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Abstract

The performance of students depend on many factors such as, attendance, motivation, level of
engagement etc. which may be considered as the students attributes towards learning and some
other attributes of the teachers on the process. No research is available relating the academic
attainment and class attendance of our universities, especially at KUET where a 60%
mandatory attendance is imposed to appear in the final examination. Though there exist many
factors on student academic attainment, namely Class Test Marks and Final Grade, here we
are interested and selected one important factor namely class attendance.  There are many
departments in this university (KUET) and a lot of subjects are taught. But Mathematics is
common to all. Hence Mathematics is chosen for this study. This study is done among the
students of first year and second year in several engineering departments regarding
mathematics courses during the period 2000 -2013. It is of no doubt that for the existence of
many proxy variables (Teacher’s attribute, student’s attribute, subjects, socio-economic
environment etc.), it is very difficult to assess the impact of class attendance on academic
attainment. Moreover, due to impose of mandatory percentage on class attendance, it becomes
much more difficult to find out the impact of attendance on Class Test Marks as well as on
Final Grade.

In this study we have considered only existing old data (student attendance and academic
performance), where the effect of proxy variables are ignored. Moreover, for better
comparison as well as for finding some test statistics, all the data are normalized.  We have
rigorously studied about the correlation between class Attendance and Class Test Marks for
each course. We have also investigated thoroughly in each course for the existence of
correlation between class Attendance and Final Grade. In spite of 60% mandatory attendance,
from the experimental results, it revealed that attendance has a great effect on academic
attainments. But the effect is varying department to department as well as semester to
semester. Though there exist correlations between Attendance and Class Test Marks but there
exist relatively much strong correlation between Attendance and Final Grade in perceptive of
all departments. It reveals that class attendance grow some intuitive knowledge to the students
which affect on their final Grade. According to the existence of correlations, some Meta
regression models are proposed regarding both Class Test Marks and Final grade depending
on attendance. Though for the lacking of continuous data, we could not find out socio-
economic effect on academic attainment but it is revealed from the experimental study that
introducing any new system effect on Attendance as well as academic performance.
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CHAPTER I

INTRODUCTION

Educators, parents, and politicians are continuously searching for that magic solution which

will reform our public education system and establish a flawless system of education for our

youth providing them with a quality education. In European Union, it is commonly assumed

that university students are benefitted from attending lectures. This assumption, however,

needs to be tested, as developments in information technology are increasingly calling for a

reassessment of the traditional approach towards university education. Outside this

assumption based on physical attendance in lectures and classes, a number of alternative

weightless educational models, based on distance learning, are being introduced [Stanca

(2006), Rocca (2003)]. In the last decade, a number of studies have examined the relationship

between students' attendance (or absenteeism) and academic performance, with a general

finding that attendance does matter for academic achievement [Devadoss and Foltz (1996),

Marburger (2001), Kirby and McElroy (2003), Vanblerkon (1992), Sander et al. (2000)].

Now a days, regular school attendance is an important factor in school success [Rothman

(2001)]. Research has shown a direct correlation between good attendance and student

achievement. Poor attendance has been linked to poor academic achievement [Ziegler

(1972)]. “Students who are absent from school receive fewer hours of instruction; they often

leave education early and are more likely to become long term unemployed, homeless, caught

in the poverty trap, dependent on welfare and involved in the justice system” [U.S.

Department of Education (1996)]. Jones (2006) has studied the impact of student attendance,

socio-economic status and mobility on student achievement. Literature suggests that a

relationship exists among attendance, socio-economic status, and mobility and student

achievement.
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Studies have shown that learning and academic performance should be considered from a

more holistic approach and the four main factors which are considered critical to learning are

demography, active learning, students’ attendance, and involvement in extracurricular

activities [Ali et al. (2009)]. The consistent result of the holistic approach is that it enhances

learning and is likely to increase academic performance. It also features attendance as being a

contributing factor for such enhanced learning. One could argue that attendance increased as a

result of more interesting class sessions or that the holistic approach requires active

participation from the students hence attendance is crucial to the success of the learning and

teaching style. In a meta-analysis reviewing the relationship of class attendance in college

with grades and student characteristics, it was shown that attendance has strong correlations

with both class grades and Grade Point Average (GPA) [Crede et al. (2010)]. Even with such

strong evidence regarding the two variables, that meta-analysis also showed that mandatory

attendance polices appear to have a small positive impact on average grades. According to

Patel’s study (based on his nine year teaching experience using Kelly’s Personal Construct

Theory (PCT)) the sustained high levels of student attendance at lectures and seminars

improved student significant progress and satisfied cohort [Cohall (2009)].

Some studies [Hancock (1994), Shimoff and Catania (2001)] have showed that there is a

positive correlation between attendance and academic performance. In addition to some

studies showing that attendance and academic performance are directly correlated, some

studies show a relatively consistent relationship between attendance and grades, regardless of

the course subject or level of student [Ali et al. (2009)]. However, in some instances, the

degree of change may be negligible [Crede et al. (2010)]. These latter reports mention other

confounding factors in the learning process, such as student motivation and levels of

engagement, which may have a greater contribution to academic performance than

attendance. Therefore, it is still a burning question whether attendance has significant impact

on academic performance or not. More researches are going on regarding this aspect here and

abroad. It is also worthwhile to mention here that there are many factors exist in this aspect;

one of them is socio-economic changes.
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After Chapter I in which the introduction of the research works is presented, the literature

review is discussed in Chapter II. Chapter III presents the overview of correlation and

regression analysis and Test of Hypothesis. In Chapter IV, extensive investigations are

carried out to find out the correlation of class attendance on Class Test as well as on Final

Grade. In Chapter V extensive experiments are performed to establish regression models of

academic performance on class attendance. Finally concluding remarks and brief discussion

about the research works are given in Chapter VI. The list of the references and appendix are

presented at the end of the thesis as well.
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CHAPTER II

LITERATURE REVIEW

Student attendance is an important issue in today’s' higher education. Many universities have

compulsory attendance policies, while others refrain from making it as such. Despite the

different policies, there seems to be a consensus among the professors about the positive

effect of attendance in academic performance. Not attending in classes is seen as one of the

reasons for academic failure. The recent developments in information and technology require

a re-evaluation of the traditional method of study and the belief that undergraduate students

are benefitted from class attendance should be tested. Moreover the presence of the new study

methods based on distance learning requires a further analysis and discussion on the physical

course attendance. In the last decade, a number of studies have investigated the relation

between class attendance and academic performance reaching to the conclusion that there

exists a positive correlation between these two [Durden and Ellis (1995), Devadoss and Foltz

(1996), Marburger (2001), Kirby and McElroy (2003)].

It is mentioned earlier that research has shown a direct correlation between good attendance

and student achievement and poor attendance has been linked to poor academic achievement

[Ziegler (1972)]. Moreover studies have shown that a more holistic approach should be

considered for assessment of the learning and academic performance and the four main

factors which are considered critical to learning are demography, active learning, students’

attendance, and involvement in extracurricular activities [Ali et al. (2009)]. When top-

performing medical students were questioned about the main factors for their success, some

of the main factors highlighted were “attitude, beliefs and motivation” and “effort and

perseverance” (The University of the West Indies, 2009). Attendance was not mentioned or

attributed to their success (The University of the West Indies, 2009). Moreover Crede et al.
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(2010) also showed that mandatory attendance polices appear to have a small positive impact

on average grades.

