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Abstract 

 

 

 

A new approach of the Mickens extended iterative method has been presented to obtain 

approximate analytic solutions for nonlinear oscillatory differential equation. To get 

modified approximate solution of the inverse nonlinear oscillator
1'' 0''x x  , we have 

used the Fourier series and utilized indispensable truncated terms in each iterative step. In 

this thesis the solution gives more accurate result than other existing methods and shows a 

good agreement with its exact solution. The percentage of error between exact frequency 

and our third approximate frequency is as low as 0.0029%. We have compared our results 

with exact results and other existing results and the solution is convergent as well as 

consistent. 
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CHAPTER I 

 

 

Introduction 

 

 

This chapter serves as an introduction to the central elements of the analysis of nonlinear 

dynamics systems. It is hoped that these discussions will provide a context that will help 

the readers to understand the importance of other chapters in this thesis. 

 

Most phenomena in our world are essentially nonlinear and are described by nonlinear 

equations. A vast scientific knowledge has developed over a long period of time, devoted 

to a description of natural phenomena. Practically, most of the differential equations 

involving physical phenomena are nonlinear. These equations have also demonstrated their 

usefulness in ecology, business cycle and biology. Therefore the solution of such problems 

lies essentially in investigating the corresponding differential equations. In many cases it is 

possible to replace such a nonlinear equation by a related linear equation, which 

approximates the actual problem closely enough to give useful results. The method of 

small oscillations is a well-known example of the linearization of problems which are 

essentially nonlinear. However, such a linearization is not always feasible or possible; and 

when it is not, the original nonlinear equation itself must be considered. 

 

One of the significant realizations is that the mathematical concept developed by modeling 

simple physical systems can be fruitfully applied to more complex systems. Some of which 

have great interest in the biomedical community (electrical signal propagation in cardiac 

tissue, neural networks or gene regulation). Often this leads to model different region of 

parameter space, and one region is found to exhibit quite similar to the real system. In 

many cases, the model behavior is rather sensitive to parameter variations, so if the model 

parameters can be measured in the real system the model shows realistic behavior at those 

values, and one can have some confidence that the model has captured the essential 
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features of the system. Moreover, in many cases numerical simulation has to be done first 

in order to give some direction to theoretical studies. Though the catalogue of well 

characterized, generic behaviors of deterministic nonlinear systems is large and continues 

to grow, there is no method for classifying the expected behavior of a particular nonlinear 

dynamical system unless it can be directly mapped to a previously studied example. Rather 

than attempting a review of the state of the art in time-series analysis, numerical methods, 

and theoretical characterization of nonlinear dynamical systems, this thisis presents some 

of the essential concepts using an example. 

 

Differential equation is one of the most attractive branch of mathematics and essential tool 

for modeling many physical situations like mechanical vibration, nonlinear circuits, 

chemical oscillation and space dynamics and so on. Therefore the solution of such 

problems lies essentially in investigating the corresponding differential equations. The 

differential equations may be linear or nonlinear, autonomous or non-autonomous.  

A lot of differential equations that represent physical phenomena are nonlinear. Systems of 

nonlinear equations arise in many domains of practical importance such as engineering, 

mechanics, medicine, chemistry, and robotics. We can say that nonlinear equations are 

great in the range of importance. They help to predict a lot of things in our daily lives.  

The ways of investigating linear differential equations are comparatively easy and highly 

developed. On the contrary, it is very little known to the general character about nonlinear 

equations. Ordinarily, the nonlinear problems are investigated by converting into linear 

equations by attributing some terms and conditions; but such linearization is not always 

possible. The equation is generally confined to a variety of rather special cases, and one 

must resort to various methods of approximation. Many methods exist for constructing 

analytical approximations to the solution of the oscillatory system, such as Perturbation 

method, Harmonic Balance (HB) method, Iterative method etc. Perturbation method is 

used only for weak nonlinearities, HB method is used for strong nonlinear problems. On 

the other hand Iterative method is used for weak as well as strong nonlinear oscillations. In 

the Perturbation method, the expansion of a solution to a differential equation is 

represented in a series of a small parameter. It is used to construct uniformly valid periodic 

solution to second-order nonlinear differential equations. 
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Harmonic Balance method is a procedure of determining analytical approximations to the 

periodic solutions of differential equations by using a truncated Fourier series 

representation. An important advantage of the method is that it can be applied to nonlinear 

oscillatory problems for which the nonlinear terms are not weak i.e., no Perturbation 

parameter need to exist. A disadvantage of the method is that it is a priory difficult to 

predict for a given nonlinear differential equation whether a first order Harmonic Balance 

calculation will provide a sufficiently accurate approximation to periodic solution or not. 

The Iterative method introduces a reliable and efficient process for wide variety of 

scientific and engineering application for the case of nonlinear systems. There are two 

important advantages of Iterative method, one is “only linear, inhomogeneous differential 

equations are required to be investigated at each level of the calculation” and another is “ 

the coefficients of the higher harmonic, for a given value of the Iterative index decrease 

rapidly with increasing harmonic number”. The last point implies that higher order 

solutions may not be required. The important development of the theory of nonlinear 

dynamical systems, during these centuries, has essentially its origin in the studies of the 

“natural effects” encountered in these systems, and the rejection of non-essential 

generalizations. That is the study of concrete nonlinear systems has been possible due to 

the foundation of results from the theory or nonlinear dynamical system field. 

 

Nonlinear phenomena are of fundamental importance in various fields of science and 

engineering, specially in fluid mechanics, solid state physics, plasma physics, plasma wave 

and chemical physics. The wide applicability of these equations is the main reason why 

they have attracted so much attention from many mathematicians. However, they are 

usually very difficult to investigate, either numerically or theoretically. For facilitating the 

solution procedure we have utilized the complete Fourier series (sometimes approximately) 

to expand the nonlinear terms in „Cosine series‟. In certain cases the coefficients of Fourier 

series have been reduced to a standard form. 

 

The main intention of this thesis is to investigate the approximate analytic solutions using 

the modified Extended Iterative method to decompose the secular term, so that the solution 

can be obtained by Iterative procedure. This means that we can use Extended Iterative 
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method to investigate many nonlinear problems. The main thrust of this technique is that 

the obtained solution rapidly converges to exact solutions. 

 

The chapter outline of this thesis is as follows: In Chapter II, the review of literature is 

presented. In Chapter III, the Extended Iterative method has been described for obtaining 

modified approximate analytic solutions of the inverse truly nonlinear oscillator. In 

Chapter IV, the result of the adopted method has been shown. Finally, In Chapter V, 

some concluding remarks are included. 
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CHAPTER II 

 

 

Literature Review 

 

 

The review of literature is presented in this chapter. Here we examine some general 

techniques that can be used to illustrate the existence of periodic solutions for a given truly 

nonlinear equation. These methods also apply to the case of standard equation. Moreover, 

this chapter shows some existing methods and their solution procedure, which help us in 

comparative analysis. 

 

2.1 Introduction 

The natures of nonlinear differential equations are distinct. But the study of nonlinear 

problems is one of most fascinating parts in mathematics, physics and other science and 

engineering. The mathematical analysis of many of the oscillating phenomena that occur in 

nature leads to the solution of nonlinear differential equations or modification differential 

equations. A nonlinear system of equations is a set of simultaneous equations in which the 

unknowns appear as variables. Specially, a differential equation is regarded as linear if it 

gets linear in terms of the unknown function as well as its derivatives, even if nonlinear in 

terms of the  other variables appearing in it. 

