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Abstract

A modified approximate analytic solution of the dtetic nonlinear oscillatotx +x* =0"
has been obtained based on an Extended lIteratitmochdn this study the Fourier series
and utilized indispensable truncated terms haven hesed in each step of Extended
Iterations. The approximate frequencies obtainethlsytechnique show a good agreement
with the exact frequency. The percentage of eretwben exact frequency and our third
approximate frequency is as low as 0.001%.Theraoisalgebraic complexity in our
calculation that is why this technique is very eaBye results have been compared with

the exact results and other existing results tteata@nvergent as well as consistent.
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CHAPTER |

I ntroduction

Nonlinear dynamic problems have fascinated theiegpphathematicians, physicists and
engineers from a long time. Over the past few desagplications in solid and structural
mechanics as well as fluid mechanics have appeaard, Now-a-days there is a
widespread interest in nonlinear oscillators, gjearattractors, chaotic and dynamical

systems theories in the engineering and appliesheeicommunities.

Physical and mechanical oscillatory systems ar@nofgoverned by the nonlinear
differential equations. Unfortunately, with the eption of a number of particular cases,
the exact analytical solutions of such equatiomsioabe determined. In many cases, it is
possible to replace the nonlinear differential équeby a corresponding linear differential
equation that approximates the original nonlineguagion closely to give useful results.
Often such linearization is not feasible or possibhd for this situation the original

differential equation itself must be directly dealth.

However, in many cases it is possible to computerate approximate analytical solutions
of the equations. There are a large number of appaie methods commonly used for
solving nonlinear oscillatory systems such as Peation, Harmonic Balance (HB),

Homotopy Perturbation, Homotopy Analysis, IterafioBxtended Iteration etc. The
Perturbation method is mainly used for the smaiilinear problems. On the other hand,
Harmonic Balance and Iteration methods are mostbdufor the strong and as well as

small nonlinear problems.

One important class of nonlinear oscillators ar@seovative oscillators in which the
restoring force is not dependent on time, the tetedrgy is constant and any oscillation is
stationary. In spite of the great elegance and Isiihpof such equations, the solutions of
specific problems are significantly hard to derit#nding innovative method to analyze
and solve these equations has become an interestbjgct in the field of ordinary and
partial differential equations and dynamical systeifhe nonlinear equations in most of
the real-life problems are not always possible aochetimes not even advantageous to
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express exact solutions of nonlinear differentgaions explicitly in terms of elementary
functions or independent spatial and/or temporakbées; however, it is possible to find

approximate solutions.

Perturbation means grossly small change so theauéshadopted when the nonlinearity is
small. Thus in case of strong nonlinearities, Rbetion method is not generally adopted.
It is used to construct uniformly valid periodic gon to second-order nonlinear
differential equations. A critical feature of thechnique is a middle step that breaks the
problem into "solvable" and "Perturbation” partgertBrbation theory is applicable if the
problem at hand cannot be solved exactly, but eafobnulated by adding a "small" term

to the mathematical description of the exactly ablg problem.

Harmonic Balance method is a procedure of detengianalytical approximations to the
periodic solutions of differential equations by ngsi a truncated Fourier series
representation. An important advantage of the ntetiat can be applied to nonlinear
oscillatory problems for which the nonlinear terare not “small” i.e., no Perturbation
parameter need exist. A disadvantage of the metthaidis difficult prior to predict for a

given nonlinear differential equation whether atfiorder Harmonic Balance calculation

will provide a sufficiently accurate approximatitmperiodic solution.

Iterative technique is particular a technique falcualating approximate periodic solutions
and corresponding frequencies of truly nonlineanillagors for small and as well as large
amplitude of oscillation.

The main intention of this thesis is to investigtite approximate analytic solutions using
the modified Extended Iterative method to decompbeesecular term, so that the solution
can be obtained by Iterative procedure. This mehat we can use Extended Iterative
method to investigate many nonlinear problems. fiaén thrust of this technique is that

the obtained solution rapidly converges to the egalutions.

The chapter outline of this thesis is as follows Chapter |1, the review of literature is
presented. IIlChapter 111, the modified Extended Iterative method has beeerdwed for
obtaining approximate analytical solutions of quidr nonlinear oscillator. Chapter
IV, the results of the adopted method have been shBimally, In Chapter V, some

conclusions and recommendations are included.



CHAPTERII

Literature Review

The review of literature is presented in this ckaptHere some general techniques
described that can be used to illustrate the engstef periodic solutions for a given truly
nonlinear equation. These methods also apply t@walse of standard equation. Moreover,
this chapter shows some existing methods and phelolem solving procedure, which help

us in comparative analysis.

2.1 Introduction

The study of nonlinear problems is one of mosksig parts in mathematics, physics and
other science and engineering. So mathematiciahgsiqists, engineers and others
scientist are of interest to nonlinear problemssy&tem of nonlinear equations is a set of
simultaneous equations in which the unknowns appsavariables of a polynomial of
degree higher than one or in the argument of atifumavhich is not a polynomial of
degree one. On the other side, in a system of meeli equations, the equations to be
solved cannot be written as a linear combinatiothefunknown variables or functions that
appear in it or them. It does not matter when thilinear known functions appear in the
equations. Particularly, a differential equatiomegarded as linear if it gets linear in terms
of the unknown function as well as its derivativegen if nonlinear in terms of the other

variables appearing in it.

2.2 Description of the Different M ethods

Nonlinear equations are difficult to explore andniiear systems are commonly
approximated by linear equations. This works wellta some accuracy and some range
for the input values, but some interesting phenaarch as chaos and singularities are

hidden by linearization. It follows that some adpeaf the behavior of a nonlinear system
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appear commonly to be chaotic, unpredictable ontintuitive. Although such chaotic
behavior may resemble random behavior, it is albskylunot random. In this position there
are different analytical approaches to find apprate solutions to nonlinear problems,
such as: Perturbation method (Nayfeh A H, 1973 11%8&hmanet al., 2009; Alamet
al.,2011; Haqueet al., 2011; Rahmaret al., 2011), Homotophy Perturbation method
(Belendezet al., 2007(a); Beléndezt al., 2008(b); Belendezt al., 2009(a),(b)),
Harmonic Balance method (Mickens R E, 1961, 1988812001, 2007; Hu H, 2006; Hu
and Tang , 2006(a); Alamt al., 2007; Beléndez and Pascual, 2007; Beleraieal .,
2007(b); Belendeet al., 2008(a); Belendeet al., 2009(c)), Modified Linstedt-Poincare
method (He J H, 2001), Krylov-Bogoliubov-Mitropols(KBM) method (Krylov and
Bogoliubov, 1947; Bogoliuboet al., 1961), Energy Balance method (Ozis and Yildrim,
2007), Cubication method (Belendei al., 2009(d)), Iterative method (Mickens R E,
1987, 2005, 2010; Lim and Wu, 2002; Hu H, 2006k8) du and Tang, 2006(b); Chen and
Liu, 2008; Haqueet al., 2013; Haque B M |, 2013; Haque B M |, 2014; Heet al.,
2014; Haque and Hossain, 2016; Haqual., 2016(a); Haquet al., 2016(b); Haquet
al., 2016(c); Haquet al., 2017) etc.