A large number of researches have been performed to investigate the impact of class

attendance on academic attainment. A brief literature reviews are presented here regarding

this matter. Romer (1993) provided the analysis of the relationship between lecture attendance

and examination performance. Using attendance records in six sessions of his large (n = 195)

Intermediate Macroeconomics course, he found that attendance had a positive and significant

impact on academic performance. On the basis of these findings, Romer recommended

experimenting with mandatory attendance policies to enhance student performance.

Following on Romer’s (1993) seminal paper, several studies have attempted to measure the

impact of attendance on learning outcomes. Durden and Ellis (1995) used students’ self-

reported number of absences to explore the relationship between absenteeism and academic

achievement in several sections (n = 346) of an undergraduate course.

Mitchell (1993), in his dissertation compared between the achievement and attendance of fifth

grade African American male and female students attending same-gender classes and

coeducational classes in Polytechnic Institute and State University. Poor attendance has been

linked to poor academic achievement. Applegate (2003), in his Ph.D. dissertation, tried to

establish a relationship among attendance, socio-economic status and mobility and the

achievement of the students.

Sexton (2003) considered a case study of the effect of year round education on attendance,

academic performance, and behavior patterns in his Ph. D dissertation. For the case study he

considered the statistical data of Blacksburg University, Virginia. On the other hand Gamble

(2004) and Jones (2006), in their doctorial dissertations, studied about the relationship among

student population stability, academic achievement and gain-score test results. Some studies

[Zamudio (2004), Hancock (1994)] showed a relatively consistent relationship between

attendance and grades, regardless of the course subject or level of student. They have shown
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that attendance has strong correlations with both class grades and Grade Point Average

(GPA). However, in some instances, the degree of change may be negligible.

Ali et al. (2009), investigated to find the influencing factors on performance. An empirical

investigation was undertaken, using the simple correlation analytical technique, specifically

the Pearson product movement correlation coefficient. After the data collection and analysis,

they found that the result of the survey indicated that the Attendance of students at Simad

University was highly affected by the following factors: demographic, active learning,

students’ attendance and involvement in extracurricular activities. On the other hand this

study also examined the relationship between attendance and academic performance. A strong

positive relationship between student’s attendance and academic performance in Simad

University has been found in this study. Similarly, Suleiman et al. (2012), in their study,

revealed a strong positive relationship between Class Attendance and Cumulative GPA for

Academic success in Industrial Engineering Classes.

However, Crede et al. (2010) showed that the degree of academic performance with respect to

class attendance was negligible. They mentioned other confounding factors in the learning

process, such as student motivation and levels of engagement, which may have a greater

contribution to academic performance than attendance. The study showed that learning and

academic performance should be considered from a more holistic approach including

“attitude, beliefs and motivation” and “effort and perseverance”.

On the other hand Cohall (2009) showed that, for the presence of mandatory attendance

polices, attendances have a small positive impact on average grades. Moreover, Damian et al.

(2012) tried to determine the significance of attendance in the improvement of academic

performance of a first year course in medical program (University West Indies). They

imposed that students must have an attendance rate of 80% of all timetabled sessions to sit

final course exams which improved students’ performance. Results showed that there was

significant increase in attendance during Semester 2 of the academic year 2009-2010. This

significant improvement in attendance was not reciprocated with an improvement in academic
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performance in course assessments when the two semesters were compared. The findings

suggest that other factors are more critical to academic success. Some of these factors may be

well indicated in the holistic approach which is regarded as the best approach to the learning

process.

Sirin (2005) reviewed the literature on socioeconomic status (SES) and academic achievement

in journal articles published between 1990 and 2000. The sample included 101,157 students,

6,871 schools, and 128 school districts gathered from 74 independent samples. The results

showed a medium to strong SES–achievement relation. The author conducted a replica of

White’s (1982) meta-analysis to see whether the SES–achievement correlation had changed

since White’s initial review was published. Socioeconomic status (SES) is probably the most

widely used contextual variable in education research. Increasingly, researchers examine

educational processes, including academic achievement, in relation to socioeconomic

background [Bornstein and Bradley (2003), Brooks-Gunn and Duncan (1997), Coleman

(1988), McLoyd (1998)]. White (1982) carried out the first meta-analytic study that reviewed

the literature on this subject by focusing on studies published before 1980 examining the

relation between SES and academic achievement and showed that the relation varies

significantly with a number of factors such as the types of SES and academic achievement

measures. Since the publication of White’s meta-analysis, a large number of new empirical

studies have explored the same relation. On the other hand Authors [Lamdin (1996), Sutton

and Soderstrom (1999)] show that these new results are inconsistent. They range from a

strong relation to no significant correlation at all [Ripple and Luthar (2000), Seyfried (1998)].

Apart from a few narrative reviews that are mostly exclusive to a particular field [Entwisle

and Astone, (1994), Haveman and Wolfe (1994), McLoyd (1998), Wang et al. (1993)], there

has been no systematic review of these empirical research findings. The present meta-analysis

is an attempt to provide such a review by examining studies published between 1990 and

2000.

More recently, the most comprehensive study to date is reported in Stanca (2006). He uses a

large panel data set collected from an Introductory Microeconomics course (n = 766) in a
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Italian university. The data combine administrative and survey sources. However, a limit of

the data is that attendance to classes and tutorials is self reported by students. Applying three

different econometric approaches (OLS-proxy regression, instrumental variables and panel

estimators) to address the endogeneity of attendance rate variable, he bases his conclusions on

panel data estimates indicating that attendance has an important independent effect on

learning. Although most studies find positive effects of attendance on performance, the extent

to which we can rely on the evidence presented in the cited studies is not always clear. Most

of the studies leave unresolved the two main problems usually affecting the attendance rate

variable.

Credé et al. (2010) considered a meta-analysis of the relationship between class attendances in

college. They observed that the attendance has strong relationships with both class grades (k =

69, N = 21,195, r = .44) and GPA (k = 33, N = 9,243, r = .41). They also observed that

mandatory attendance policies appear to have a small positive impact on average grades (k =

3, N = 1,421, d = .21).

Many college instructors exhort their students to attend class as frequently as possible,

arguing that high levels of class attendance are likely to increase learning and improve student

grades. Such arguments may hold intuitive appeal and are supported by findings linking class

attendance to both learning [Jenne (1973)] and better grades [Moore et al. (2003)] but both

students and some educational researchers appear to be somewhat skeptical of the importance

of class attendance. This skepticism is reflected in high class absenteeism rates ranging from

18.5% [Marburger (2001)] and 25% [Friedman et al. (2001)] to 40% [Romer (1993)] and

even as high as 59% and 70% (in two separate biology classes) [Moore et al. (2003)] and in

explicit arguments against the importance of attendance in general and mandatory attendance

policies in particular [Hyde and Flournoy (1986), St. Clair (1999)].

Indeed, a recent meta-analytic review of the training literature [Arthur et al. (2003)] showed

lecture-based instruction to be effective for increasing cognitive, interpersonal, and even

psychomotor skills and behaviors. Students who deny themselves the benefit of attending
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lectures (and the full range of activities involved in lecture attendance) and who rely only on

other contact with class material are unlikely to retain relevant material as well as those

attending class and subsequently perform less well on class tests and exams.