Nonlinear equations are difficult to investigate and nonlinear systems are commonly 

approximated by linear equations. This works well up to some accuracy and some range 

for the input values, but some interesting phenomena such as chaos and singularities are 

hidden by linearization. It follows that some aspects of the behavior of a nonlinear system 

appear commonly to be chaotic, unpredictable or counterintuitive. Although such chaotic 

behavior may resemble random behavior, it is absolutely not random. 
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2.2 Description of the Different Methods 

Analytical solutions of nonlinear differential equations or linear differential equations with 

variables coefficients play an important role in the study of nonlinear dynamical systems, 

but sometimes it is difficult to find solutions of these equations, especially for nonlinear 

problems with strong nonlinearities. There are several analytical approaches to find 

approximate solutions to nonlinear oscillatory system, such as: Perturbation method [1-6], 

Homotophy Perturbation method [7-10], Harmonic Balance (HB) method [11-22], 

Modified Linstedt-Poincaré method [23], Krylov-Bogoliubov-Mitropolskii (KBM) method 

[24-25], Energy Balance method [26], Cubication method [27], Iterative method [28-42], 

etc. Perturbation method is a well-known method for investigating to the differential 

equations in which the nonlinear term is small. The method of Lindstedt-Poincare [23], 

Krylov-Bogoliubov-Mtropolskii (KBM) method [24-25], Multiple Scales method [43] and 

Homotopy Perturbation method [7-10] are most momentous among all Perturbation 

methods. 

 

The method of Lindstedt-Poincare [23] is an introductory method to investigate the 

following second order nonlinear differential equations 

2

0 ( , ) 0,x x f x x                                                                                            (2.1) 

where 0  is the unperturbed frequency and   is a small parameter. 

The fundamental idea in Lindstedt‟s technique is based on the observation that the 

nonlinearities alter the frequency of the system from the linear one 0  to ( )  . To 

account for this change in frequency, He introduces a new variable t   and expand   

and x  in power of   as  

2

0 1 2

2

0 1 2

( ) ( ) ( ) ...

...,

x x x x    

     

    


   

                                                                         (2.2) 

where , 0,1,2,...i i  , are unknown constants to be determined. 

Substituting equation (2.2) into equation (2.1) and equating the coefficients of the various 

powers of , the following equations are obtained 
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0 0

1 1 1 0 0

2

2 2 1 1 0 0 1 2 0

0 0 1 0 0 1 0 1

0 1 1 0 1 1

0

2 ( , )

2 ( , ) ( 2 )

( , ) ( , )( )

( , ,... , ; , ,..., ) ,

x x

n n n n n

x x

x x x f x x

x x x f x x x

f x x x f x x x x

x x g x x x x x x



  



 

 


   

      


  



 

                                                   (2.3) 

where over dot represents the differentiation with respect to  .  

Apparently equation (2.3) is a linear system and it is investigated by the elementary 

technique. This method is used only for finding the periodic solution, but the method 

cannot discuss the transient case. 

 

Among various Perturbation methods, Krylov and Bogoliubov [24] introduced a technique 

to discuss transients of the same equation. This method starts with the solution of the linear 

equation, assuming that, in the nonlinear case, the amplitude and phase in the solution of 

the linear equation are time dependent function rather than constants [1]. The solution of 

corresponding unperturbed equation (i.e., for 0  ) of equation (2.1) can be written as 

 0cos ,x a t                                                                                                  (2.4) 

where a and   are two arbitrary constants respectively called amplitude and phase which 

are determined from the initial conditions   00 xx   and   00x y . 

 

Now to determine an approximate solution of equation (2.1) for   small but different from 

zero, Krylov and Bogoliubov [24] assumed that the solution is still given by equation (2.4) 

with varying a and   subject to the conditions 

0

0

sin

.

dx
a

dt

t

 

  


 


  

                                                                                                   (2.5) 

Differentiating equation (2.4) with respect to time, t  and using equation (2.5), we obtain 

cos sin 0.
da d

a
dt dt


                                                                                          (2.6) 
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Again differentiating equation (2.5) with respect to time, t , we obtain 

2
2

0 0 02
cos sin cos .

d x da d
a a

dt dt dt


                                                            (2.7) 

Substituting equation (2.7) into equation (2.1) and using equation (2.4) and equation (2.5), 

we obtain 

 0 0 0sin cos cos , sin .
da d

a f a a
dt dt


                                                  (2.8) 

Solving equation (2.6) and equation (2.8), 
dt

da
 and 

dt

d
 yields 

 

 

0

0

0

0

sin cos , sin

cos cos , sin .

da
f a a

dt

d
f a a

dt a


   



 
   




  



   


                                                           (2.9) 

Here equation (2.4) together with equation (2.9) represents the first approximate solution 

of equation (2.1).  

 

Further, the technique was modified and justified by Bogoliubov and Mitropolskii [25] in 

1961. They assumed a solution of the nonlinear differential equation (2.1) of the form 

       1

1, cos , , ,n n

nx t a x a x a O                                            (2.10) 

where , 1,2, ,kx k n   is a periodic function of   with period 2 , a  and   very with 

time, t  according to 

     

     

1
1

1
0 1 ,

n n
n

n n
n

da
A a A a O

dt

d
B a B a O

dt

  


   






   


     


                                                  (2.11) 

where the function kx , kA  and kB  are chosen such that equation (2.10) and equation 

(2.11) satisfy the differential equation (2.1).  

Later this solution was used by Mitropolskii [44] to investigate similar system (i.e., 

equation (2.1)) in which the coefficient very slowly with time. Popov [45] extended this 



9 

 

method to nonlinear strongly damped oscillatory systems. By Popov‟s [45] technique, 

Murty et al. [46] extended the method to over damped nonlinear system. Murty [47] 

further presented a unified KBM method to obtain under and over damped solution of a 

second order nonlinear differential equation. Shamsul and Sattar [48] extended Murty‟s 

[47] unified KBM method to investigate a third-order nonlinear differential equation. 

 

Harmonic Balance method is the most useful technique for finding the periodic solutions 

of nonlinear system, which is patented by Mickens [11] and further work has been done by 

Hu [16], Beléndez et al. [22], Lim et al. [49], Wu et al. [50] and so on for investigating the 

strong nonlinear problems. If a periodic solution does not exist of an oscillator, it may be 

sought in the form of Fourier series, whose coefficients are determined by requiring the 

series to satisfy the equation of motion. However, in order to avoid investigating an infinite 

system of algebraic equations, it is better to approximate the solution by a suitable finite 

sum of trigonometric function. This is the main task of Harmonic Balance method. Thus 

approximate solutions of an oscillator are obtained by Harmonic Balance method using a 

suitable truncated Fourier series. The method is capable to determining analytic 

approximate solution to the nonlinear oscillator valid even for the case where the nonlinear 

terms are not small i.e., no particular parameter need exist. The formulation of the method 

of Harmonic Balance focuses primarily by Mickens [12]. However, it should be indicated 

that various generalizations of the method of Harmonic Balance has been made by an 

intrinsic method of harmonic analysis. Lately, combining the method of averaging and 

Harmonic Balance, Lim and Lai [51] presented analytic technique to obtain first 

approximate Perturbation solution; their solutions gives desired results for some non-

conservative systems when the damping force is very small. 