Almost all perturbation methods are based on aonaggon that a small parameter must
exist in the equation. This is so called small peter assumption greatly restrict
application of perturbation techniques. The perdtidn method is the most widely utilized
method in which the nonlinear term is small. Thehud of Lindstedt-Poincare (He J H,
2001), Krylov-Bogoliubov-Mtropolskii (KBM) methodKfylov and Bogoliubov, 1947;
Bogoliubov et al., 1961),Multiple Scales method (Lakrad and Belh2§02), and
Homotopy Perturbation method (Belendez al., 2007(a); Beléndezt al., 2008(b);
Belendezet al., 2009; Belendezt al., 2009(a),(b)) are most momentous among all

Perturbation methods.

The method of Lindstedt-Poincare (He J H, 2008nsntroductory method to solved the

following second order nonlinear differential eqoas

X+ w?’x+e f(%x)=0, (2.2)

where «, is the unperturbed frequency ands a small parameter.



The fundamental idea in Lindstedt’'s technique isedaon the observation that the
nonlinearities alter the frequency of the systeomifithe linear one, to &&). To account
for this change in frequency, he introduces a naviabler = .t and expand. and x

in power ofs as

{X:XO(Z')+€X1(T)+52X2(T)+--- (2.2)

W= +EwW+EW,+...,
wherea, i =0,1,2,.., are unknown constants to be determined.

Substituting equation (2.2) into equation (2.1) agdating the coefficients of the various
powers ot , the following equations are obtained
%+ X% =0

%+ %, = —2w%~ f (X5, X,)

X, + X, = =200, X, ~ f (Xo’ Xo)_ (wlz + 25‘)2)5(0

2.3)
= £,(%, X)X+ i (Xg, X)X+ X))

X0 %0 = 00 (Xor Xpreee X1 X Xpaee X )
where over dot represents the differentiation wétspect tor .
Pointedly equation (2.3) is a linear system arnsl $blved by the elementary techniques.

This method is used only for finding the periodadusion, but the method cannot discuss
transient case.

Therewithal, Krylov and Bogoliubov (1947) introdace technique to discuss transients of
the same equation. This method starts with thetisolwf the linear equation, assuming
that, in the nonlinear case, the amplitude and @lwashe solution of the linear equation
are time dependent function rather than constaswéyféh A H, 1973). The solution of

corresponding unperturbed equation (i.e.,&fer0) of equation (2.1) can be written as
x=acos(ut +6) , (2.4)

where a and ¢ are two arbitrary constants to be determined ftbe initial conditions

X(O) =X, and X(O) =Y, which are respectively called amplitude and phase.



Now to determine an approximate solution of eque(ihl) for s small but different from
zero, Krylov and Bogoliubov (1947) assumed that gbkition is still given by equation

(2.4) with varyinga and ¢ subjected to the conditions

%:—aa)osinw,qa:a{)HH (2.5)

Differentiating equation (2.4) with respect to timand using equation (2.5), we obtain

{%cow—%a siip= 0 (2.6)
dt dt '

Again differentiating equation (2.5) with respextiime,t, we obtain

d?x da . o[
ok —aaf COSP~ - SiMp—aw,~- cop (2.7)

Substituting equation (2.7) into equation (2.1) asthg equation (2.4) and equation (2.5),

we obtain

%%sinw%aﬁ% cogp=-¢ f (a cop ray sin) -9

Solving equation (2.6) and equation (2.%? andc(lj—f yields

da_ ¢ . i
a_—asmm (acosrp 7~ Al SW)
(2.9)
99 __ £ cospt (acop ~aw, sip)
dt aw, I

Here equation (2.4) together with equation (2.9resents the first approximate solution

of equation (2.1).

Further, the technique was modified and justifieg Bogoliubov and Mitropolskii
(Bogoliubovet al., 1961). They assumed a solution of the nonlindéerdntial equation
(2.1) of the form

x(t,€) =acosy +&x (ay)+IHe"x, (ay)+0 (™) (2.10)

where X, k=1,2Mn is a periodic function ofy with period 277,a and ¢ very with

time, t according to



(2.11)

where the functio, A, and B, are chosen such that equation (2.10) and equation

(2.11) satisfy the differential equation (2.1). éathis solution was used by Mitropolskii Y
(1964) to investigate similar system (i.e., equat{@.1)) in which the coefficient very
slowly with time. Popov (Popov | P, 1956) extendbi method to nonlinear strongly
damped oscillatory systems. By Popov’'s (Popov 01856) technique, Murtgt al.,
(1969) extended the method to over damped nonlisysiem. Murty | S N (1971) further
presented a unified KBM method to obtain under amer-damped solution of a second-
order nonlinear differential equation. Shamsul &attar (Shamsul and Sattar, 1997)
extended Murty I S N (1997) unified KBM method tovéstigate a third-order nonlinear
differential equation.

Harmonic Balance method is the most useful teclenfqufinding the periodic solutions of
nonlinear system. Which is patented by Mickens {}@d farther work has been done by
Hu H (2006), Beléndeet al., (2009)(c); Limet al., (2005), Wuet al.(2006) and so on for
investigating the strong nonlinear problems. If exigdic solution does not exist of an
oscillator, it may be sought in the form of Fouseries, whose coefficients are determined
by requiring the series to satisfy the equationnadtion. However, in order to avoid
investigating an infinite system of algebraic equa, it is better to approximate the
solution by a suitable finite sum of trigonometfinction. This is the main task of
Harmonic Balance method. Thus approximate solutminan oscillator are obtained by

Harmonic Balance method using a suitable truncbtedier series.

The method is capable to determining analytic axprate solution to the nonlinear
oscillator valid even for the case where the n@amterms are not small i.e., no particular
parameter need exist. The formulation of the metlbbdHarmonic Balance focuses
primarily by Mickens (1984). However, it should inglicated that various generalizations
of the method of Harmonic Balance has been madanbintrinsic method of harmonic
analysis. Lately, combining the method of averagang Harmonic Balance, Lim & Lai
(2006) presented analytic technique to obtain &pgiroximate Perturbation solution; their



solution gives desired results for some non-corame systems when the damping force

is very small..

Mickens (2010) has given the general proceduredtrulating solutions by means of the

method of direct Harmonic Balance as follows:

He considered the equation for all Truly Nonlin€BNXL) oscillators as

F(xx%X)=0, (2.12)
where F(X, %, X) is of odd-parity, i.e.,

F(—=%—%—X)=—F (X,X,X). (2.13)

A major consequence of this property is that theesponding Fourier expansions of the

periodic solutions only contain odd harmonics,,i. e
x(t)=Y{ A cod ( x-Jat]+B, sif( - Jot]} (2.14)
k=1

The N-th order Harmonic Balance approximationX@) is the expression

xN(t):kZ’ill{,_AEcos[( x- 10, t]+B¢ sif( k- )Q, t]} (2.15)

where AY, B", Q,, are approximations té), B, Qfor k=1, 2,3,......N

For the case of a conservative oscillator, equg@ot?) generally takes the form

X+ f(xA)=0, (2.16)
where A denotes the various parameters appearing( A) and f(—xA)=—f(x,A4).