In the article [Guleker and Keci (2014)], a summary of the latest studies on attendance and

academic performance will be given along with a deeper analysis of this relation in Albanian

context. Data are collected from two courses in the civil engineering department of a private

university taught by the same lecturer during 2009-2012. The results of the study are

discussed in the light of the attendance policy enforced in today's Albanian higher education

institutions.
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CHAPTER III

OVERVIEW OF CORRELATION AND REGRESSION, AND TEST OF

HYPOTHESIS

3.1 Introduction

There are many situations in which the objective in studying the joint behavior of two set of

variables is to see whether they are related, rather than to use one to predict the value of the

other. The most commonly used techniques for investigating the relationship between two

quantitative variables are correlation and linear regression. Correlation quantifies the strength

of the linear relationship between a pair of variables, whereas regression expresses the

relationship in the form of an equation. For example, in patients attending an accident and

emergency unit (A&E), we could use correlation and regression to determine whether there is

a relationship between age and urea level, and whether the level of urea can be predicted for a

given age.

The word correlation is used in everyday life to denote some form of association. We might

say that we have noticed a correlation between foggy days and attacks of wheeziness.

However, in statistical terms we use correlation to denote association between two

quantitative variables. We also assume that the association is linear, that one variable

increases or decreases by a fixed amount for a unit increase or decrease in the other. The other

technique that is often used in these circumstances is regression, which involves estimating

the best straight line to summarize the association.

3.2 Correlation

Correlation means association - more precisely it is a measure of the extent to which two

variables are related. If an increase in one variable tends to be associated with an increase in
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the other then this is known as a positive correlation. If an increase in one variable tends to be

associated with a decrease in the other then this is known as a negative correlation. When

there is no relationship between two variables this is known as a zero correlation. Correlation

is a widely used statistical technique. Correlation coefficients are the index of the

measurement of the relationship among the sets of variables.

A correlation can be expressed visually. This is done by plotting a scatter diagram - that is one

can plot the figures for one variable against the figures for the other on a graph. On a scatter

diagram for a linear correlation, the closer the points lay to a straight line, the stronger the

linear relationship between two variables (see Figure 3.1, 3.2). To quantify the strength of the

relationship, we can calculate the correlation coefficient.
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Figure 3.1 Linear fitting (positive correlation).

Figure 3.2 Linear fitting (negative correlation).
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Non Linear Correlation

When the amount of change in one variable is not in a constant ratio to the change in the other

variable, we say that the correlation is non linear. Non linear correlation is also known as

curvilinear correlation (Figure 3.4).

3.2.1 Classification of Methods

The relationship between more than one variable is considered as correlation. Correlation is

considered as a number which can be used to describe the relationship between two variables.

The number which quantifies the strength of the relationship is called the coefficient of

correlation. There are several methods available to calculate the correlation coefficient.
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Figure 3.3 Scatter diagram of non-correlated data.

Figure 3.4 Non-linear fitting of correlated data.
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Among them we will display two formulas namely (i) product-moment (Pearson product-

moment) method and (ii) Rank (Spearman) method based on simple correlation between two

variables.

In algebraic notation, if we have two variables x and y, and the data take the form of n pairs

(i.e. [x1, y1], [x2, y2], [x3, y3], ..., [xn, yn]), then

(i) Pearson product moment (Blanched formula) method: The most important

algebraic method of measuring correlation is Karl Pearson’s Coefficient of correlation or

Pearsonian’s coefficient of Correlation. It has widely used application in Statistics. It is

denoted by r. The mathematical formula of linear correlation coefficient of Pearson product

moment (Blanched formula) method:

r =
∑ (∑ )(∑ )[ ∑ (∑ ) ][ ∑ (∑ ) ] (3.1)

which can be rewritten as= ( ) (3.2)

where x and y are n paired observations,= ∑( − ̅)( − )= ∑( − ̅)= ∑( − )
Here ̅ is the mean of the x values, and is the mean of the y values.

Requirements for Pearson's correlation coefficient:

 Scale of measurement should be interval or ratio.

 Variables should be approximately normally distributed.

 The association should be linear.

 There should be no outliers in the data.

(ii) Rank (Spearman) method: Spearman's rank correlation coefficient allows us to

identify easily the strength of correlation within a data set of two variables, and whether the

correlation is positive or negative. The Spearman coefficient is denoted with the Greek letter
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rho (ρ). Instead of using precise values of the variables, or when such precision is unavailable,

the data may be ranked from 1 to n in order of size, importance, etc. If x and y are ranked in

such a manner, the coefficient of rank correlation, or Spearman’s formula for rank correlation

(as it is often called), is given by the formula of linear correlation coefficient of Rank

(Spearman) method:= 1 − ∑( ) (3.3)

Where D denotes the differences between the ranks of corresponding values of x and y, and

where n is the number of pairs of values (x, y) in the data.

Interpretation of Coefficient of correlation

Coefficient of correlation denoted by r is the degree of correlation between two variables. The

value of r always lies between -1 and +1.

 When r is 1, we say there is a perfect positive correlation. A value of the correlation

coefficient close to +1 indicates a strong positive linear relationship (i.e. one variable

increases with the other; Figure 3.1).

 When r is a value between –1 and 0, we say that there is a negative correlation.

 When r is 0, we say there is no correlation. A correlation of zero means there is no

relationship between the two variables. A value close to 0 indicates no linear relationship

(Figure 3.3).

 When r is a value between 0 and 1, we say there is a positive correlation.

 When r is –1, we say there is perfect negative correlation. A value close to -1 indicates a

strong negative linear relationship (i.e. one variable decreases as the other increases;

Figure 3.2).

However, there could be a nonlinear relationship between the variables (Figure 3.4). As we

noted, sample correlation coefficients range from -1 to +1. In practice, meaningful

correlations (i.e., correlations that are clinically or practically important) can be as small as

0.4 (or -0.4) for positive (or negative) associations. There are also statistical tests to determine

whether an observed correlation is statistically significant or not (i.e., statistically significantly
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different from zero). Procedures to test whether an observed sample correlation is suggestive

of a statistically significant correlation can be found in Kleinbaum et al. (1988).

Properties of the Coefficient of correlation

 It has a well defined formula.

 It is a number and is independent of the unit of measurement.

 It lies between –1 and 1.

 Coefficient of correlation between x and y will be same as that between y and x.

3.2.2 Classification of Correlation

Correlation is described or classified in several different ways. Three of the most important

are:

(i) Positive, negative and zero correlation

(ii) Simple, Partial and multiple correlation

(iii) Linear and non-linear  correlation

We have already discussed about case (i). Now we will briefly discuss about the two cases (ii)

and (iii). According to the number of variables there are three types of correlation

coefficients. They are (i) Simple correlation (ii) Multiple correlation and (iii) Partial

correlation. When only two variables are studied it is a problem of simple correlation. When

three or more variables are studied it is a problem of either multiple or partial correlation. In

multiple correlation three or more variables are studied simultaneously. For example, when

we study the relationship between the yield of rice per acre and both the amount of rainfall

and the amount of fertilizers used, it is a problem of multiple correlations. Similarly the

relationship of plastic hardness, temperature and pressure is multivariate. In partial correlation

we recognize more than two variables, but is considered that only two variables to be

influencing each other, the effect of other influencing variable being kept constant. For

example, in the rice problem, if we limit our correlation analysis of yield and rainfall with the

assumption that the amount of fertilizer used remained same, it becomes a problem of partial

correlation.
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A brief discussion on them is given below :

(i) Simple correlation:

If there are only two variables, then the measure of the relation is called simple correlation. In

order to compute simple correlation, we must have two variables, with values of one variable

(x) paired in some logical way with values of the second variable (y). Such an organization of

data is referred to as a bivariate (two-variable) distribution. Two variables may be positively

correlated, be negatively correlated, or have no relationship to each other (zero correlation)

[see Figure 3.1, 3.2 and 3.3].

