ u   

y ∨ u (  ) for all u    D(L). 

Proof :  

  The first statement is obvious, let Θ be a congruence of  L. x, y  L,  x   y (Θ). By 

theorem, x = x**   (x ∨ x*), y = y**   (y ∨ y* ) and x**=y**(  ), x ∨ x* = y ∨ y* (  ) thus    

and    do indeed determine Θ. 

Let <  ,  > be a congruence pair and let Θ be defined by (i) and (ii) Θ is obviously an 

equivalence relation. To show the substitution property for *, let x   y (Θ). Then by (i), x*   y* 

(  ) and thus x**   y**(  ), which is (i) for x* and y*. Since x*   y*(  ) and S(L) is Boolean. 

There is an a   S(L) such that a=1(  )  and x*   a   y*   a (  ). Thus for any u   D(L). We 

obtained  u ∨ a   1 (  ) by the definition of the congruence pair, and so 

x* ∨ u   (x* ∨ u)   (a ∨ u) = (x*   a) ∨ u   (y*   a) ∨ u                          

= (y* ∨ u)   (a ∨ u)   y* ∨ u (  ), 

Proving (ii) for x* and y*. Therefore Θ is a congruence relation.  

For x, y   S(L), x   y (Θ) iff x*  y* (  ) (since (ii) is trivial), and so x   y(  ) iff x   y (  ), 

that is    =   . For x, y    D(L), (i) is trival and thus x   y (  ), iff for all u   D(L), we have      

x ∨ u   y ∨ u(  ), which is equivalent to x   y (  ), and so    =   .        

 

Lemma  4.2.6.  Let L be an algebra and let Θ be a congruence relatin of L. For any congruence   

of L such that     Θ, define the relation  /Θ on L/Θ by [x] Θ [y] Θ ( /Θ) iff x   y( ). 

Then  /Θ is a congruence of L/Θ. Conversely, every convergence   = /Θ for some congruence 

    Θ. 

Proof :  

  We have to prove that  /Θ is well defined, (ii) is an equivalence relation, and (iii) 

has the substitution property. To represent   define   by x    y( ) iff [x] Θ   [y]( ) 

Again, we have to verify that   is a congruence  /Θ =   follows from the definition of  . 
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Definition 4.2.7. A class K of algebras is said to have the congruence extension property if, for 

A,B   K with A a subalgebra of B and Θ a congruence of A, there exists a congruence   on B 

such that    = Θ, i.e   restricted to A is Θ. 

Remark  4.2.8.  Using this terminology, the class of distributive lattices D has the Congruence 

Extension Property.                          

 

Theorem 4.2.9.  (G. Grätzer and H. Lakser [a]). The class of all distributive lattices with Pseudo 

complementation enjoys the Congruence Extension Property. 

Proof :  

  Let L and K be distributive lattices with Pseudo complementation, let L be a 

subalgebra of K, and let Θ be a congruence of L given by the congruence pair <  ,  >. It is 

clear from 4.2.7 that we need only show the existence of a congruence pair <  ,  > of K such 

that          =    and           =   . 

Let    = [1] (  ) and put    = [    ) the dual ideal generated by    in S(K). Then    can be 

defined as the congruence of S(K) associated with   , that is, [1]    =   . Set I = {i/i    D(K)},    

i   u for some u       }. Then I is a dual idesl of D(K); in fact, I = [    )   D(K). By the 

definition of congruence pair, we have to find a congruence     on D(K) such that          =    

and [I]    , note that   has the following property: 

If u   , v    D(L) and v   u, then there exists a      D(L),      u such that       [1]   . 

Indeed, u    means that u   x for some x      , and thus    = v ∨ x will do the trick. 

Summarizing, to complete the proof it suffices to prove the following statement:  

Let A and B be distributive lattices with 1, A a {1}-sub-lattice of B, Θ a congruence of A, and I a 

dual of B satisfying the condition:  

If  u  , v   A, and v   u, then      u for some      [i]Θ. Then there exists a congruence 

relation   on B satisfying    = Θ and [   ]      . 

To prove this statement, consider Θ [   ] defined by the dual of a known corollary. If a, b   A 

and a   b (Θ [   ]), then a   b = (a ∨ b)   i for some i   . Thus by our assumption on  , there is 

an          [i] Θ such that    = I. Therefore  a   b = (a ∨ b)   i    (a ∨ b)        (a ∨ b)     = a ∨ 

b (Θ), and so a   b(Θ). Having shown that (        Θ, we can from A/     , B/Θ   , and       

/Θ. There exists a congruence   on B/Θ    such that   is restricted to A/      is Θ   /Θ. By the 
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previous lemma, there is a unique congruence   or B such that  /Θ    =   and      Θ   . 

Obviously,   satisfies the requirements.              

Theorem  4.2.10. For a Pseudo complemented distributive lattice L, define the relation R by:               

x   y(R) iff x* = y*. Then R is a congruence on L and L | R   S(L). 

Proof :  

 Given that x   y(R) <=> x* = y*, then x* = x* implies that x   x(R) implies that R is 

reflective. Also if x   y(R), then x* = y* implies y* = x* implies that y = x(R) implies that R is 

symmetric. Let x   y(R) and y   z(R) then x* = y* and y* = z* implies that y   x(R) implies that 

R is symmetric. Let x   y(R) and y   z(R) then x* = y* and y* = z* implies that x* =z* implies 

that x   z(R) implies that R is transitive. Implies that R is equivalence relation. 

Now, suppose x   y(R) and t    L then x* = y* implies that x** = y**.                                     

Now (x   t)** = x**   t** = y**   t** = (y   t)**                        

implies that (x   t)** = (y   t)**                             

implies that (x   t)* = (y   t)*                 

implies that x   t = y   t (R)                                        

and (x ∨ t)* = x*   t* = y*   t* = (y ∨ t)*                                     

implies that x ∨ t = y ∨ t (R). 

So, R is congruence relation on L. 

Define  : L | R   S(L) by  ((a]R) = a**                                  

Then  ([a]   [b]) =  ([a   b])             

= (a   b)** = a**   b**              

=  ([a])    ([b])        

and  ([a] ∨ [b]) =  ([a ∨ b])          

 = (a ∨ b)** = (a*   b*)*          

 = (a***   b***)* = a** ∨ b**        

 =  ([a]) ∨  ([b])                      

   is a homomorphism . 

To show that   is one-one. Let a** = b** implies that a* = b* implies that  a   b(R) implies 

that [a] = [b]. 

    is one – one. let a   S(L) then a = a** implies that a =  ([a]) implies that   is onto.    

Hence  : L | R   S(L) is an isomorphism.  Therefore L | R   S(L).       
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Recommendations and Application  

 
 Conclusion and Future Recommendations: From the discussions of all previous 

chapters it can be concluded and recommended that the concept of Pseudo complemented with 

distributive lattice can be introduce in   (L);   (L) which are normal, relatively normal etc. 

 

 Application: Lattice theory has a lot of applications in different fields. Boolean lattice 

has applications in the field of hardware and software development of computer science. Also it 

has wide applications in networking. It can be applied to develop theories in other branches of 

algebra, such as group theory, Ring and Modules etc. 

 

 One of the major applications of Boolean lattices is in the switching systems, which are 

network of switches that involve two state devices 0 and 1 for off and on respectively.  
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