The following initial conditions are selected

x(0)=A, x(0)=0, (2.17)
and this has the consequence that only the cogimastare needed in the Fourier

expansions, and therefore we have
N —_— p—

X, (1) =Y A cog (& - 0, t] (2.18)
k=1

Observe thatx,(t)has (N+1) unknowns, theN coefficients, and,, the angular

frequency. These quantities may be calculated byiog out the following ways:

Substitute equation (2.18) into equation (2.16)] axpand the resulting form into an

expression that has the following structure



N
> H,cod ( X~ 3Q,t]+HOH O 0 HOH= Higher Order Harmonic (2.19)
k=1

where theyH, are functions of the coefficients, the angulagérency, and the parameters,
e,

H =H (A", A',.....A! .Q, 1) (2.20)
Here in equation (2.19), we only retain as manymwanics in our expansion as initially
occur in the assumed approximation to the periediation. Set the functionbl, to zero,
ie.,

H. =0, k=1,2,...... N (2.21)
The action is justified since the cosine functiams linearly independent, as a result any

linear sum of them that is equal to zero must Hheeproperty that the coefficient are all

Zero.

Solve theN equations in equation. (2.21), foA)', AY,......Al JandQ,, in terms of AN,

using the initial conditions, equation (2.17), vavéa for A" the relation

%(O)=A=A"+> ATA",A). (2.22)

An important point is that equation (2.21) will ramany distinct solutions and the one
selected for a particular oscillator equation igttbne for which we have known a priori
restrictions on the behavior of the approximatibmshe coefficients. However, as the
worked examples in the next section demonstratgemeral, no essential difficulties arise.
For the case of non-conservative oscillators, whireappears to an odd power the
calculation of approximations to periodic solutidoiows a procedure modified for the
case of conservative oscillators presented aboagyMf these equations take the form
X+ f(x, A)=9(x X, A,)X, (2.23)
where
{f(—x, A)=-1(x, A)
. . (2.24)
9(=% =%, 4)=-g(x, X, 4,),

and (A,, A,)denote the parameters appearind {x, A,) andg(X, X, A,).

For this type of differential equation, a limit-¢gcmay exist and the initial conditions
cannot, in general, be a priori specified.



Harmonic balancing, for systems where limit-cyclemy exist, uses the following
procedures:

The N —th order approximation to the periodic solution to be
N _ — _

X, () = A cogQ, t)+Z{ A cof( R- YO t]+Be sif( k- )R, t]} (2.25)
k=2

where the2N unknownsAY, AY,......A) :Q,,BY,......B} and Q, are to be determined.

Substitute Eq. (2.25) into Eq. (2.23) and write thsult as

>{ Hecod ( &~ 0, t]+L, sif( 2~ ), ]} +HOH D ¢ (2.26)

k=1
where the{H} and {L} , k=1 toN, are functions of theN unknowns which are

mentioned above.

Next equate the2N functions{H} andL} to zero and solve them for tG2N—1)

amplitudes and the angular frequency. If a valillitsan exists, then it corresponds to a

limit-cycle. In general, the amplitudes and angfitaquency will be expressed in terms of

the parameterd, and/, .
Mickens (2010) has presented the following example

Let us consider the nonlinear oscillator given by

x+x2 =0, x(0)=A, x(0)=C (2.27)
This approximation takes the form

x,(t) = Acos(Q,t) (2.28)

Observe that this expression automatically sasisflee initial conditions. Substituting
equation (2.28) into equation (2.27) gi»(&z Qlt)

(- AQ,% cosd) + (Acoss)’ DO,

- (AQ,?)coso + A° ng cosd + GJ 00336?} 00

10



A{— Q,° +(§jA1cos@+ HOH 00

Setting the coefficient ofcosfd to zero gives the first approximation to the aagul

frequency

3 1/2
Q,(A)= [Zj A (2.29)

3 1/2

and xl(t) = Aco{(zj At} (2.30)
The solution for the second approximation takesdha (6 = Q,t)
x,(t) = A cos@ + A, cos38 (2.31)
with %, (t) = -Q2(A cosd+9A, cos3s) (2.32)

Substituting equation (2.31) and equation (2.38) eguation (2.27), we obtain

H,(A. A,.Q,)cos8+H, (A, A, Q,)cos30 + HOH 00,

— 2 _ § 2 _ § - § 2

where Hl—A{Q2 [4JA1 [4JA1A2 (ZJAZ} (2.33)
— 2 1 3 § 2 § 3

and H, = 9A292+(4)A1 +(ZJA1A2+(4JA2 (2.34)

Setting H, to zero, and defining as
ZEﬁ (2.35)

We obtain,

3 1/2
0.=(3) "tz o) = feze2)

1/2

(2.36)
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where Q, is that of equation (2.29). Inspection of equat{ar86) shows that the second

approximation for the angular frequency is a madiion of the first approximation result.

If this value forQ, is substituted into equation (2.34) and this esgian is set to zero, and

if the definition of z is used, then the following cubic equation mussaisfied byz
51z° +272° +21z-1=0

There are three roots, but the one of interestldhoei real and have a small magnitude, i.

e.,
<<t
Therootis  z =0.044818...,

And implies that the amplitudd,, of the higher harmonic, i.e., tre®s36, is less than 5%

of the amplitude of the fundamental modess .
Therefore, the second harmonic balance approxim&pioequation (2.27) is
X, (t) = A[cos8 + z cos36].

For the initial conditionx, (0) = A, we obtain
A=A(+z) or A -_A - (0.9579)A
1+z

Using the value ofA, and z into equation (3.35), we obtain

Q,(A)= (éjm{(]ﬁ Z+ 2212)1/2} = (0.8489A

4 1+z

Hence, the second order harmonic balance approxwimdor the periodic solution of

equation (2.27) is

% (t)= [LJ [cod0,1)+ 2, cod301]]

1+z

where z, and Q, are given above equation.

12



Recently some authors used iterative techniquekétis R E, 1987, 2005, 2010; Lim and
Wu, 2002; Hu H, 2006(a),(b); Hu and Tang, 2006)en and Liu, 2008; Haquet al.,
2013; Haque BM I, 2013; Haque BM |, 2014; Haamel., 2014; Haque and Hossain,
2016; Haquest al., 2016(a); Haquet al., 2016(b); Haquet al., 2016(c); Haquet al.,
2017) for calculating approximations to the perodolutions and corresponding
frequencies of TNL oscillator differential equatsorior small and as well as large
amplitude of oscillation. The method was originabgdMickens in 1987. In the paper, he
provided a general basis for iteration methodsheg are currently used in the calculation
of approximations to the periodic solutions of was nonlinear oscillatory differential

eqguation successfully.

Mickens (2010) has given the general proceduredtrulating solutions by means of the

method of direct Iterative method as follows:
Step-1. Assume that the differential equation of interest i

F(% %) =0, x(0)= A, x(0)= 0, (2.37)
and further assume that it can be rewritten tddh®

X+ f(%x)=0, 38)
Step-2. Next, addQ’x to both sides to obtain

X+ Q% = Q% — f(x,X) =G(x,X), (2.39)
where the constar®® is currently unknown.
Step-3. Now, formulate the Iterative scheme in the follogvimay

Koy ¥ Q2% ., = G(X, %X ); k=0,1,2,.. (2.40)
with

%, (t) = Acos@t ), (2.41)

such that the ,, satisfy the initial conditions

%1 (0)=A, %,,(0)=0C. (2.42)

Step-4. At each stage of the Iterativk, is determined by the requirement that secular

13



terms should not occur in the full solutionxf, (t) .

Step-5. This procedure gives a sequence of solutiog), x(t), ... . Since all solutions

are obtained from investigating linear equatiohsytare , in principle, easy to calculate.

The only difficulty might be the algebraic intensiequired to complete the calculations.