In the case of a positive correlation between two variables, high measurements on one

variable tend to be associated with high measurements on the other and low measurements on

one with low measurements on the other. With negative correlation, high scores of one

variable are associated with low scores of the other. The two variables thus tend to vary

together but in opposite directions. A zero correlation means that there is no relationship

between the two variables. High and low scores on the two variables are not associated in any

predictable manner.

A simple correlation coefficient is a measure of the relationship between two variables. It

describes the tendency of two variables to vary together (co-vary); that is , it describes the

tendency of high or low values of one variable to be regularly associated with either high or

low values of the other variable. The method of finding simple linear correlation between is

discussed in section 3.2.1.

(ii)  Multiple Correlations

The degree of relationship existing between three or more variables is called multiple

correlation. When one variable is related to a number of other variables, the correlation is not

simple. It is multiple if there is one variable on one side and a set of variables on the other

side. To allow for generalizations to large numbers of variables, it is convenient to adopt a

notation involving subscripts.
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We shall let x1, x2, x3, . . . xk denote the variables under consideration. Then the partial

correlation between the factor i and j are given by ρij. Where each ρij be the simple pair-wise

correlation between factors xi and xj are computed as Eq. (3.1).

Then the measure the multicollinearity among the factors can be defined by the following

measure of average pair-wise correlations
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 (3.4)

Note that this definition is frequently used in literature.

(iii) Partial Correlation

It is often important to measure the correlation between a dependent variable and one

particular independent variable when all other variables involved are kept constant; that is,

when the effects of all other variables are removed (often indicated by the phrase “other

things being equal”). This can be obtained by defining a coefficient of partial correlation,

except that we must consider the explained and unexplained variations that arise both with

and without the particular independent variable.

If we denote by r12,3 the coefficient of partial correlation between x1 and x2 keeping x3

constant, we find

, = ( ) (3.5)

Linear and Non-linear (curvilinear) Correlation. The distinction between linear and non-

linear correlation is based upon the constancy of the ratio of change between the variables. If

the amount of change in one variable tends to bear a constant ratio to the amount of change in

the other variable then the correlation is said to be linear. It is clear that the ratio of change

between the two variables is the same. If such variables are plotted on a graph paper all the

plotted points would fall around a straight line (see Figure 3.1 and 3.2). Correlation would be

called non-linear or curvilinear if the amount of change in one variable does not bear a

constant ratio to the amount of change in the other variable. For example, if we double the

amount of rainfall, the production of rice or wheat, etc., would not necessarily be doubled. It
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may be pointed out that in most practical cases we find a non-linear relationship between the

variables. However, since techniques of analysis for measuring non-linear correlation are far

more complicated than those for linear correlation, we generally make an assumption that the

relationship between the variables is of the linear type.

3.2.3 Limitations of Correlations

a) Correlation is not and cannot be taken to imply causation. Even if there is a very

strong association between two variables we cannot assume that one causes the other.

For example suppose we found a positive correlation between watching violence on

T.V. and violent behavior in adolescence. It could be that the cause of both these is a

third (extraneous) variable - say for example, growing up in a violent home - and that

both the watching of T.V. and the violent behavior are the outcome of this.

b) Correlation does not allow us to go beyond the data that is given. For example suppose

it was found that there was an association between time spent on homework (1/2 hour

to 3 hours) and number of (G.C.S.E.) passes (1 to 6). It would not be legitimate to

infer from this that spending 6 hours on homework would be likely to generate 12

(G.C.S.E.) passes.

3.2.4 Some uses of Correlations

Prediction

 If there is a relationship between two variables, we can make predictions about one

from another.

Validity

 To test the validity of correlation between a new measure with an established measure.

Reliability

 Using different measures as well as samples for the consistence of the correlation.

Theory verification

 Performed further experiments on the population to verify the correlation.
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3.3 Regression

People use regression on an intuitive level every day. In business, a well-dressed man is

thought to be financially successful. A mother knows that more sugar in her children's diet

results in higher energy levels. The ease of waking up in the morning often depends on how

late you went to bed the night before. Quantitative regression adds precision by developing a

mathematical formula that can be used for predictive purposes.

Regression is a statistical measure that attempts to determine the strength of the relationship

between one dependent variable (usually denoted by y) and a series of other changing

variables (known as independent variables). The two basic types of regression are simple

regression and multiple regressions. Simple regression uses one independent variable to

explain and/or predict the outcome of y, while multiple regression uses two or more

independent variables to predict the outcome. On the other hand the regression may be Linear

or non-linear. The general form of Simple Linear Regression is:

y = a + bx + ɛ (3.6)

Where:

y= the variable that we are trying to predict

x= the variable that we are using to predict y

a= the intercept

b= the slope denote regression coefficient

ɛ = the regression residual.

Similarly the Multiple Linear Regression can be express as

y = a + b1x1 + b2x2 + b3x3 + ... + btxt + ɛ (3.7)

In multiple regression the separate variables are differentiated by using subscripted numbers.

Simple regression is used to examine the relationship between one dependent and one

independent variable. After performing an analysis, the regression statistics can be used to

predict the dependent variable when the independent variable is known. Regression goes

beyond correlation by adding prediction capabilities. The regression line (known as the least

squares line) is a plot of the expected value of the dependent variable for all values of the
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independent variable. Technically, it is the line that "minimizes the squared residuals". The

regression line is the one that best fits the data on a scatter plot.

Using the regression equation, the dependent variable may be predicted from the independent

variable. The slope of the regression line (b) is defined as the rise divided by the run. The y

intercept (a) is the point on the y axis where the regression line would intercept the y axis. The

slope and y intercept are incorporated into the regression equation. The intercept is usually

called the constant, and the slope is referred to as the coefficient. Since the regression model

is usually not a perfect predictor, there is also an error term in the equation. In the regression

equation, y is always the dependent variable and x is always the independent variable. Here

are three equivalent ways to mathematically describe a linear regression model.

 y = intercept + (slope x) + error

 y = constant + (coefficient x) + error

 y = a + bx + ɛ (3.8)

For : = 1,2,⋯ , n pairs of observation, the parameter a and b can be estimated by

using Least Square method. Mathematically

As we have seen, the least-squares regression line of y on x is= + (3.9)

where a and b are obtained from the normal equations∑ = + ∑ (3.10)∑ = ∑ + ∑ (3.11)

which yield= (∑ ) ∑ (∑ )(∑ )∑ (∑ ) (3.12)= ∑ (∑ )(∑ )∑ (∑ ) (3.13)

Note that if the slope is zero, it has no prediction ability because for every value of the

independent variable, the prediction for the dependent variable would be the same. Knowing

the value of the independent variable would not improve our ability to predict the dependent
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variable. Thus, if the slope is not significantly different than zero, don't use the model to make

predictions.