 

Mickens [35] has given the general procedure for calculating solutions by means of the 

method of direct Harmonic Balance as follows: 

He considered the equation for all Truly Nonlinear (TNL) oscillators as 

( , , ) 0,F x x x 
                                                                                                      (2.12) 

where ( , , )F x x x  is of odd-parity, i.e., 

( , , ) ( , , ).F x x x F x x x                                                                                     (2.13) 
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A major consequence of this property is that the corresponding Fourier expansions of the 

periodic solutions only contain odd harmonics, i. e., 

    
1

( ) cos 2 1 sin 2 1 .k k

k

x t A k t B k t




                                                   (2.14) 

The N th  order Harmonic Balance approximation to ( )x t  is the expression 

    
1

( ) cos 2 1 sin 2 1 ,
N

N N

k kN N N

k

x t A k t B k t


                                          (2.15) 

where , ,N N

k k NA B   are approximations to , ,k kA B  for 1, 2, 3,......., .k N  

For the case of a conservative oscillator, equation (2.12) generally takes the form 

( , ) 0,x f x  
                                                                                                    (2.16) 

where   denotes the various parameters appearing in ( , )f x   and ( , ) ( , )f x f x    . 

The following initial conditions are selected 

(0) , (0) 0,x A x 
                                                                                          (2.17) 

and this has the consequence that only the cosine terms are needed in the Fourier 

expansions, and therefore we have 

 
1

( ) cos 2 1 .
N

N

kN N

k

x t A k t


                                                                            (2.18) 

Observe that ( )Nx t has ( 1)N   unknowns, the N  coefficients, and N , the angular 

frequency. These quantities may be calculated by carrying out the following ways: 

 

Substituting equation (2.18) into equation (2.16), and expand the resulting form into an 

expression that has the following structure 

 
1

cos 2 1 0,
N

k N

k

H k t HOH


       HOH= Higher Order Harmonic              (2.19) 

where they kH  are functions of the coefficients, the angular frequency, and the parameters, 

i.e., 

1 2( , ,......., , , ).N N N

k k N NH H A A A  
                                                                   

(2.20) 

Herein equation (2.19), we only retain as many harmonics in our expansion as initially 

occur in the assumed approximation to the periodic solution. Set the functions kH to zero, 

i.e., 



11 

 

0, 1, 2,......., .kH k N 
                                                                                 

(2.21) 

The action is justified since the cosine functions are linearly independent, as a result any 

linear sum of them that is equal to zero must have the property that the coefficient are all 

zero. 

Solving the N equations in equation (2.21), for 
2 3( , ,....... )N N N

NA A A and N , in terms of

1

NA  and using the initial conditions, equation (2.17), we have for 
1

NA  the relation 

1 1

2

(0) ( , ).
N

N N N

N k

k

x A A A A 


  
                                                            

             (2.22) 

An important point is that equation (2.21) will have many distinct solutions and the one 

selected for a particular oscillator equation is that one for which we have known a priori 

restrictions on the behavior of the approximations to the coefficients. However, as the 

worked examples in the next section demonstrate, in general, no essential difficulties arise. 

For the case of non-conservative oscillators, where x  appears to an odd power the 

calculation of approximations to periodic solutions follows a procedure modified for the 

case of conservative oscillators presented above. Many of these equations take the form 

1 2( , ) ( , , ) ,x f x g x x x  
                                                                                 

(2.23) 

where 

1 1

2 2

( , ) ( , )

( , , ) ( , , ) ,

f x f x

g x x g x x

 

 

  


                                                                               

(2.24) 

and 1 2( , )  denote the parameters appearing in 1( , )f x  and 2( , , )g x x  .  

For this type of differential equation, a limit-cycle may exist and the initial conditions 

cannot, in general, be a priori specified. 

 

Harmonic balancing, for systems where limit-cycles may exist, uses the following 

procedures: 

The N th  order approximation to the periodic solution to be 

      1

2

( ) cos cos 2 1 sin 2 1 ,
N

N N
N

k kN N N N

k

x t A t A k t B k t


                     (2.25) 

where the 2N  unknowns 
1 2, ,......, ;N N N

NA A A 2, ,......,N N

N NB B
 
and 

N are to be determined. 

Substituting equation (2.25) into equation (2.23) and write the result as 
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    
1

cos 2 1 sin 2 1 0,
N

k N k N

k

H k t L k t HOH


                 

                

(2.26) 

where the { }kH and { }kL , 1k   to N , are functions of the 2N  unknowns which are 

mentioned above.  

Next equating the 2N  functions { }kH  and{ }kL  to zero and solving them for the (2 1)N 

amplitudes and the angular frequency. If a valid solution exists, then it corresponds to a 

limit-cycle. In general, the amplitudes and angular frequency will be expressed in terms of 

the parameters 1  and 2 . 

 

Here we present an example performed by Mickens with the Harmonic Balance method 

[35]. 

Mickens [35] has given the general procedure for calculating solutions by means of the 

method of direct Harmonic Balance as follows: 

1 0.x x                                                                                                            (2.27) 

For the first-order Harmonic Balance, the solution is 1 1( ) cos , .x t A t  
 

This 

calculation is best achieved if the TNL oscillator is written to the form 

1 0.xx                                                                                                              (2.28) 

Substituting 1( )x t  into this equation gives 

2

1

2 2

1

( cos ) ( cos ) 1 0

1 0,
2

A A HOH

A
HOH

     

   
     
  

                                                              (2.29) 

Therefore, in lowest order, the angular frequency is 

1

2 1.4142
( ) .A

A A
                                                                                           (2.30) 

The second Harmonic Balance approximation is 

2 1 2 2( ) cos cos3 , .x t A A t    
                                                                  

(2.31) 

Substituting this expression into equation (2.28) gives 
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2

1 2 2 1 2( cos cos3 )[ ( cos 9 cos3 ) 1 0,A A A A                                           (2.32)
   

 

and on executing the required expansions, we obtain 

2 2 2
2 21 2 1 1 2
2 2

9 10
1 cos 2 0,

2 2

A A A A A
HOH

     
        

    
                        (2.33) 

Setting the constant term and the coefficient of cos2  to zero gives 

2 2
2 21 2
2 1 1 2

9
1 0, 10 0,

2

A A
A A A

 
     

                                                            

(2.34) 

with the solutions 

21
2 2 2

1

200
, .

10 109

A
A

A

 
    

                                                                                  

(2.35) 

Therefore, 

2 1 2 2

1
( ) cos ( ) cos(3 ) ,

10
x t A t t

  
     

     

                                                        (2.36) 

and requiring 

2 1 1

9 10
(0) , ,

10 9
x A A A A

   
     

            

                                                              (2.37) 

gives 

2 2 2

10 1
( ) cos( ) cos(3 ) ,

9 10
x t A t t

    
       
    

                                                     (2.38) 

with 

2

2 22 2

1

200 162 1 1.273
, ( ) .