At this point, the following observations shouldrsed:

i. The solution forx,,, (t) depends on having the solutions fdess than(K +1)
ii. The linear differential equation fog,,(t) allows the determination &, by

the requirement that secular terms be absent. fidiereéhe angular frequency,

Q appearing on the right-hand side of equation (2i38he functionx, (t), is

K.
iii. In general, if equation (2.38) is of odd parite, ,.
f(=%,—-x)=-1(X,x), (2.43)

then thex (t) will only contain odd multiples of the angulardreency.

Here we present an Example performed by Mickenk thi¢ Direct Iterative (Lakrad and
Belhaqg, 2002), method:

Let us consider the oscillator

%+x3=0, x(0)= A,x(0)= 0 (2.44)
and initial condition

%, (t) = AcosQt ) (2.45)
A possible iteration scheme for this equation is

K + QX = QX =%, (2.46)

For k=0, we have

14



% +Q2x = Q2x,— x5 =Q% Acosd )- (A co¥ §
3 2.47
= {QS -Gj Az} Acos@—(%) cos@ , (2.47)

where @=Q_t. To derive this result use was made of the follgnrigonometric relation.

Secular terms will not appear in the solution fot) if the coefficient of thecosd term is

Zero, i.e.,

o% —[E) A*=0, (2.48)

Q,(A) = [—j A
(2.49)

Under the no secular term requirement, equatictvj2educes to

3

% +Q2x, = —[AIJ cos¥
(2.50)

The particular solution for this equation takes ftren
xP(t) = Dcos(P)
Substitution of this into equation (2.50) gives

3
(903 +Q3)D =—[A7j

and

p=_A [~ (i)_ﬁ
322 (32 A*) 24

15



Therefore, the full solution to equation (2.50) is
— (M 4 y(P) = A
X () =x" +x; —Ccosﬁ+(§rj cosd
where Ccosd is the solution to the homogeneous equation
% +Qox =0. (2.51)

Since x,(0) = A,then

A:C+(Aj
24

or

C= (Z_SJ A’
24

and the full solution to equation (2.50) is

X (t) = AKE—EJ cosd + (?14,) cos 3}

(2.52)

If we stop the calculation at this point, then finst-approximation to the periodic solution

is

X (1) = A[@—j} cos{\/:jrAtj+(?l4j co£ ﬁmﬂ

However, to extend our calculation to the next lewe(t) takes the form given by

equation (2.44), buf is now equal tdt,i.e.,
23 1
x(t) = AKZJ cos@Qt )J{Z‘J cos(8t %

16



o] (2| ) ot

(2.54)

Note, we denote the phase of the trigonometricesgions by, i.e., =Q.t.This short-

hand notation will be used for the remainder ofchapter.

The next approximation (t) , requires the solution to
% +QI%, = QIX = X;. 2.%5)

We now present the full details on how to evalubteright-hand side of equation (2.55).
These steps demonstrate what must be done fatyfesof calculation. In the calculations
for other TNL oscillators, we will generally omitany of the explicit details contained in

this section.

To begin, consider the following result

(a,cosf+a, cos8 )= § co8 ’w B ces’p{ co83) a3j( ©sa) o@s$S3 n, s

Using (cos6, )(co9, )c(%] [cofh, +6, ¥ co®(-0,

and the previous expression f@osg, }', we find
(a,cosf+a, cos8I)=1f, co8+f, co#f, co8sf, cas7f, cB (2.56)

where

17



t=( 3 +aie, +2ad
—_ 1 3 2 3
fz _(Z [a1 +6a1a2+3a2]7
=[S Jiata, a0
3
f4:(z a1a§’
_ %
f =%
° 4
(2.57)

For our problem, we have

23
=[ 22| a=aA,
> (ZAJ a

1
=|— |A=[A
=[5, A=
Using these results, equation (2.55) becomes

%, +Q2x, =(Q%,- f)cosd+ Q% ,— f,)cosB-f, cosB- f , cogF . ca8.

Secular terms may be eliminated in the solution Xgt) if the coefficient of thecosd

term is zero, i. e.,

Qfai_ flzo’ (258)
and
2 _ f]_ _(BJ 3 2 2 3
Q (A =—==|=|[a°+a°B+2aB°]A° aA
a 4
{Gj Aﬂ[az raB+28%= QX ANa, B), (2.59)

18



where
h(a,B)=a* +af+23° (2)60

Examination of equation (2.59) and (2.60) shows ti{a, 3) provides a correction to the

square of the first-order angular frequer@§(A) . Sincea = i—jandﬂ = ?14 then

Q,(A) = \EA: (0.8660251 (2.61)

Q,(A) =(0.849326A (2.62)
Let us now calculate, (t) . This function is a solution to

%, +Q2x,=(Q%,- f))cosP - f,cosB-f, cos-f. cosk (2.63)
The particular solution is

xP(t) =L,cosF+L, cosB+L, cosd+L, co# (2.64)

where (L, L,L,) are constants that can be found by substitutitfyinto equation

(2.63) and equating similar terms on both the kefid right sides. Performing this

procedure gives

- Qfa"z - f,
R Ry

__(ﬁj 3p@*+ap+2B°)- (@’ +6a"B+3PB°)
- |24 a’+ap+ 23 ’

fs _(ﬁ) (@*B+ap)
2407\ 24)| a?+ap+ 67|

__f _(ﬁj ap’
L3_480f_ 48)| a*+ap+ B% |

L, =
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L= fs =( Aj B
* 8002 | 240)| a*+af+ B |

In these expressions, we have repla@dby the results in equation (2.59) and (2.60)
The complete solution fox, (t) is

% (t) = X" (t) + x}” =Ccosf+xY.

For t=0, we have

A=C+(L+L,+L;+L).

If we define

L = AL;i=1, 2, 3, 4;

Then

C=1-(Li+La+Ls+ LA,

and

X,(t) =[1-(Li+L2+L 3+L 3] Acos @+ AL oS30+ L.cosP+ LscosB+ L cos® ,

where8=Q, (A)t.

Using the numerical values far and 3, the L’s can be calculated; we find their values to

be

L: =0.04287630% (4.29).10),
L, =0.001729754 (1.73).19,
Ls =0.000036038 (3.60).10

L. =0.000000313 (3.13).10

20



Therefore, we have fox,(t) the expression

X,(t) = (0.955)cog+ (4.29).18 co®3 (1.73):310 c653.60).10 cos@+ (3.13).10 cobs

Further a generalization of this work was then gih®y Lim and Wu (2002). Their

procedure is as follows:

They assumed the equation in the form

X+ f(X)=0,x(0)=Ax(0)=(, (2.65)
where A is given positive constant anti(X) satisfies the condition

f(—x)=—F(X). (2.66)
Adding & X on both sides of equation (2.65), we obtain

X+ w'x =aw'x-f(X)=g(xX), (2.67)
where « is priory unknown frequency of the periodic soluti¥(t) being sought.