Standard Error

The standard error of the estimate for regression measures the amount of variability in the

points around the regression line. It is the standard deviation of the data points as they are

distributed around the regression line. The standard error of the estimate can be used to

develop confidence intervals around a prediction. A standard error is the standard deviation of

the sampling distribution of a statistic. Standard error is a statistical term that measures the

accuracy with which a sample represents a population. In statistics, a sample mean deviates

from the actual mean of a population; this deviation is the standard error. Mathematically, if

we let represent the value of y for given values of x as estimated from equation (3.9), a

measure of the scatter about the regression line of y on x is supplied by the quantity

. = ∑( )
(3.14)

which is called the standard error of estimate of y on x.

3.4 Coefficient of determination

Before define coefficient of determination we would like to define explained and unexplained

variation.

Explained and Unexplained Variation

The total variation of is defined as ∑( − ) : that is, the sum of the squares of the

deviations of the values of from the mean . As shown in this can be written∑( − ) = ∑( − ) + ∑( − ) (3.15)

The first term on the right of equation (3.15) is called the unexplained variation, while the

second term is called the explained variation−so called because the deviations − have

a definite pattern, while the deviations − behave in a random or unpredictable manner.

Similar results hold for the variable .
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The ratio of the explained variation to the total variation is called the coefficient of

determination. If there is zero explained variation (i.e., the total variation is all unexplained),

this ratio is 0. If there is zero unexplained variation (i.e., the total variation is all explained),

the ratio is 1. In other cases the ratio lies between 0 and 1. Since the ratio is always

nonnegative, we denote it by r2. The quantity r, called the coefficient of correlation (or briefly

coefficient correlation), is given byR = ± = ± ∑( )∑( ) (3.16)

and varies between -1 and +1. The + and – signs are used for positive linear correlation and

negative linear correlation, respectively. Note that r is a dimensionless quantity; that is, it does

not depend on the units employed.

For linear regression, the coefficient of determination (r-squared) is the square of the

correlation coefficient. Its value may vary from zero to one. It has the advantage over the

correlation coefficient in that it may be interpreted directly as the proportion of variance in the

dependent variable that can be accounted for by the regression equation. For example, an r-

squared value of 0.49 means that 49% of the variance in the dependent variable can be

explained by the regression equation. The other 51% is unexplained. The coefficient of

determination (R2) is a measure of the proportion of variance of a predicted outcome.

In regression, the R2 coefficient of determination is a statistical measure of how well the

regression line approximates the real data points. The value of coefficient of determination

(R2) lies between 0 and 1. R2 is a statistic that will give some information about the goodness

of fit of a model. An R2 of 1 indicates that the regression line perfectly fits the data. There are

several definitions of R2 that are only sometimes equivalent. One class of such cases includes

that of simple linear regression where r2 is used instead of R2. When an intercept is included,

then r2 is simply the square of the sample correlation coefficient (i.e., r) between the

outcomes and their predicted values. If additional regressors are included, R2 is the square of

the coefficient of multiple correlation. In both such cases, the coefficient of determination

ranges from 0 to 1.
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Important cases where the computational definition of R2 can yield negative values,

depending on the definition used, arise where the predictions that are being compared to the

corresponding outcomes have not been derived from a model-fitting procedure using those

data, and where linear regression is conducted without including an intercept. Additionally,

negative values of R2 may occur when fitting non-linear functions to data. In cases where

negative values arise, the mean of the data provides a better fit to the outcomes than do the

fitted function values, according to this particular criterion.

3.5 Assumptions and limitations of Correlation and Regression

The use of correlation and regression depends on some underlying assumptions. The

observations are assumed to be independent. For correlation both variables should be random

variables, but for regression only the response variable y must be random. In carrying out

hypothesis tests or calculating confidence intervals for the regression parameters, the response

variable should have a Normal distribution and the variability of y should be the same for

each value of the predictor variable. The same assumptions are needed in testing the null

hypothesis that the correlation is 0, but in order to interpret confidence intervals for the

correlation coefficient both variables must be normally distributed. Both correlation and

regression assume that the relationship between the two variables is linear.

A scatter diagram of the data provides an initial check of the assumptions for regression. The

assumptions can be assessed in more detail by looking at plots of the residuals. Commonly,

the residuals are plotted against the fitted values. If the relationship is linear and the

variability constant, then the residuals should be evenly scattered around 0 along the range of

fitted values.

3.6 Hypothesis test of correlation

A hypothesis is an assumption to be tested. The statistical testing of hypothesis is the most

important technique in statistical inference. Hypothesis tests are widely used in business and

industry for making decisions. It is noted that probability and sampling theory plays an ever

increasing role in constructing the criteria on which business decisions are made. Very often
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in practice we are called upon to make decisions about population on the basis of sample

information. For example, we may wish to decide on the basis of sample data whether a new

medicine is really effective in curing a disease, whether one training procedure is better than

another, etc. Such decisions are called statistical decisions.

In attempting to reach decisions, it is useful to make assumptions or guesses about the

populations involved. Such assumptions, which may or may not be true, are called statistical

hypothesis and in general are statements about the probability distributions of the population.

The hypothesis is made about the value of some parameter but the only facts available to

estimate the true parameter are those provided by a sample. If the sample statistic differs from

the hypothesis made about the population parameter, a decision must be made as to whether

or not this difference is significant. If it is, the hypothesis is rejected. If not, it must be

accepted. Hence the term “tests of hypothesis”.

Now if be the parameter of the population and is the estimate of in the random sample

drawn from the population, then the difference between and should be small. In fact there

will be some difference between and because is based on sample observations and is

different for different samples. Such a difference is known as difference due to sampling

fluctuations. If the difference between and is large, then the probability that it is

exclusively due to sampling fluctuations is small. Difference which is caused because of

sampling fluctuations is called insignificant difference and the difference due to some other

reasons is known as significant difference. A significant difference arises due to the fact that

either the sampling procedure is not purely random or sample is not from the given

population.

Procedure of Hypothesis Testing

The general procedure followed in testing hypothesis comprises the following steps:

(1) Set up a hypothesis. The first step in hypothesis testing is to establish the hypothesis to

be tested. Since statistical hypotheses are usually assumptions about the value of some

unknown parameter, the hypothesis specifies a numerical value or range of values for the
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parameter. The conventional approach to hypothesis testing is not to construct single

hypothesis about the population parameter, but rather to set up two different hypotheses.

These hypotheses are normally referred to as (i) null hypothesis denoted by H0, and (ii)

alternative hypothesis denoted by H1. The null hypothesis asserts that there is no true

difference in the sample statistic and population parameter under consideration (hence the

word “null” which means invalid, void or amounting to nothing) and that the difference found

is accidental arising out of fluctuations of sampling.

A hypothesis which states that there is no difference between assumed and actual value of the

parameter is the null hypothesis and the hypothesis that is different from the null hypothesis is

the alternative hypothesis. If the sample information leads us to reject H0, then we will accept

the alternative hypothesis H1. Thus, the two hypotheses are constructed so that if one is true,

the other is false and vice-versa. The rejection of the null hypothesis indicates that the

differences have statistical significance and the acceptance of the null hypothesis indicates

that the differences are due to chance. As against the null hypothesis, the alternative

hypothesis specifies those values that the researcher believes to hold true. The alternative

hypothesis may embrace the whole range of values rather than single point.