109 109
A

A A A

 
     

 
                                                         (2.39) 

The percentage error is 

2 100 1.6%.exact

exact

 
 


 

 

Note that the first approximation gives 
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1 100 12.84%.exact

exact

 
 


 

In this process the third approximation gives 

3 100 1.58%.exact

exact

 
 


 

 

Recently some authors used Iterative technique [28-42] for calculating approximations to 

the periodic solutions and corresponding frequencies of TNL oscillator differential 

equations for small and as well as large amplitude of oscillation. The method was 

originated by Mickens in 1987. He provided a general basis for Iterative methods as they 

are currently used in the calculation of approximations to the periodic solutions of various 

nonlinear oscillatory differential equations successfully. The general methodology of 

Iterative procedure by Mickens [35] and example will present below. The existence of a 

large percentage error suggests that we should try an alternative Iterative scheme and 

determine if a better result can be found. Further a generalization of this work was then 

given by Lim and Wu [29]. Their procedure is as follows: 

They assumed the equation in the form 

( ) 0, (0) , (0) 0x f x x A x    ,                                                                          (2.40) 

where A  is given positive constant and )(xf satisfies the condition 

)()( xfxf  .                                                                                                   (2.41) 

Adding x2  on both sides of equation (2.40), we obtain 

2 2 x x- ( ) ( )x f x g x    ,                                                                              (2.42) 

where  is priory unknown frequency of the periodic solution )(tx  being sought.  

They proposed the Iterative scheme of equation (2.42) 

2

1 1 1 1 1( ) ( )( ); 0,1,2,...k k k k k kx x g x g x x x k         ,                                      (2.43) 

where 
x

g
g x




  and the inputs of initial guess are 
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1 0( ) ( ) cos( ),x t x t A t  
                              

                                                    (2.44) 

with the initial conditions 

(0) , (0) 0, 1, 2, 3,... .k kx A x k             
                                                         

(2.45) 

Then substituting equation (2.44) into equation (2.43) and expanding the right hand side of 

equation (2.43) into the Fourier series yields 

1 1 1 1 2 1

2

[ ( )] [ ( )][ ( ) ( )] ( , )cos ( , )cos[(2 1) ],
N

k x k t k n

n

g x t g x t x t x t a A t a A n t      



        (2.46) 

where the coefficients ),(12 Aa n  are known functions of A  and  , and the integer N  

depends upon the function ( )g x  of the right hand side of equation (2.42) , On view of 

equation (2.46), the solution of equation is taken to be 

2 1
1 2 2

2

( , )
( ) cos cos[(2 1) ]

[(2 1) 1]

N
n

k

n

a A
x t B t n t

n


 








  
 

 ,                                      (2.47) 

where B  is, tentatively, an arbitrary constant. 

In equation (2.47), the particular solution is chosen such that it contains no secular terms 

[35], which requires that the coefficient ),(1 wAa  of right-side term tcos  in equation 

(2.46) satisfy 

0),(1 wAa .                                                                                                       (2.48) 

The equation (2.48) allows the determination of the frequency as a function A . Next, the 

unknown constant B will be computed by imposing the initial conditions in equation 

(2.45). Finally, putting these steps together gives the solution )(1 txk . 

 

Mickens [35] has given the general procedure for calculating solutions by means of the 

method of direct Iterative method as follows: 

Step-1. Assume that the differential equation of interest is 

( , ) 0, (0) , (0) 0,F x x x A x                                                                  (2.49) 

       and further assume that it can be rewritten to the form 

( , ) 0x f x x  ,                                                                                          (2.50) 
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Step-2. Next, adding
2x  to both sides to obtain 

2 2 ( , ) ( , )x x x f x x G x x    ,                                                            (2.51) 

       where the constant
2  is currently unknown. 

Step-3. Now, formulate the Iterative scheme in the following way 

2

1 1 ( , ); 0,1,2,...k k k k kx x G x x k    ,                                                    (2.52) 

      with 

0 0( ) cos( )x t A t  ,                                                                                    (2.53) 

      such that the 1kx   satisfy the initial conditions 

1 1(0) , (0) 0k kx A x   .                                                                           (2.54) 

Step-4. At each stage of the Iterative, k  is determined by the requirement that secular 

       terms should not occur in the full solution of 1( )kx t . 

Step-5. This procedure gives a sequence of solutions: 0 1( ), ( ), ... .x t x t  Since all 

             solutions are obtained from investigating linear equations, they are, in 

             principle, easy to calculate. 

 

The only difficulty might be the algebraic intensity required to complete the calculations. 

At this point, the following observations should be noted: 

i. The solution for 1( )kx t depends on having the solutions for k  less than ( 1)k  . 

ii. The linear differential equation for 1( )kx t  allows the determination of k by 

the requirement that secular terms be absent. Therefore, the angular frequency,

  appearing on the right-hand side of equation (2.52) in the function ( )kx t , is

k . 

iii. In general, if equation (2.50) is of odd parity, i.e., 

( , ) ( , ),f x x f x x                                                                                   (2.55) 

then the ( )kx t  will only contain odd multiples of the angular frequency. 
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Here we present an Example performed by Mickens with the Direct Iterative [43] method. 

The TNL oscillator differential equation of equation (2.27) can be written as 

2

2 2 2

1 0

( )

( ) .

xx

x x x

x x x x x

 


 


   

                                                                                      (2.56) 

This last expression suggests the following Iterative scheme 

2 2 2

1 1 ( ) .k k k k k k kx x x x x              
                                                                 

(2.57) 

For 0k   and 0 0( ) cos , ,x t A t    we have 

2 2 2 2

1 0 1 0 0

2 2 3 4
2 0 0
0

( cos ) ( cos ) ( cos )

3
1 cos cos3 .

4 4

x x A A A

A A
A

  

 

    

    
    

   

                                        (2.58) 

The elimination of secular terms gives 

2 2
20
0 2

3 4 1
1 0, ( ) .

4 3

A
A

A

  
     

 
                                                                      (2.59) 

Therefore, 1( )x t  satisfies the equation 

3 4
2 0

1 0 1 cos3 .
4

A
x x 

 
   

                                                                                

(2.60) 

The particular solution, ( )

1 ( )px t , is 

3 2
( ) 0
1 ( ) cos3 cos3 .

32 24

p A A
x t  

   
    

  
                                                              (2.61) 

Therefore, the general solution is 

1( ) cos cos3 .
24

A
x t C  

 
   

 
                                                                              (2.62) 

Using 1(0) ,x A  then 23/ 24C   and 

1

23 1
( ) cos cos3 .

24 24
x t A  

    
     

                                                                     

(2.63) 
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If the calculation is stopped at this point, then 

1 0 0

0

23 1
( ) cos( ) cos(3 )

24 24

2 1.1547
( ) .

3

x t A t t

A
AA

     
        

     

  
                                                    

(2.64) 

Note that 

2 1.2533141
( ) ,

2
exact A

A A


                                                                              (2.65) 

and  

0 100 7.9% .exact

exact

error
 

 


 

Proceeding to the second level of Iterative, 2 ( )x t  must satisfy the equation 

2 2 2

2 1 2 1 1 1 1( ) ,x x x x x                                                                                    (2.66) 

where 

1 1 1

23 1
( ) cos( ) cos(3 ) .