They proposed the Iterative scheme of equatiorv}2.6

Kisg + wzxku =g(X-y) + 9(X_)(X —%-p); k=0,1,2,.., 2.68)

0 . . .
where g, :6_2 and the inputs of starting functions are

X, (t) = x,(t) = Acosgt ), (2.69)
with the initial conditions
X (0)=A, x(0)=0,k=1,2,3,.. (2.70)

Then substituting equation (2.69) into equatio®&2.and expanding the right hand side of
equation (2.68) into the Fourier series yields

A%+ I XA XD —% ()] =& Agrosat+) a, (Adcos[(h-Net],  (2.71)

n=2
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where the coefficients,,,, (A &) are known functions oA and«, and the integex

depends upon the functid®(X) of the right hand side of equation (2.67) , Ornwi
equation (2.71), the solution of equation is tatehe

Xy (1) = Bcoscut—nZ:;‘[(Z?”_‘igf’_aﬁ = cos[(Ad— Lt | 2.12)

whereB is, tentatively, an arbitrary constant.
In equation (2.72), the particular solution is amosuch that it contains no secular terms

(Mickens R E, 2010) which requires that the coeffic 8, (AW) of right-side termcos at
in equation (2.71) satisfy

a,(Aw)=0. (2.73)

The equation (2.73) allows the determination of fileguency as a functioxn. Next, the

unknown constantB will be computed by imposing the initial conditioms equation

(2.70). Finally, putting these steps together gihessolutiorx, ., (t) .

In 2005, this process was extended by Mickens (L@®iich is used in the calculation of
approximations to the periodic solutions of nordinescillatory differential equations. A
generalization of this work was then given by LimdaVNu (2002) and this was followed
by an additional extension in Mickens. Actuallyertitive method is a technique for
calculating approximations to the periodic solusiaf TNL oscillator which is patented by
R.E. Mickens in (1987).

Mickens (2010) has given the general proceduredtrulating solutions by means of the

method of Extended lterative method as follows:

He considers the equation as

X+ f(%xx) =0, x(0)=A, x(0) =0, (2.74)
where over dots denote differentiation with respedime,t.

We choose the natural frequengy of this system. Then addin@zx on both sides of

equation (2.74), we obtain
X+Q°x = Q%x-f (%,%X) =G(X,%,X). (2.75)
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Now, formulate the lterative scheme as

Xk+1 + Qixkﬂ :G(Xk—l’ Xk—l’ Xk—l) + Gx (Xk—l’ Xk— 1’Xk— 1)(xk - Xk— ]) (276)
+ Gx(xk—v Xe1s Xk—l)(xk - Xk—l) + Gx (Xk—l’ X 1 X 1)(Xk — X 1) )
where
6, =% =% =% (2.77)
oX OX oX

And X, satisfies the conditions

Xk+1 (O) = A* Xk+1 (O) = O (2)78
The starting function are taken to be (Mickens RE)5)

X, (t) = %, (t) = AcosQt). (2.79)

The right hand side of equation (2.76) is essdwntidle first term in a Taylor series
expansion of the functiof5(x,,%,,%,) at the point(X,_;, X, %) (Taylor and Mann,

(1983)).To illustrate this point, note that
Xe = X T (X = %), .80)
and for some functio®(X) , we have

G(%) =G[ X + (X =X D] =G %) +G (X — %) +..... (2.81)

An alternative, but very insightful, modificatiorf above scheme was proposed by Hu H
(2006)(a),(b). He used the following equation iaga of equation (2.80)

X, = X + (X, = X,). (2.82)
Then, equation (2.81) is changed to

G(%) =G (% = X)] =QAX) +G (% —%) +..., (2.83)
and the corresponding modification to equationgRis

Xeop T Qi Xer1 =G (Xgs Xgs X0)i+G, (X X0 X)X, =X o)

(2.84)
+G>‘<(X07 X5 XO)(Xk - Xo)"'Gx (Xo’ X0 XO)(Xk - Xo)-
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This scheme is computationally easier to work withrk = 2, than the one given in

equation (2.75). The essential idea is thatxj{t)is a good approximation, then the
expansion should take placexat X, . Also, as pointed out by Hu H, 2006(b), thg(t) in
(X —X,) is not the same for ald. In particular, x,(t) in (X, —X,) is the function

AcosQt), while the x, (t) in (x, —X,) is the functionACoS{,t).

Here we present an Example performed by Mickenk Wie Extended Iterative method
(Mickens R E, 2010):

Let us consider the nonlinear oscillator given by
x+x*'=0. (2.85)

The TNL oscillator equation (2.85) has several fdsdterative schemes. We use the one

derived from the relation

%+Q°x = Q% - X(¥X)?* =G(x, %,Q?), (2.86)
that is
R+ Xy =[ Q0% = Xo(%) "] +[ Q7 = (%) *] (% =X = 2X K K, =X ). (2.87)

To obtain this relation the following formula wased for the Extended Iterative scheme
Xear T Qixk+1 = G(Xo- XO'QE) + Gx (Xo-xonf) (Xk - Xo)+ Gx (Xo-X oni )(Xk - X o)- (288)

For k = 1, we have

%, + Q7x, = 2%,(Xo)* +[ Q1= (X)X~ 2X K & 4 (2.89)
with
X, (t) = Acosg,
x,(t) = A[a cosf+ B cos 8] (2.90)
23 1
0=Qt, a===, f=—.
=0 d 24

In the from this equation (2.85)
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Then the particular solutiox!” () , is

xP(t) = AQ, cosfyz(ﬁj cos8 (2.91)
32 24

Therefore, the full solution is

X, (t) =Ccosf + (Z_AA\J cos8 (2.92)

Using %, (0) = A, thenC =23/ 24 and

X (t) = AHE_?J cos@ + (?14) cos B} (2.93)

(See equation (2.93) fog(t)). Substitution of the items in equation (2.90pithe right-

hand side of Ql(A):%g Equation (2.89) gives, after some algebraic and

trigonometric simplification, the result

%, +Qix, = (QIA) {a -(3- 7ﬁ)( QiNH coy

, (2.94)
—( Aizl j[(1+35,/3)QfA2 - %]cos@—(%) Q;A’ )coss
Setting the coefficient o€osfto zero and solving foR?gives
4) 1 |69 69
aion=| (S [Ge)-oien] o
(2.95)

1.189699
Q,(A) ===

ComparingQ,(A) with the exact valueQ), ., (A) , we find the following percentage error

exact _Ql

‘Q x100= 5.1%error

exact

Note that using the direct Iterative scheme, wenébu
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1.1547

Q,(A) = (7.9%error ),

Q,(A) = %175 (18.1%error ).

Therefore, the Extended lterative procedure pravidebetter estimate of the angular

frequency.

ReplacingQ?A?in Eq. (2.94), by the expression of equation (2.9&) obtain

AQ? (1292 AQ?\( 43
% +Q°%x, =— L === |cosf - LI — | cosB 2.
R TRa% ( 4 J[ 390j [ 4]( 393 (2.96)

The corresponding particular solution takes thenfor

x{P(t)=D,cos P+ D, cos @ (2.97)

Substituting this into equation (2.96) and equating coefficients, respectively, of the

cos ¥ andcos Wterms, allows the calculation @, andD,; they are

D, =( 3876 j A
37440

(2.98)

D, :( 437 j A

37440

Since the full solution fok,(t) is

X,(t) =Ccosd+x{” ), (2.99)
with x,(0) = A, it follows that
C=A- Dl—Dzz(imjA, (2.100)

37440

and

X(t)=A (&m]coséﬂ( 38763 cos@+(ﬂ}) cosh

37440 3744 3744
(2.101)

_ _ 9_21/2 _1
e_Ql(t)t_{GJ (AJ.