(2) Set up a suitable significance level. Having set up a hypothesis, the next step is to

select a suitable level of significance. The confidence with which an experimenter rejects or

retains null hypothesis depends on the significance level a opted. The level of significance,

usually denoted by “ ”, is generally specified before any samples are drawn, so that results

obtained will not influence our choice. Though any level of significance can be adopted, in

practice we either take 5 per cent or 1 per cent level of significance. When we take 5 per cent

level of significance then there are about 5 chances out of 100 that we would reject the null

hypothesis when it should be accepted, i.e., we are about 95% confident that we have made

the right decision. When we test a hypothesis at a 1 per cent level of significance, there is only

one chance out of 100 that we would reject the null hypothesis when it should be accepted,

i.e., we are about 99% confident that we have made the right decision. When the null
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hypothesis is rejected at = 0.5, the test result is said to be “significant”. When the null

hypothesis is rejected at = 0.01, the test result is said to be “highly significant”.

(3) Determination of a suitable test statistic. The third step is to determine a suitable test

statistic and its distribution. Many of the test statistics that we shall encounter will be of the

following form :

Test statistic =
(4) Determine the critical region. It is important to specify, before the sample it taken,

which values of the test statistic will lead to a rejection of H0 and which lead to acceptance of

H0. The former is called the critical region. The value of , the level of significance, indicates

the importance that one attaches to the consequences associated with incorrectly rejecting H0.

It can be shown that when the level of significance is , the optimal critical region for a two-

sided test consists of that /2 per cent of the area in the right-hand tail of the distribution plus

that /2 per cent in the left hand tail. Thus establishing a critical region is similar to

determining a 100 (1 − )% confidence interval. In general one uses a level of significance of= 0.05, indicating that one is willing to accept a 5 per cent chance of being wrong to reject

H0.

(5) Doing computations. The fifth step in testing hypothesis is the performance of various

computations from a random sample of size n, necessary for the test statistic obtained in step

(3). Then we need to see whether sample result falls in the critical region or in the acceptance

regions.

(6) Making decisions. Finally, we may draw statistical conclusions and the management

may take decisions. A statistical decision or conclusion comprises either accepting the null

hypothesis or rejecting it. The decision will depend on whether the computed value of the test

criterion falls in the region of rejection or the region of acceptance. If the hypothesis is being

tested at 5 per cent level of significance and the observed set of results has a probability less

than 5 per cent, we reject the null hypothesis and the difference between the sample statistic
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and the hypothetical population parameter is considered to be significant. On the other hand,

if the testing statistic falls in the region of non-rejection, the null hypothesis is accepted and

the difference between the sample statistic and the hypothetical population parameter is not

regarded as significant, i.e., it can be explained by chance variations.

Type I and Type II Errors

When a statistical hypothesis is tested, there are four possible result :

(1) The hypothesis is true but our test rejects it.

(2) The hypothesis is false but our test accepts it.

(3) The hypothesis is true and our test accepts it.

(4) The hypothesis is false and our test rejects it.

Obviously, the first two possibilities lead to errors. If we reject a hypothesis when it should be

accepted (possibility No. 1) we say that a Type I error has been made. On the other hand, if

we accept a hypothesis when it should be rejected (possibility No. 2) we say that a Type II

error has been made. In either case a wrong decision or error in judgment has occurred.

TWO KINDS OF ERROR IN

HYPOTHESIS TESTING

Condition

Decision H0 :True H0 :False

Accept H0 Correct Decision Type II Error

Reject H0 Type I Error Correct Decision

There are two types of statistical hypotheses.

 Null hypothesis. The null hypothesis, denoted by H0, is usually the hypothesis that

sample observations result purely from chance.

 Alternative hypothesis. The alternative hypothesis, denoted by H1 or Ha, is the

hypothesis that sample observations are influenced by some non-random cause.
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When the null hypothesis states that there is no difference between the two population means

(i.e., d = 0), the null and alternative hypothesis are often stated in the following form.

H0: μ1 = μ2

Ha: μ1 ≠ μ2
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CHAPTER IV

CORRELATION ANALYSIS AMONG ATTENDANCE AND ACADEMIC

ATTAINMENTS

4.1 Introduction

As it has been seen from the earlier researches, the performance of students depend on many

factors such as, attendance, motivation, level of engagement etc. which may be considered as

the students attributes towards learning and some other attributes of the teachers on the

process. No research is available relating the academic attainment and class attendance of our

universities. It should be noted here that KUET has introduced a 60% mandatory attendance

to appear in the final examination. It is of no doubt that in existence of proxy variables

(Teacher’s attribute, student’s attribute, subjects, socio-economic environment etc.), the

investigation of the impact of class attendance on academic attainment is very difficult to

evaluate.  For the limitations of resources and financial constraints, in this study the proxy

variables will be ignored to calculate the impact of attendance on academic performance.

4.2 Experimental Study

Before investigate the existence of correlation between class Attendance and the student

academic attainment, it is worthwhile to mention here that at least 60% attendance is imposed

to a student of KUET to appear in the final examination. Therefore to find the rigorous effect

of attendance on academic performance is difficult and hard working. Anyway, as KUET is a

technical and engineering university, all of the students must take at least two basic

mathematics courses. Therefore we considered mathematics courses for the study. To ignore

teacher’s attributes, all the courses considered here was carried by the same teacher but in

different departments as well as in different time epoch. Namely we considered random

selection of mathematics courses as well as departments in the duration of 2000 – 2013

subject to the availability of data. For the investigations we considered following departments

for the reason of availability of data.
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Name of Departments Courses

CE Both 1st and 2nd semester/term of 1st year and both 1st and 2nd

semester/term of 2nd year

EEE Both 1st and 2nd semester/term of 1st years and both 1st and 2nd

semester/term of 2nd years

ME both 1st and 2nd semester/term of 2nd years

CSE Both 1st and 2nd semester/term of 1st year and both 1st and 2nd

semester/term of 2nd year

ECE 1st semester/term of 1st year and both 1st and 2nd semester/term

of 2nd year

IEM 2nd semester/term of 1st year

LE 2nd semester/term of 1st year

In this study we performed extensive experiments to analyze the existing of correlation

between student’s class attendance and academic performance. According to the rules and

regulation of the university, the student’s final Grade is calculated by considering student

attendance, performance in Class Tests and in final examinations. Therefore we will

investigate for the existence of correlation between Attendance and Class Test marks and

correlation between Attendance and final Grade separately. It is known that number of classes

needed of each course depends on credit assigned to the course. So in this study, total

numbers of classes of each course are normalized to 30 classes. Class Test marks are also

normalized to 30 marks and final Grade points are calculated out of 4. Also note that to find

the coefficient of correlation among attendance, Class Test marks and final Grade, we

considered here the product-moment formula which is presented in Chapter III.

For the study of correlation between class attendance and student academic attainment, we

will investigate to find (a) the existing of correlation between class attendance and Class Test

marks and (b) the existing of correlation between class attendance and final Grade. We will

use RA,C to denote simple linear sample correlation coefficient between Attendance (A) and

Class Test marks (C) whereas RA,G means simple linear sample correlation coefficient (A)
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Attendance and Final Grade (G). Moreover tCal will mean Student's t-statistics value

corresponding to sample correlation value (coefficient of correlation value), on the other hand

ttab will denote standard t value for ν (=N-2) degree of freedom with α level of significance

where N indicates number of pairs of data. If it is not mentioned otherwise, the value of α be

0.005 for one tailed test.

Again to test the significance of correlation between Attendance and Class Test marks to

calculate RA,C value, we considered following test hypothesis with α = 0.005 (in one tailed)

significance level.