24 24
x t A t t

    
       

    
                                                      (2.67) 

Let 1 t  and substituting this 1( )x t  into the right-hand side of equation (2.66); doing so 

gives 

2 2 2 2

2 1 2 1 1

3
( , ) cos ,

4
x x A g A HOH   

  
      

  
                                   (2.68) 

where 

3 2 2 319
( , ) 66 27 ,

3

23 1
, .

24 24

g       

 

  
      


  


                                                      (2.69) 

The absence of secular terms gives 
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2

1 2

1

4 1

3 ( , )

1.0175
( ) ,

A g

A
A



 

    
           


 


                                                                                  (2.70) 

and 

1 100 18.1% .exact

exact

error
 

 


 

The existence of such a large percentage-error suggests that we should try an alternative 

Iterative scheme and determine if a better result can be found. This second scheme is 

2 2 2

1 1 ( ) .k k k k k k kx x x x x                                                                               (2.71) 

For 0k  , we have 

2 2 2

1 0 1 0 0 0 0( ) ,x x x x x                                                                                   (2.72) 

with 0 0( ) cos( ),x t A t   we find that 

0

4 1
( ) ,

3
A

A

 
   

 
                                                                                              (2.73) 

which is exactly the same result as previously given in equation (2.64). Similarly, we also 

determine that 1( )x t  is 

1

25 1
( ) cos cos3 ,

24 24
x t A  

    
     

                                                                     

(2.74) 

a result which differs from the previous calculation, i.e., compare the coefficients in 

equation (2.63) and equation (2.74). Further, the value of 1( )A , for the Iterative scheme 

of equation (2.71), is 

2

1 2

4 1
( ) ,

3 ( , )
A

A h



 

   
      

    
                                                                            (2.75) 

where, for this case, 
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3 2 211 38
( , ) ,

3 3

25 1
, ,

24 24

h      

 

    
         


  


                                                               (2.76) 

with 

1

1.0262
( ) ,A

A
                                                                                                  (2.77) 

and 

1( )
100 18%.exact

exact

A 
 


 

The general conclusion reached is that if the percentage error in the angular frequency is to 

be taken as a measure of the accuracy of this calculation, then the Iterative method does 

not appear to work well for this particular TNL oscillator. In fact, since the error for 0 ( )A  

is less than that of 1( )A , the two schemes may give (increasing in value) erroneous 

results for the angular frequency as k becomes larger. 

 

In 2005, this process was extended by Mickens [28] which is used in the calculation of 

approximations to the periodic solutions of nonlinear oscillatory differential equations. A 

generalization of this work was then given by Lim and Wu [29] and this was followed by 

an additional extension in Mickens. Actually Iterative method is a technique for calculating 

approximations to the periodic solutions of TNL oscillator which is presented by R.E. 

Mickens in [28]. 

 

Mickens [35] has given the general procedure for calculating solutions by means of the 

method of Extended Iterative method as follows: 

He consider the equation as 

0),,(  xxxfx  , Ax )0( , 0)0( x ,                                                              (2.78) 

where over dots denote differentiation with respect to time, t . 
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We choose the natural frequency   of this system. Then adding x2  on both sides of 

equation (2.78), we obtain 

),,(),,( -xx 22 xxxGxxxfx   .                                                              (2.79) 

Now, formulate the Iterative scheme as 

2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( , , ) ( , , )( )

( , , )( ) ( , , )( ) ,

k k k k k k x k k k k k

x k k k k k x k k k k k

x x G x x x G x x x x x

G x x x x x G x x x x x

        

       

   

   
   (2.80) 

where 

x

G
Gx




  , 

x

G
Gx 




 , 

x

G
Gx 




 .                              (2.81) 

And 1kx  satisfies the conditions 

.0)0(,)0( 11   kk xAx                                                                                      (2.82) 

The initial guess are taken to be [30] 

)cos()()( 001 tAtxtx  .                                                                               (2.83) 

The right hand side of equation (2.80) is essentially the first term in a Taylor series 

expansion of the function ),,( kkk xxxG   at the point ),,( 111  kkk xxx  [53]. To illustrate this 

point, note that 

)( 11   kkkk xxxx ,                                                                                       (2.84) 

and for some function )(xG , we have 

1 1 1 1( ) [ ( )] ( ) ( ) ... .k k k k k x k kG x G x x x G x G x x                     
            

         (2.85) 

An alternative, but very insightful, modification of above scheme was proposed by Hu 

[32]. He used the following equation in place of equation (2.84) 

0 ( ).k k ox x x x                                                                                            (2.86) 

Then, equation (2.85) is changed to 

0 0 0 0( ) [ ( )] ( ) ( ) ...,k k x kG x G x x x G x G x x                                                 (2.87) 

and the corresponding modification to equation (2.80) is 
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2

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( , , ); ( , , )( )

( , , )( ) ( , , )( ).

k k k x k

x k x k

x x G x x x G x x x x x

G x x x x x G x x x x x

    

   
                                    (2.88) 

This scheme is computationally easier to work with, for 2k , than the one given in 

equation (2.80). The essential idea is that if )(0 tx is a good approximation, then the 

expansion should take place at 0x x . Also, as pointed out by Hu [32], the )(0 tx  in 

)( ok xx   is not the same for all k . In particular, )(0 tx  in )( 1 oxx   is the function

1cos( )A t , while the )(0 tx  in )( 2 oxx   is the function 2cos( )A t . 

 

Here we present an example executed by Mickens with the Extended Iterative method 

[35]: 

The TNL oscillator equation (2.27) has several possible Iterative schemes. We use the one 

derived from the relation 

2 2 2 2( ) ( , , ),x x x x x G x x                                                                       (2.89) 

that is 

2 2 2 2 2

1 1 0 0 0 0 0 0 1 0( ) ( ) ( ) 2 ( ).k k k k k k kx x x x x x x x x x x x 
                           

(2.90) 

To obtain this relation the following formula was used for the Extended Iterative scheme 

2 2 2 2

1 1 0 0 0 0 0 0 0 0( , , ) ( , , ) ( ) ( , , )( ).k k k k x k k x k kx x G x x G x x x x G x x x x         
   

(2.91) 

For k = 1, we have 

2 2 2 2

2 1 2 0 0 1 0 1 0 0 12 ( ) ( ) 2 ,x x x x x x x x x                   
                                      

(2.92) 

with 

 
0

1

1

( ) cos ,

( ) cos cos3 ,

23 1
, , .

24 24

x t A

x t A

t



   

  


 


 

    


                                                                           (2.93) 
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(Seeing equation (2.63) for 1( )x t ). Substituting the items in equation (2.93) into the right-

hand side of 1

1.189699
( ) .A

A
   Equation (2.92) gives, after some algebraic and 

trigonometric simplification, the result 

2 4
2 2 1

2 1 2 1

2
2 2 4 31
1 1

( ) (3 7 ) cos
4

19
[(1 35 ) 4 ]cos3 ( )cos5 .

4 4

A
x x A

A
A A

  


   

  
      

  

   
        

  

                           (2.94) 

Setting the coefficient of cos  to zero and solving for 2

1
 
gives 

2 2

1 02

1

4 1 69 69
( ) ( )

3 65 65

1.189699
( ) .

A A
A

A
A

       
                 


 


                                                            

(2.95) 

Comparing 1( )A  with the exact value, ( )exact A , we find the following percentage error 

1 100 5.1%.exact

exact

 
 


 

Note that using the direct Iterative scheme, we found  

0

1

1.1547
( ) (7.9% ),

1.0175
( ) (18.1% ).