Inspection ofx,(t) indicates that the coefficients of the harmonatsséy the ratios
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& _ 3876 4117
a, 33127
(2.102)
ﬁ: 437 -
a, 3876

Now-a-day’s lterative method is used widely by Lemd Wu (2002), Hu and Tang
(2006)(b), Chen and Liu (2008), Hageteal ., 2013; Haque B M |, 2013; Haque B M |,
2014; Haqueet al., 2014; Haque and Hossain, 2016; Hagqual., 2016(a); Haquet
al., 2016(b); Haquet al., 2016(c); Haquet al., 2017 ) etc. which is valid for small
together with large amplitude of oscillation toaatt the approximate frequency and the
harmonious periodic solution of such nonlinear peots. Mickens (1987) provided a
general basis for Iterative methods as they areewtly used in the calculation of

approximations to the periodic solutions of nordinescillatory differential equations.

In Haque’s Iteration method the problem is solvedhe following way-

Let us consider the Oscillator

X+x*=0. (2.103)

Adding Q?x on both sides of equation (3.6), we get
X+Q%x =Q%x-x" (2.104)
According to equation (2.40), the Iterative schexhequation (2.104) will be

Ky ¥ QE Xy = Q2 X, — X 5 (2.105)

The first approximatiorx (t) and the frequenc®, will be obtained from the solution of

(putting k = 0 in equation (2.105) and utilizing equation (2.41)
X +Q2x, = Q2Acosfd - (Acod )* (2.106)

Now expanding(cosd )" in a Fourier Cosine series in interya] 7], the equation (2.104)

reduces to

% +Q2x = Q%Acosﬁ—%i 1) cos(B- H. (270
n=1
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To check secular terms in the solution, we haveetoovecosd from the right hand side

of equation (2.107), and we obtain
Q =—, Q,=—"—. (2.108)

Then solving equation (2.107) and satisfying thi&ahcondition (according to equation
(2.42)), we obtain

xl(t):A((1+%(—1+ 2In 2))co§—i 1 cos(2- ). (2.109)

This is the second approximation of equation (21@8d the relate®, is to be

determined. The second approximatigt) and the value of, are obtained from the

solution of

X, + Q2x, = Q2x,— x; . (2.110)

Substitutingx,(t) from equation (2.109) into the right-hand sideegtiation (2.110), we

obtain
X, + Q2x, = AQ%((1+ (-1+ 2In 2)/ 4) cosﬁ—i ) cos(2- &
= 4(n-1)n
L (2.111)
_K; (_1 n_:Lazn—l COS(Z] - 1&, ’
where
a =1.599611a, = 0.983636,= 1.102235= 1.079406; 309,... (2.112)

To avoid secular terms in the solution, we haveetoovecosg from the right hand side of

equation (2.111). Thus we have

z1= . 1.599611 0, = 1.20? (2.113)
A’(1+ (-1+ 2In2)/ 4) A
Then equation (2.111) becomes,
%, +QIx, = —A()fiicos(zh— 119+ii ¢ la,,, cos@- B. (2.114)
n=2 4(n _1)n An=2
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The equation (2.114) approximately can be written a

00

¢ +02x, =-202S D osm- p+ 11 ¢ 1 2- B. 2115
i+ =0 S CH cos@- 4235 € Ba,,, cos@e- B (2419

Then solving equation (2.115) and satisfying th&@ahcondition, we obtain the second
approximation,
() =A(1-(B3-4In2)/16+ 1. *+ 2In2)/(Z ))caA

@ (-1)" 1.1 1y _ (2.116)
+nZ:;‘((4(n—1)n)2 ¥ 4n- 1)1(221](:08(21 W,

where

Z= 8 .
@1+ (-1+2In2)/ 4)/ (3 In2)(4 In16

(2.117)

The third approximatior, and the value of2, are obtained from the solution of
X+ Q2 x,=Q5x,— X3 (2.118)

Substitutingx, (t) from equation (2.116) into the right-hand sideeqgfiation (2.118) and

utilizing the same method, we obtain

¢ 102y =\ 2 @) 1167 _qyn 126 _
x3+sz3—nZ:;[AQ 2((4(n_1)n)2 + g (n—1)1j+( 1) A jcos(:h 1y, (2.119)

where

02=1.693744/A2 (+ (3 4In2)/16 14(+ 2In2)/44 ))g)zzzﬁA&3 (2.120)

Then solving equation (2.118) and satisfying th&ahcondition, we obtain

_ < 1 11 1.26 _
x3(t)—A£1.067200§ n;(((n—l)nf Z«n_l)n)z+Zl(n_1h]cose(2cosa 1} (2.121)
where
z=1.693744/(F (3 4In2)/16 13A(# 2In2)z4 (2292

Therefore Q,,Q,,Q,,...,respectively obtained by equation (2.108), (2.113)120),....,

represent the approximation of frequencies of zoil (2.103).
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Further Mickens used the iterative technique (Mick&® E,2006) to calculate a higher-

order approximation to the periodic solutions otanservative oscillator for which the

1
elastic force term is proportional %6 . Hu (2006(a), (b)) applied the modified iteration

technique of (Mickens R E, 2005) to find approxienaif nonlinear oscillators with
fractional powers and quadratic nonlinear oscilawspectively. Recently, Zheng et al.
(2013) has applied Mickens extended iteration nuethod direct iteration method to

determine approximate periodic solutions of a ctdgsonlinear jerk equations.
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CHAPTER 111

Extended I terative M ethod

3.1 Introduction

The main purpose of this thesis is to develop tRkeeritled Iterative technique for the
determination of approximate solution and angutagdiency of “the quadratic nonlinear
oscillator”. The results will be compared with dig results obtained by various
researchers and it is expected that the obtairtselsy this techniques would be similar

and sometimes better results than other existioggoiures.

3.2 The method

An Extended lIterative method will be used to obtamalytical solution of the quadratic
nonlinear oscillator. The procedure may be bridégcribed as follows.

A nonlinear oscillator will be modeled by
x+f (X =0, x(0)=A,x (0)= 0 (3.1)
where over dots denote differentiation with respedime, t.

We choose the natural frequen€y of this system. Then adding?x on both sides of

equation (3.1), we obtain
X+Q°x=0Q%x-f(X) =G(x,Q). (3.2)
The Extended Iterative scheme is

R + Qi Xear = G (X Q) + G, (X1, Q) (% = X); K=1,2,... (3.3)

where G, :a—G.

0X

The right hand side of equation (3.3) is essentitlle first term in a Taylor series

expansion of the functio®(X,,%,) at the point(X._;,%.,) ( Taylor and Mann, 1983)
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We have the direct iteration scheme of equatio?) (3.

Koy + Q2% =G(%,Q,); k=0,1,2,.. (3.4)
and X, ,, satisfies the conditions

%1(0)= A (3.5)
The initial guess are taken to be (Lim and Wu, 2002

X, (t) = AcosQ,t) (3.6)

The above procedure gives the sequence of soluidh)s X, (t), X;(t), --. The method can

be proceed to any order of approximation; but dugrbwing algebraic complexity the

solution is confined to a lower order usually teeand (Mickens R E, 1987)

3.3 Solution Procedure

Let us consider the nonlinear inverse oscillator

X+x°=0 (3.7)
Adding Q?x on both sides of equation (3.7), we get

X+Q°x=Q*-x*=G(x,Q), (3.8)
where G(x,Q) = Q°x=x*, G,(x,Q) = Q2 - 2x.
According to equation (3.4), the direct Iteratishaeme of equation (3.8) is

Ko + QX = QX =X (3.9)

The first approximationx, (t) and the frequenc§2, will be obtained by puttind =0 in
equation (3.9) and using equation (3.6) we get

% +Q2x =Q2x,— X3, (3.10)
where X,(t) = Acos Qt )= A co® and 8=Qt

Now substituting,(t)and expanding the right-hand-side in a Fourierresieries, then

equation (3.10) reduces to
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% +Q2%x, =Q2 Acosd— (A cab)

% +Q2x, = Q% Acosf - A’ (0.848826cof+ 0.169765ca 3
—-0.024252cosB+ 0.008084cad+ 0.0036756
+0.001979cs119)

=(Q}—0.84882@\) Acosd— A’ (0.169765c083 0.024252cé
—0.008084 cogd+ 0.00H75cos@—- 0.001979coA)).