H0 : ρ = 0

H1 : ρ > 0

Now we have to find out tCal value. We will find out each tCal value corresponding to each (N,

RA,C) values by using following formula= √√ (4.1)

Here r means coefficient of sample correlation which indicates RA,C and N means number of

pair of data which indicates number of students. It is also to note that the standard t value

denoted as t(ν,α) are available in any standard Statistics book as well as in web portal. It is

known that the comments about the Null hypothesis are as follows:

4.2.1 Correlation Analysis between Class Test Marks and Class Attendance

We will find the coefficient of correlation between Class Attendance and Class Test Marks.

To investigate the correlation between Class Attendance and Class Test Marks, at first, we

have considered Civil Engineering (CE) Department. We have obtained the simple coefficient

of correlation between Class Attendance and Class Test marks of each courses by using

S.L Comparison Decision about H0

1. if tCal < t(ν,α) accept

2. if tCal = t(ν,α) No conclusion

3. if tCal >t(ν,α) reject
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product- moment formula. The experimental results are displayed in the Table 4.1. The value

of coefficient of correlation (RA,C) of each course is calculated and presented in the column 5

of the Table 4.1. It is noted that in the Tables (4.1 – 4.7), 1st column indicates conducting year

of the course. Code of each course is given in the second column. It is observed that, in most

of the cases, the value of RA,C are near 0.5. In some few cases, the value of RA,C are less than

0.3 too.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,C tCal t(ν,α) H0

2001 1101 1st yr, 1st sem. 47 0.57589 4.72548 2.68 REJECT

2002 1101 1st yr, 1st sem. 52 0.64913 6.03419 2.68 REJECT

2001 1201 1st yr, 2nd sem. 45 0.76884 7.88446 2.68 REJECT

2002 1201 1st yr, 2nd sem. 49 0.43335 3.29652 2.68 REJECT

2004 1201 1st yr, 2nd sem. 104 0.36182 3.91978 2.62 REJECT

2011 1201 1st yr, 2nd sem. 117 0.16056 1.7444 2.62 ACCEPT*

2003 1201 1st yr, 2nd sem. 95 0.25377 2.5301 2.64 ACCEPT*

2009 2101 2nd yr, 1st term 115 0.51071 6.3145 2.62 REJECT

2012 2101 2nd yr, 1st term 116 0.23062 2.5305 2.62 ACCEPT*

2013 2101 2nd yr, 1st term 114 0.30802 3.4263 2.62 REJECT

2010 2201 2nd yr, 2nd term 110 0.32613 3.5852 2.62 REJECT

Now to test the significance of correlation between Attendance and Class Test marks

regarding calculated sample RA,C value, we have to find t value for each RA,C value. The

calculated t values denoted as tCal for each RA,C are presented in the column 6 of the Table

4.1. Also standard t(ν,α) values, with ν d.f. and 0.5% level of significance i.e. 99.5% confidence

level, are given in column 7 of the table.

Table 4.1 Correlation between Attendance and Class Test Marks and their test of

significance in CE department
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The comments about the test of hypothesis are mentioned in column 8 of the table. It is

observed that, except three cases, all the Null hypotheses are rejected with 99.5% confidence

level. That is the RA,C values are significant with 0.5% level of significance. We would also

mention here that though, in three cases, Null hypotheses are accepted with 0.5% level of

significance but with 5% level of significance the Null hypotheses of all of those are rejected.

Therefore it may conclude that with 5% level of significance all calculated RA,C values are

significant.

Now we have calculated the average value of coefficient of correlation between Class

Attendance and Class Test Marks regarding CE department which is 0.416258 with average

88 students. Now for correlation coefficient 0.416258 with N=88, the corresponding tCal value

is 4.245515 and standard t(ν,α) values, with 86 d.f. and 0.005 level of significance is about

2.63. As tCal (=4.245515)> t(ν,α)(= 2.63) therefore the average value of coefficient of correlation

between Class Attendance and Class Test marks regarding CE department is significance.

Year Course

Code

(Math)

Semester/

term

No. of

Student

(N)

RA,C tCal t(ν,α) H0

2001 1103 1st yr, 1st sem. 63 0.55183 5.16801 2.66 REJECT

2000 1203 1st yr, 2nd sem. 60 0.41576 3.48152 2.66 REJECT

2005 2103 2nd yr, 1st sem. 114 0.20707 2.23994 2.62 ACCEPT*

2012 2103 2nd yr, 1st sem. 118 0.30727 3.47760 2.62 REJECT

2001 2103 2nd yr, 1st sem. 61 0.68645 7.25092 2.66 REJECT

2000 2203 2nd yr, 2nd sem. 51 0.35494 2.65762 2.68 ACCEPT*

Now we consider Electrical and Electronic Engineering (EEE) Department to investigate the

correlation between Class Attendance and Class Test Marks. The experimental results are

displayed in the Table 4.2. The value of coefficient of correlation of each course is calculated

Table 4.2 Correlation between Attendance and Class Test Marks and their test of

significance in EEE department
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and presented in the column 5 of the Table 4.2. It is observed that in all the cases, except two,

the value of RA,C are near 0.5. In only one case, the value of RA,C are less than  0.3.

Again to test the significance of correlation between Attendance and Class Test marks

regarding calculated sample RA,C value, we have to calculate t for each RA,C value. The

calculated t values for each RA,C are presented in the column 6 of the Table 4.2. Also standard

t(ν,α) values, with ν d.f. and 0.5% level of significance i.e. 99.5% confidence level, are given in

column 7 of the table.

The comments about the test of hypothesis are mentioned in column 8 of the table.  It is

noticed that, except two cases, all the Null hypotheses are rejected with 99.5% confidence

level. That is the corresponding RA,C values are significant with 0.5% level of significance.

Moreover in that two cases, Null hypotheses are rejected with 5% level of significance rather

than with 0.5% level of significance. Therefore it may conclude that with 5% level of

significance all calculated RA,C values are significant.

Again we calculate the average value of coefficient of correlation between Class Attendance

and Class Test marks regarding EEE department which is 0.420553 with average 78 students.

Now for the correlation coefficient 0.420553 with N=78, the corresponding tCal value is

4.041033 and standard t(ν,α) values, with 76 d.f. and 0.005 level of significance is about 2.64.

As tCal (=4.041033)> t(ν,α)(= 2.64) therefore the average value of coefficient of correlation

between Class Attendance and Class Test marks regarding EEE department is significance.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,C tCal t(ν,α) H0

2010 2105 2nd yr, 1st sem. 115 0.38536 4.43928 2.62 REJECT

Table 4.3 Correlation between Attendance and Class Test Marks and their test of

significance in ME department
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Now we consider Mechanical Engineering (ME) Department to investigate the correlation

between Class Attendance and Class Test Marks. The experimental results are displayed in

the Table 4.3. It is noted that there is only one set of information is available. The value of

coefficient of correlation of the course is calculated and presented in the column 5 of the

Table 4.3. It is observed that the value of RA,C is near about 0.4.

To test the significance of correlation between Attendance and Class Test marks regarding

calculated sample RA,C value, we have to calculate t for the RA,C value. The calculated t

values for the RA,C is presented in the column 6 of the Table 4.3. Also standard t(ν,α) values,

with ν d.f. and 0.5% level of significance i.e. 99.5%  confidence level, are given in column 7

of the table.