A error
A

A error
A


 

 


 

Therefore, the Extended Iterative procedure provides a better estimate of the angular 

frequency. 

Replacing 2 2

1 A in equation (2.94), by the expression of equation (2.95), we obtain 

2 2
2 1 1

2 1 2

1292 437
cos cos5 .

4 390 4 390

A A
x x  

       
         

      
                               (2.96) 

The corresponding particular solution takes the form 

( )

2 1 2( ) cos3 cos7 .px t D D                                                                               (2.97) 
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Substituting this into equation (2.96) and equating the coefficients, respectively, of the

cos3 and cos7  terms, allows the calculation of 1D  and 2D ; they are 

1

2

3876
,

37440

437
.

37440

D A

D A

  
  

  


      

                                                                                     

         (2.98) 

Since the full solution for 2 ( )x t  is 

( )

2 1( ) cos ( ),px t C x t                                                                                       (2.99) 

with 2(0)x A , it follows that 

1 2

33127
,

37440
C A D D A

 
     

 
                                                                        (2.100) 

and 

2

1/2

1

33127 3876 437
( ) cos cos3 cos5 ,

37440 37440 37440

92 1
( ) .

65

x t A

t t
A

  



       
         

      


   
     

   

                   (2.101) 

Inspection of 2 ( )x t  indicates that the coefficients of the harmonics satisfy the ratios 

 

1

0

2

1

3876
0.117,

33127

437
0.113.

3876

a

a

a

a


 



  


                                                                                       (2.102) 

 

Now-a-day‟s Iterative method is used widely by Lim and Wu [29], Hu and Tang [33], 

Chen and Liu [34], Haque et al. [36-42] etc. which is valid for small together with large 

amplitude of oscillation to attain the approximate frequency and the harmonious periodic 

solution of such nonlinear problems. Mickens [28] provided a general basis for Iterative 

methods as they are currently used in the calculation of approximations to the periodic 

solutions of nonlinear oscillatory differential equations. 

 



25 

 

Here we present an Example executed by Haque et al. [36] with the Iterative method: 

The equation (2.27) can be written as 

2 2 1  x x x x    .                                                                                       (2.103) 

According to equation (2.52), the Iterative scheme of equation (2.103) will be 

2 2 1

1 1k k k k k kx x x x

     .                                                                              (2.104) 

The first approximation 1( )x t  and the frequency 0  will be obtained from the solution of 

(putting 0k   in equation (2.104) and utilizing equation (2.53)) 

2 2 1

1 0 1 0 cos ( cos ) .x x A A                                                                     (2.105) 

Now expanding 
1(cos ) 
 in a Fourier Cosine series in interval [0, ] , the equation (2.103) 

reduces to 

2 2 1

1 0 1 0

1

2
cos ( 1) cos(2 1)n

n

x x A n
A

 






      .                                         (2.106) 

To check secular terms in the solution, we have to remove cos  from the right hand side 

of equation (2.106), and we obtain 

2

0 02

2 1.414
, .

A A
                                                                                         (2.107) 

Then solving equation (2.106) and satisfying the initial condition (according to equation 

(2.54)), we obtain 

2

1

1 ( 1)
1 ( 1 2ln 2))cos cos(2 1)

4 4( 1)
( ) (( ).

n

n

nx t A
n n

 







    


                        (2.108) 

This is the second approximation of equation (2.27) and the related 1  is to be determined. 

The second approximation 2 ( )x t  and the value of 1  are obtained from the solution of 

2 2 1

2 1 2 1 1 1x x x x    .                                                                                    (2.109) 

Substituting 1( )x t  from equation (2.108) into the right-hand side of equation (2.109), we 

obtain 
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2 2

2 1 2 1

2

1

2 1

1

( 1)
((1 ( 1 2ln 2) / 4)cos cos(2 1) )

4( 1)

1
( 1) cos(2 1) ,

n

n

n

n

n

x x A n
n n

a n
A

 















       



  




               (2.110)

 

where 

1 3 5 7 91.599611, 0.983636, 1.102235, 1.079400, 1.083797,... .a a a a a    
  
(2.111)

 

To avoid secular terms in the solution, we have to remove cos  from the right hand side of 

equation (2.110). Thus we have 

2

1 12

1.599611 1.208
, .

(1 ( 1 2ln 2) / 4)A A
   

  
                                                        (2.112) 

Then equation (2.110) becomes, 

2 2

2 1 2 1 2 1

2 2

( 1) 1
cos(2 1) ( 1) cos(2 1)

4( 1)

n
n

n

n n

x x A n a n
n n A

 
 



 


      


  .    (2.113) 

The equation (2.113) approximately can be written as, 

2 2

2 1 2 2 1

2 2

1

( 1) 1.1
cos(2 1) ( 1) cos(2 1)

4( 1)

n
n

n

n n

x x A n a n
n n A

 
 



 


      


  .   (2.114) 

Then solving equation (2.114) and satisfying the initial condition, we obtain the second 

approximation, 

2

1

2 2
2 1

( ) ((1 (3 4ln 2) /16 1.1( 1 2ln 2) / (4 ))cos

( 1) 1.1( 1)
cos(2 1) ,

(4( 1) ) 4( 1)

n n

n

x t A z A

n
n n n n








     

  
   

   


                             (2.115) 

where 

8

(1 ( 1 2ln 2) / 4) (3 ln 2)(4 ln16)
z 

    
.                                                   (2.116) 

The third approximation 3x  and the value of 2  are obtained from the solution of 

2 2 1

3 2 3 2 2 2 .x x x x                                                                                      (2.117) 

Substituting 2 ( )x t  from equation (2.115) into the right-hand side of equation (2.117) and 

utilizing the same method, we obtain 
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1
2 2

3 2 3 2 2 2
2 1

( 1) 1.1( 1) 1.26
( 1) cos(2 1)

(4( 1) ) 4 ( 1)

n n
n

n

x x A n
n n n n A






   
             

 ,  (2.118) 

where 

2 2

2 2

1.265
1.693744 / (1 (3 4ln 2) /16 1.1( 1 2ln 2) / (4 ))) , .A z

A
               (2.119) 

Then solving equation (2.118) and satisfying the initial condition, we obtain 

3 3 2
2 1

1 1.1 1.26
( ) 1.0672cos cos (2cos 2 1)

(( 1) ) (( 1) ) ( 1)n

x t A
n n z n n z n n

  




  
           

 , (2.120) 

where 

1 1.693744 / (1 (3 4ln 2) /16 1.1( 1 2ln 2) / 4 )z z      .                                     (2.121) 

Therefore, 0 1 2, , ,...,   respectively obtained by equation (2.107), (2.112), (2.119),….,  

represent the approximation of frequencies of oscillator (2.27). 
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CHAPTER III 

 

 

New Extended Iterative Method 

 

 

3.1 Introduction 

Inverse truly nonlinear oscillator (acceleration is inversely proportional to displacement) 

occurs as a model of certain phenomena in plasma physics [35]. Mickens [35] used the 

Iterative technique to calculate a higher-order approximation to the periodic solutions of a 

conservative oscillator. Hu [52] applied the modified Iterative technique of Mickens [35] 

to find approximate of nonlinear oscillators with fractional powers and quadratic nonlinear 

oscillator respectively. Haque et al. [36-42] has applied Mickens Iterative and modified 

Iterative method to determine approximate periodic solutions of a class of nonlinear 

equations. The main purpose of this thesis is to develop a modification of the Extended 

Iterative technique for the determination of approximate solution and angular frequency of 

“the inverse truly nonlinear oscillator”. We compare the result with existing results 

obtained by various researchers and it is mentioned that our solution measure similar and 

sometimes better results than other existing procedures. 