(3.11)
To avoid secular terms in the solution, we havestoove cosd from the right hand side

of equation (3.11). Thus we have

0.8488260°

0 A-0.848826\" =0, Q' ==

,Q, = 0.921318A. (3.12)

This is the first approximate frequency of the tatwr. Note that

Qe (A = 0.914684/A. After simplification the equation (3.11) reduces

% +Q2 x, = A2(-0.169765c0s@+ 0.024252ca®5  0.008084 &

(3.13)
+0.003675c0s@- 0.001928s1P ).
The particular solutionxl(p)(t) is
_ 2 _
(9 (1 = O-L69T6R’ s 0.022125422 c0sF+ o.ogsoaza cosd
—902 +Q? —2502+Q?2 -4902+Q?
2 2
_'_0.0032675\2 090 + O.OO];WAZCOS:LB
-8102+0Q? ~121Q2+ Q)
2
:%(0.16976500539_ 0.02425%059_'_ 0.8084 cod
Q> 48
_0.003675 0.00197%051&j
80
= A(0.025 cos86-0.001190 cog3+ 0.000199 cés7 (3.14)

—0.000054 cos¥—- 0.000019 cod)
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Therefore, the complete solution is

X (t) =B,cosd+ 0.02%A cos@- 0.001190 céx
+0.000199A cos@- 0.00064 A c&d (3.15)
—0.00001A o0s11 .

Usingx, (0) = A, we haveB, =0.976066A Then we obtain

x (t) = A(0.976066 co +0.025 cod3
- 0.00119048 cos® +0.000198413 aBs? (3.16)
- 0.0000541126 cog® - 0.000019425 cad!

This is the first approximate solution of the dsdar.

According to equation (3.3), the Extended Iterageeme of equation (3.8) is

Xk+1+Qi Xk+1=(QZXk —Xk2)+(Qz—2Xk)(Xk _Xk—l)'

c (3.17)
= X +Q Xk—1_2xkxk—1

The second approximatior,(t) and the frequency?: will be obtained by puttind =1
in equation (3.17) and using equation (3.7) we(84i8)
%, + Q% X, =X + QX = 2X X, (318

Where x,(t) and x,(t) are given by the equations (3.6) and (3.16).

Now substitutingx,(t) and x (t) are expanding the right- hand side in a Fourieineos

series, then equation (3.17) reduces to

%, +Q° x, =(Q?0.976068\- 0.81674¢ cpsf+ Q7 0.025080
-0.19388%%) cos P+ Q7 0.001199+ 0.0144%1)cosd
+(Q20.000198\— 0.00563%)cos @+ Q° 0.000084
+0.002712¢)cos P+ Q7 0.000018- @D1441A%)cos1d
+0.000912° cos¥B (3.19)

To avoid secular terms in the solution, we havestoove cosd from the right hand side

of equation (3.19). Thus we have

020.976066\~ 0.81674¢ = 0Q,= 0.913K/A (3.20)
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The particular solutiony,® (t) is

xP(t) =— T (Q?0.025000\~ 0.19389%) cof3F =
—90Q2+0Q —2502 +Q?

1
(-Q20.001190+ 0.01443¢ )cof3—— _ Of 0.000%
~48Q°% +Q?

~0.00563%" )cOSA+——~ 4O 0.000084 0.0027F2
-81Q% +Q?

1215;-2+QZ 6912 0.00019A- 0.00144A?7 )cosHL
- 1 1

+%(0.000911&2 )cos13
—16902 + Q°

cosY+

_ _0.025000\008394_ 0.193288%2 cos8- 0.001180 codd
8 8Q 24

1

2
_0.01443% ., 0.000198 . 0.0052635 o
48 487

240
,0.000054 o 0.00271& .. O'SSSOAgcosm

2
1

2 2
+0.001441°\ cosl B 0.000B1A cosl®

2

12002 1680’

=0.02583&cos - 0.00066%cos &5+ 0.00018€os &
—0.00004®\cos @+ 0.00001&cos &1
-6.48356< 10 G\cos 13

(3.21)

Therefore, the complete solution is
X,(t) = B, cosf+0.02583&cos 8- 0.00066%cos &5+ 0.00014s & (3.22)
—0.00004%\cos @+ 0.0000¥%0s &t 6.4836@ 1Acos1¥ '

Using X,(0) = A, we haveB, =0.974727 A Then we obtain

X, (t) =0.97472ACosf+ 0.0258370s 63- 0.00068&s &6 5
+0.00013@&\cos @- 0.00004&cos &+ 0.0015Acos1y

—6.48356x 10° Acos 18

(3.23)

This is the second approximate solution of thellagar.
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Proceeding to the third level of Iterative,(t) satisfies the equation
%, + Q32 X, = X5+ Q% —2X X, (3.24)

wherex,(t) = AcosQt )= A co¥and

X, (t) = A(0.97472TCos8+ 0.0258318s 63- 0.000868 46 0.00G1364
—0.00004@0s 9+ 0.0000tbs 8t 6.48366 ADs1H)

Now substitutingx (t) and x,(t) and expanding the right hand side in a Fourierneosi

series, then equation (3.24) reduces to

%+ %, =(—0Q50.97472A~ 0.8154&% )c6s Qf 0.025838
—0.19380%° )cos3+ Q> 0.000683 0.013852 )@&@s5
+(Q30.00013R- 0.005899Y )co8¥ —(¥2  0.0000899
+0.002779¢ )cos@+ (% 0.0000A5 0.001828 Icés 1
+(-0Q20.000008\+ 0.00092¢ )cos23 0.000887 c6515
+0.000412¢ cos@- 0.000286 co19 0.008819 @s21 (3.25)
+0.000167A% cosZB+ 0.0001288 cod25 0.008i03 &

To avoid secular terms in the solution, we havestnove cosd from the right hand side

of equation (3.25). Thus we have

~Q20.97472A~ 0.81547% = 0Q, =0.91467J/A (3.26)
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The particular solutiony, ™ (t) is

1 1
®(t) =-——-(Q,>0.02583%\~ 0.19380¢ )co§3
5P =—os7 (@ ) 2202

2 2

(-Q,?0.00066R+ 0.0133%¢ )cof> 48]§-2 - QF 0.000¥86

2

-Q,> 0.0000389 0.002A79 )

~0.0058998 ) cosl-———
80Q,

cosP-— - (,20.000018- 0.001528 )dd€-
120Q, 1680,
(-Q,20.000006\+ 0.000924 )cosd3 22419 ~ - ( 0.000287 )

2

cosl® - 1
288Q

~ (0.00041%) cos&F 3639 ~ -( 0.000296 )

2 2

cos1¥- L ~ (0.00021& )cos@t L - (0.000¥67 )
440Q 5282

2 2

cos2¥ - 1 ~ (0.0001298 )cos@5 1 ~(-0.000103) cos A
24Q 728Q

2 2

=0.02572@\cos 8- 0.00063cos &+ 0.0004dos 67
-0.00004Rcos @+ 0.0000¥&cos &+ 6.53694 Mcos &
+3.1879% 1P Acos 18— 1.711X1 10Acos &7
+9.81306¢ 10’ Acos 18— 5.94834 10Acos &1
—-3.7733% 10 Acos 28— 2.48x10" Acos 2%
+1.69177% 10 Acos 28

(3.27)
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Therefore, the complete solution is

X,(t) = B, cosg+0.025726 Acos 8— 0.00063Fos 65
+ 0.000144 Acos76- 0.0000410252a8s9¢9
+0.000015045A cos ¥- 6.53684 @ cos 4
+3.1879% 1P Acos 18- 1.711x1 10cos A7 (3.28)
+9.81306< 10’ Acos 18- 5.8B14x 10" Acos214
—-3.7733% 10 Acos 28— 2.4868 10Acos &85
+1.6917% 10 Acos 28

Using %;(0) = A, we haveB, =0.974798 A Then we obtain

X,(t) =0.974798 Aco8 +0.025726 Acas3 0.00063046
+0.000144 Aos76—- 0.000041 £os9%9+ 0.000015c8s1¥
-6.53694 10 Aosl3d+ 3.18798 10 ohsl™y
-1.7112% 10 Aosl76+ 9.81306 10 08s194
—5.948%x10" Acos216—-3.7733k 10 Aos2¥
—2.4863 10" A&0s250+ 169177 10 A0s278

(3.29)

This is the third approximate solution of the dsbdr.
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CHAPTER IV

Results and Discussion

In this chapter, the results obtained by all of thethods have been compared to their
periodic or oscillatory solutions. Accordingly, omeeasure of the accuracy or quality of a
given method is the difference between the exalttevaf the angular frequency and that

determined using the approximation procedure.

4.1 Results

An lterative approach is presented to obtain apprate solution of the “quadratic
nonlinear oscillators”. The present technique is/\wmple for solving algebraic equations
analytically and the approach is different from testing other approach for taking

truncated Fourier series. This process signifigantproves the results.

Here calculated the first, second and third approxinfegquencief?,, Q, andQ, have

been calculated and all the results are givenarfdiowing Table-4.1.

To compare the approximate frequencies we have glgen the existing results
determined by Mickens and Ramadhani (1992), Belereteal,(2009)(c),Hosen M A
(2013)and Haque and Hossain (2016)(a), showninT#ide-4.2. Fortunately, this current

method gives significantly better result than otteemula.
To show the accuracy, it is calculated the perggntd errors by the following definition:

Q.-Q,

e

Error = x100%

e

Where Q, (k=0,1,2,...represents the approximate frequencies obtainethéypresent

method and, represents the corresponding exact frequencyeobsbillator.
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Table-4.1

Adopted approximate frequencies sof x> =0.

Exact frequencyQ, =0.914681/ A

Amplitude A
First Second Third
approximate approximate approximate
frequencies,| ggp131g/A | frequencies, 0.914752/ A frequencies, 0.9146%/A
Q, Q, Q,
Error (%) 0.73 Error (%) 0.007¢ Error (%) 0.0012
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Table-4.2

Comparison of the approximate frequencies with efraquencyq ., of x+x*=0.

Exact frequency), =0.914681/ A

First approximate Second Third approximate
frequenciesQ, approximate frequenciesQ,
Amplitude & frequenciesQ, &
A Error (%) & Error (%)
Error (%)
Mickens and 0.921318/A 0.914044/A |
Ramadhani 0.73 0.70
(1992)
0914713/ A
Belendezt al. 0.921318/A 0.914274/A 0.0032
(2009)(c) 0.73 0.045
Hosen M A 0.921318/A 0.914427/A 0.914733VA
(2013) 0.73 0.028 0.0056
Haque and Hossain  0.921318/A 0.915114/A 0.914705/A
(2016)(a) 0.73 0.047 0.0026
0.92131§A 0.914752/A 0.9146A/A
Adopted method 0.73
0.007¢ 0.001z
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4.2 Convergence and Consistency Analysis

We know the basic idea of Iterative methods isdstruct a sequence of solutiors (as

well as frequencie®, ) that have the property of convergence

lim lim
XE = k )(k Or’ Qe =

00 k = o

Qk
Here X, is the exact solution of the given nonlinear dator.

In the present method, it has been shown that ahdien yield the less error in each

Iterative step compared to the previous Iterativeteps and finally
|, -Q,|=]0.91467- 0.91468[ £, where £ is a small positive number anf\ is chosen

to be unity. From this, it is clear that the addpteethod is convergent.

An lterative method of the form represented by &qua(3.4) with initial guess given in

equation (3.5) is said to be consistent if
im X =x,|=0 or lim Q -Ql=0
k — 00 Xk Xe ,k — 00| k e| B
In the present analysis we see that
lim
o -Q,|=0,as|Q-Q|=0.
k — 00

Thus the consistency of the method is achieved.
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4.3 Discussion

It is noted that Mickens and Ramadhani (1992) fooml¢f second approximate frequencies
by Harmonic Balance method. Belendez et (2009) (c) found up to third approximate
frequencies by using modified He’s Homotopy Perdtidn method. Again Hosen M. A,
(2013) found up to third approximate frequenciesusing modified Harmonic Balance
method, Haque and Hossain, (2016) (a) found ufpuah approximate frequencies by
Iteration method.

In our study, it is seen that the third-order apprate frequency obtained by Adopted
method is almost same with exact frequency. Itoisnfl that, in most of the cases our
solution gives significantly better result than extlexisting results. The advantages of this

method include its simplicity and computationai@éncy.
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CHAPTER YV

Conclusions and Recommendations

In this final chapter, some concluding remarks hdee=n included. Some essential
recommendations abokktended Iterative method have also been presented.

5.1 Conclusions

The basic groundwork behind Iterative methods iget@xpress the original nonlinear
differential equation that includes with a vastig=tce of equations, each of which can be
solved, and such that at a particular stage ot#heulation, knowledge of the solutions of
the previous members of the sequence is requiredit@ the differential equation at that
stage. In this thesis we used a simple but effeatmodification of the Extended Iterative
method to investigate nonlinear differential eqoraéi The results have improved when we
truncated eleven terms to calculate the first axprate solution, thirteen terms to
calculate the second approximate solution and tweaten terms to calculate the third
approximate solution. This technique can be usedpasdigms for many others
applications in searching for periodic solutionotier nonlinear oscillators. The obtained
results show that the modification of the Extenétedative method is more accurate than

other methods and is valid for large region.
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5.2 Recommendations

In the final analysis, the validity and value oparticular method and the solutions that it
produces depend heavily on what we intend to dd whe results obtained from the

calculations. However, the following issues ar@mine importance:

i. A given truly nonlinear (TNL) oscillator equationaynhave more than one possible
Iterative scheme. At present, there are no a prnueta-principles which place
limitations on the construction of Iterative schame

ii. For level k> 2 calculations, the work required to determinedhgular frequency
and associated periodic solution may become algttisaintensive.

iii. The Extended Iterative method generally is easieapply, for better result, in
comparison with similar direct Iterative techniques

iv. In principle, Iterative methods may be generalizedhigher-order differential

equations.

We can get desirable solution or angular frequdray a truly nonlinear oscillator by the
proper use of the term of the Fourier series. bhed the Iterative scheme, right choice of

truncation is most important.
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