 

3.2 The Method 

An Extended Iterative method will be used to obtain analytical solution of the inverse truly 

nonlinear oscillator. The procedure may be briefly described as follows. 

A nonlinear oscillator will be modeled by 

( , , ) 0, (0) , (0) 0,x f x x x x A x                                                                       (3.1) 

where over dots denote differentiation with respect to time, t.  

We choose the natural frequency   of this system. Then adding 2 x  to both sides of 

equation (3.1), we obtain 
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2 2 ( , , ) ( , , ).x x x f x x x G x x x                                                                     (3.2) 

The Extended Iterative scheme is 

2

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

( , , ) ( , , )( )

( , , )( ) ( , , ) ( ) ,

k k k k k k x k k k k k

x k k k k k x k k k k k

x x G x x x G x x x x x

G x x x x x G x x x x x

        

       

   

   
                   (3.3)

 

where , , .x x x

G G G
G G G

x x x

  
  
  

 

The right hand side of equation (3.3) is essentially the first term in a Taylor series 

expansion of the function ),,( kkk xxxG   at the point ),,( 111  kkk xxx  [53]. 

An alternative, but very insightful, modification of above scheme was proposed by Hu [52] 

and the corresponding modification to equation (3.3) is  

2

1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

( , , ); ( , , )( )

( , , )( ) ( , , )( )

k k k x k

x k x k

x x G x x x G x x x x x

G x x x x x G x x x x x

    

   
         (3.4) 

And 1kx  satisfies the conditions 

1 1(0) , (0) 0.k kx A x  
                                                                                        

(3.5) 

The initial guess are taken to be [29] 

1 0 0( ) ( ) cos( ).x t x t A t                                                                                     (3.6) 

The above procedure gives the sequence of solutions 
1 2 3( ), ( ), ( ),x t x t x t . The method can 

be proceed to any order of approximation; but due to growing algebraic complexity the 

solution is confined to a lower order usually the second [28]. 

 

3.3 Solution Procedure 

Let us consider the nonlinear inverse oscillator 

1 0x x                                                                                                               (3.7) 

Adding x2  on both sides of equation (3.7), we get 

2 2 1 2( , )x x x x G x                                                                                 (3.8) 

where 
2 2 1( , )G x x x   , 2 2 2( , ) .xG x x    



30 

 

According to equation (3.4), the Extended Iterative scheme of equation (3.8) is 

2 2 1 2 2

1 1 0 0 0 0( ) ( )( ).k k k k k kx x x x x x x 

                                                       (3.9) 

The first approximation )(1 tx  and the frequency 0  will be obtained by putting 0k   in 

equation (3.9) and using equation (3.6) we get
 

2 2 1 2 2

1 0 1 0 0 0 0 0 0 0

2 1

0 0 0

( ) ( ) ( )

,

x x x x x x x

x x

 



       

  
                                                   (3.10)

 

where 0 0( ) cos( ) cosx t A t A    . 

Now substituting 0 ( )x t and expanding the right-hand-side in a Fourier cosine series, then 

equation (3.10) reduces to
 

2 2

1 0 1 0

2

0

2 2 2
cos cos cos3 cos5

2 2 2
cos cos3 cos5 .

x x A
A A A

A
A A A

   

  

 
      

 

 
     
 

                                  (3.11) 

To avoid secular terms in the solution, we have to remove cos  from the right hand side 

of equation (3.11). Thus we have 

2

0 0

2 2 1.41421
0, .A

A A A
                                                                          (3.12) 

This is the first approximate frequency of the oscillator. Note that   
1.253314

( )exact A
A

  . 

After simplification the equation (3.11) reduces to 

2

1 0 1

2 2
cos3 cos5 .x x

A A
                                                                            (3.13) 

The particular solution, )(
)(

1 tx
p

 is  

( )

1 2 2 2 2

0 0 0 0

2 / 2 /
( ) cos3 cos5

9 9

 0.125  cos 3 +0.041667  cos5 .

p A A
x t

A A

 

 

 
     

                                                (3.14)
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Therefore, the complete solution is 

1( ) cos 0.125  cos 3 +0.0416667  cos5 .x t C A A                                           (3.15) 

Using Ax )0(1 , we have 1.083333 .C A  Then we obtain 

1( ) ( cos cos3 )1.083333 0. .125x t A   
                                                            

(3.16) 

This is the first approximate solution of the oscillator. 

 

Proceeding to the second level of Iterative, )(2 tx satisfies the equation 

2 2 1 2 2

2 1 2 1 0 0 1 0 1 0

2 1 2

1 1 0 0 1

( ) ( ) ( )

2 ,

x x x x x x x

x x x x

 

 

       

                                                      (3.17)

 

where 0 0( ) cos( ) cosx t A t A     and 1( ) ( cos cos3 )1.083333 0. .125x t A     

Now substituting 0 ( )x t  and 1( )x t and expanding the right- hand side in a Fourier cosine 

series, then equation (3.17) reduces to 

 2

2 1 2

2

1

2 2

1 1

1.583333 1.083333
1.083333 0.125 3

1.583333 1.083333
1.083333 0.125 3

cos cos

.

3 cos cos
A A

A cos A cos
A A

x x A  

 

 
 

     

   
        
 







          (3.18)

 
To avoid secular terms in the solution, we have to remove cos  from the right hand side 

of equation (3.18). Thus we have 

2

1 1

1.583333
1.083333 0

1.2
.,

0894
A

A A
   

          
                                         

(3.19) 

This is the second approximate frequency of the oscillator. After simplification the 

equation (3.18) reduces to 

2

2 1 2

0.900641
cos3 .x x

A
                                                                               (3.20) 
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The particular solution, ( )

2 ( )px t  is  

( )

2 2 2

1 1

0.900641/
( ) cos3 0.077029 cos3 .

9

p A
x t A   

  
          

                              

 (3.21) 

Therefore, the complete solution is 

2( ) cos 0.077029 cos3 .x t D A                                                                      (3.22) 

Using  Ax )0(2  , we have 1.07703 .D A  Then we obtain 

2( ) ( cos1.077029 0.077029cos3 ).x t A   
                                                      

(3.23) 

This is the second approximate solution of the oscillator. 

Proceeding to the third level of Iterative, )(3 tx satisfies the equation 

2 2 1 2 2

3 2 3 2 2 0 2 0 2 0

2 1 2

2 2 0 0 2

( ) ( ) ( )

2 ,

x x x x x x x

x x x x

 

 

       

                                                      (3.24)

 

where 0 0( ) cos( ) cosx t A t A     and 2( ) ( cos1.077029 0.077029cos3 ).x t A     

Now substituting 0 ( )x t  and 2 ( )x t and expanding the right hand side in a Fourier cosine 

series, then equation (3.24) reduces to 

 2

3 2 3

2

2

2 2

2 2

1.691886 1.383772
1.077029 0.077029 3

1.691886 1.383772
1.077029 0.077029 3

cos cos

.

3 cos cos
A A

A cos A cos
A A

x x A  

 

 
 

     

   
        
 







      (3.25)

 
To avoid secular terms in the solution, we have to remove cos  from the right hand side 

of equation (3.25). So we have 

2 2

2 1.691886
1.077029 0

1.2
.,

5335
A

A A
   

                                                  (3.26) 

This is the third approximate frequency of the oscillator. After simplification the equation 

(3.25) reduces to 

2

3 2 3

1.26277
cos3 .x x

A
                                                                                 (3.27) 
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Then solving equation (3.27) and satisfying the initial condition 3(0)x A , we obtain 

3( ) ( cos1.100482 0.100482cos3 ).x t A   
                                                      

(3.28) 

This is the third approximate solution of the oscillator. 
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CHAPTER IV 

 

 

Results and Discussion 

 

 

In this chapter, we compare the results obtained by all of the methods that were used to 

calculate approximations to their periodic or oscillatory solutions. Consequently, one 

measure of the accuracy or quality of a given method is the difference between the exact 

value of the angular frequency and that determined using the approximation procedure. 

 

4.1 Results 

An Iterative approach is presented to obtain approximate solution of the “inverse truly 

nonlinear oscillator”. Iterative methods utilized to approximate the solution of the 

oscillator. The present technique is very simple for investigating algebraic equations 

analytically and the approach is different from the existing other approach for taking 

truncated Fourier series. This process significantly improves the results. 

Here we have calculated the first, second, third approximate frequencies 0 , 1 , 2 . All 

the results are given in the following Table-1. To compare the approximate frequencies we 

have also given the existing results determined by Mickens Direct and Extended Iterative 

method [35] and Mickens HB method [17], Haque et al. Iterative method [36] in Table-2. 

Fortunately our method gives significantly better result than other formula. 

To show the accuracy, we have calculated the percentage of errors by the following 

definitions: 

100%e k

e

Error
 

 


 

where ( 0,1,2,...)k k  represents the approximate frequencies obtained by the present 

method and e  represents the corresponding exact frequency of the oscillator. 
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Table-1: 

 

Adopted approximate frequencies of 1 0.x x   

 

Exact frequency e                                                                            
1.253314

A
 

Amplitude 

A  

First approximate 

frequencies, 0  

Error (%) 

Second approximate 

frequencies, 1  

Error (%) 

Third approximate 

frequencies, 2  

Error (%) 

 

Presented method 

  

1.41421

A
 

12.84 

 

1.20894

A
 

3.54 

 

1.25335

A
 

0.0029 
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Table-2: 

 

 Comparison of the approximate frequencies with exact frequency 
e  of 1 0.x x   

 

Exact frequency e                                                                                        
1.253314

A
 

Amplitude 

A  

First approximate 

frequencies, 0  

Error (%) 

Second approximate 

frequencies, 1  

Error (%) 

Third approximate 

frequencies, 2  

Error (%) 

 

Mickens Direct 

Iterative method [35] 

  

A

155.1
 

7.9 

 

A

018.1
 

18.1 

 

 

----- 

 

Mickens Extended 

Iterative method [35] A

155.1
 

7.9 

 

A

189699.1
 

5.1 

 

----- 

 

Mickens HB 

method [17] 

 

A

414.1
 

12.84 

 

A

273.1
 

1.6 

 

A

2731.1  

1.58 

 

Haque et al.  Iterative 

method [36] 

 

A

414.1
 

12.84 

 

A

208.1
 

3.63 

 

A

265.1
 

0.92 

 

 

Presented method 

 

  

 1.41421

12.84

A

 

 

ljj 

 

1.20894

3.54

A

 

 

ljj 

 

1.25335

0.0029

A

 

 

ljj 
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4.2 Convergence and Consistency Analysis 

We know the basic idea of Iterative methods is to construct a sequence of solutions 
kx  (as 

well as frequencies
k ) that have the property of convergence  

lim
e kx x

k



           or,  

lim
e k

k
  

  

Here 
ex  is the exact solution of the given nonlinear oscillator. 

In the present method, it has been shown that the solution yield the less error in each 

Iterative step compared to the previous Iterative step and finally 

2 0.253350 0.253314e      , where  is a small positive number and A  is 

chosen to be unity. From this, it is clear that the adopted method is convergent. 

An Iterative method of the form represented by equation (3.4) with initial guess given in 

equation (3.5) is said to be consistent if   

lim
0k ex x

k
 


   or, 

lim
0k e

k
  


 

In the present analysis we see that  

lim
0k e

k
  


, as 2 0e   . 

Thus the consistency of the method is achieved. 

 

4.3 Discussion 

It is noted that Mickens [35] found only second approximate frequency by Direct Iterative 

method and Extended Iterative method. Mickens [17] and Haque et al. [36] also presented 

third approximate frequencies by Harmonic Balance method and Iterative method where 

result is comparatively not well. 
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CHAPTER V 

 

 

Conclusions and Comments 

 

 

In this final chapter, some concluding remarks have been included. Some essential 

recommendations about modified Extended Iterative method have also been presented. 

 

5.1 Conclusions 

The basic foundation behind Iterative methods is to re-express the original nonlinear 

differential equation that involves with an infinite sequence of equations, each of which 

can be solved, and such that at a particular stage of the calculation, knowledge of the 

solutions of the previous members of the sequence is required to solve the differential 

equation at that stage. The major issue is how to reformulate the original nonlinear 

differential such that a viable Iterative scheme can be constructed. The rewriting of a TNL 

differential equation to a new form raises several mathematical issues. The most significant 

is the relationship between the solutions of the original equations and those of the 

reformulated equations. In this thesis we used a simple but effective modification of the 

Extended Iterative method to investigate nonlinear differential equations. The results have 

improved when we truncated three terms to calculate the first approximate solution, two 

terms to calculate the second approximate solution and two terms to calculate the third 

approximate solution. This technique can be used as paradigms for many others 

applications in searching for periodic solution of other nonlinear oscillators. The obtained 

results show that the modification of the Extended Iterative method is more accurate than 

other methods and is valid for large region. 
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5.2 Comments 

In the final analysis, the validity and value of a particular method and the solutions that it 

produces depend heavily on what we intend to do with the results obtained from the 

calculations. However, the following issues are of prime importance: 

i. A given truly nonlinear (TNL) oscillator equation may have more than one possible 

Iterative scheme. At present, there are no a priori meta-principles which place 

limitations on the construction of Iterative schemes. 

ii. Iterative methods may not provide accurate values for the angular frequencies when 

the original TNL oscillator differential equation contains “singular terms”. 

iii. For level k ≥ 2 calculations, the work required to determine the angular frequency 

and associated periodic solution may become algebraically intensive. 

iv. The Extended Iterative method generally is easier to apply, for better result, in 

comparison with similar direct Iterative techniques. 

v. In principle, Iterative methods may be generalized to higher-order differential 

equations. 

 

We can get desirable solution or angular frequency from a truly nonlinear oscillator by the 

proper use of the term of the Fourier series. In each of the Iterative scheme, right choice of 

truncation is most important. 
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