The inference about the test of hypothesis is mentioned in column 8 of the table. It is noticed

that the Null hypothesis is rejected with 99.5% confidence level. Therefore it may conclude

that with 0.005 level of significance calculated RA,C value is significant.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,C tCal t(ν,α) H0

2005 2107 2nd yr, 1st sem. 52 0.438312 3.448217 2.68 REJECT

2003 2107 2nd yr, 1st sem. 57 0.378429 3.031997 2.66 REJECT

2012 2207 2nd yr, 2nd sem. 58 0.256601 1.986745 2.66 ACCEPT*

2002 2207 2nd yr, 2nd sem. 45 0.256851 1.742752 2.68 ACCEPT*

2003 2207 2nd yr, 2nd sem. 58 0.616889 5.865408 2.66 REJECT

2010 2207 2nd yr, 2nd sem. 59 0.424192 3.536524 2.66 REJECT

Let us consider Computer Science and Engineering (CSE) Department to investigate the

correlation between Class Attendance and Class Test Marks. The experimental results are

shown in the Table 4.4. The value of coefficient of correlation of each course is calculated

Table 4.4 Correlation between Attendance and Class Test Marks and their test of

significance in CSE department
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and presented in the column 5 of the Table 4.4. It is observed that, in most of the cases, the

value of RA,C are near 0.4. In some few cases, the value of RA,C are less than  0.3.

Now to test the significance of correlation between Attendance and Class Test marks

regarding calculated sample RA,C value, we have to calculate t for each RA,C value. The

calculated t values for each RA,C are presented in the column 6 of the Table 4.4. Also standard

t(ν,α) values, with ν d.f. and 0.005 level of significance, are given in column 7 of the table.

The comments about the test of hypothesis are mentioned in column 8 of the table.  It is

noticed that, except two cases, all the Null hypotheses are rejected with 99.5% confidence

level. Moreover for all the test statistics, the Null hypotheses are rejected 5% level of

significance. Therefore it may conclude that with 0.05 level of significance all calculated RA,C

values are significant.

Now we calculate the average value of coefficient of correlation between Class Attendance

and Class Test marks regarding CSE department which is 0.395212 with average 55 students.

Now for correlation coefficient 0.395212 with N=55, the corresponding tCal value is 3.132181

and standard t(ν,α) values, with 53 d.f. and 0.005 level of significance is about 2.67. As tCal

(=3.132181)> t(ν,α)(= 2.67) therefore the average value of coefficient of correlation between

Class Attendance and Class Test marks regarding CSE department is significance.

Now to investigate the correlation between Attendance and Class Test marks we consider

Electronics and Communication Engineering (ECE) Department. The experimental results are

displayed in the Table 4.5. The value of coefficient of correlation of each course is calculated

and presented in the column 5 of the Table 4.5. It is observed that, in most of the cases, the

value of RA,C are near 0.4. In two cases, the value of RA,C are near  0.2.

To test the significance of correlation between Attendance and Class Test marks regarding

calculated sample RA,C value, we have calculated t values for each RA,C which  are presented
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in the column 6 of the Table 4. 5. Also standard t(ν,α) values, with ν d.f. and 0.005 level of

significance i.e. 99.5%  confidence level, are given in column 7 of the table.

The inferences about the test of hypothesis are mentioned in column 8 of the table as well. It

is noticed that, for two tCal values, the Null hypotheses are rejected with 99.5% confidence

level. But, for all the tCal values, the Null hypotheses are rejected with 95% confidence level.

Therefore it may conclude that with 0.05 level of significance all calculated RA,C values are

significant.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,C tCal t(ν,α) H0

2002 1109 1st yr, 1st sem. 31 0.53833 3.43997 2.75 REJECT

2003 2109 2nd yr, 1st sem. 31 0.14741 0.80258 2.75 ACCEPT*

2009 2109 2nd yr, 1st sem. 30 0.4202 2.45029 2.75 ACCEPT*

2012 2209 2nd yr, 2nd sem. 53 0.22696 1.66428 2.68 REJECT

2009 2209 2nd yr, 2nd sem. 29 0.3349 1.84683 2.76 ACCEPT*

Now we calculate the average value of coefficient of correlation between Class Attendance

and Class Test Marks regarding ECE department which is 0.33356 with average 35 students.

Now for correlation coefficient 0.33356 with N =33, the corresponding tCal value is 2.032564

and standard t(ν,α) values, with 31 d.f. and 0.005 level of significance is about 1.697. As tCal

(=2.032564)> t(ν,α)(= 1.697) therefore the average value of coefficient of correlation between

Class attendance and Class Test marks regarding ECE department is significance.

Now we consider Industrial Engineering and Management (IEM) Department to investigate

the correlation between Attendance and Class Test marks.  The experimental results are

shown in the Table 4.6.  The value of coefficient of correlation of each course is calculated

Table 4.5 Correlation between Attendance and Class Test Marks and their test of

significance in ECE department
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and presented in the column 5 of the Table 4.6. It is observed that, there is only one

information available and the value of RA,C is approximately  0.5.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,C tCal t(ν,α) H0

2011 1211 1st yr, 2nd sem. 58 0.50295 4.35457 2.66 REJECT

It is also noticed that the calculated t values for the RA,C value is 4.35457  which is greater

than   t(ν,α) value (= 2.66) for 57 d.f with 99.5%  confidence level.

The comments about the test of hypothesis are mentioned in column 8 of the table.  It is

noticed that except one case all the Null hypotheses are rejected with 99.5% confidence level.

That is the corresponding RA,C values are significance with 0.005 level of significance.

Therefore it may conclude that with 0.005 level of significance calculated RA,C value is

significant.

Conducted

Year

Course

Code

(Math)

Semester/term

No. of

Student

(N)

RA,C tCal t(ν,α) H0

2013 2119 2nd yr, 1st sem. 43 0.60143 4.82021 3.551 REJECT

Now we consider Leather Engineering (LE) Department to investigate the correlation between

Attendance and Class Test marks. The experimental results are displayed in the Table 4.7. It

is observed that, there exist only one set of information and the value of RA,C is near about

0.6. It is also noticed that the calculated tCal values is significantly greater than tabulated t(ν,α)

Table 4.6 Correlation between Attendance and Class Test Marks and their test of

significance in IEM department

Table 4.7 Correlation between Attendance and Class Test Marks and their test of

significance in LE department
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with 41 d.f. and 0.005 level of significance. In consequence we reject the Null Hypothesis

with 41 d.f. and 0.005 level of significance. Therefore there exist highly correlation between

Attendance and Class Test marks regarding LE department.

4.2.2 Correlation Analysis between Class Attendance and Final Grade

Now we will perform extensive experiments to study the existence of correlation between

class Attendance and Final Grade. We will find the simple coefficient of correlation between

Class Attendance and Final Grade of each courses considered by using product- moment

formula as well.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,α) H0

2001 1101 1st yr, 1st sem. 47 0.651826 5.765775 2.68 REJECT

2002 1101 1st yr, 1st sem. 52 0.694241 6.820521 2.68 REJECT

2001 1201 1st yr, 2nd sem. 45 0.874814 11.84114 2.68 REJECT

2002 1201 1st yr, 2nd sem. 49 0.363451 2.674599 2.68 ACCEPT*

2004 1201 1st yr, 2nd sem. 104 0.346499 3.730578 2.62 REJECT

2011 1201 1st yr, 2nd sem. 117 0.438759 5.236079 2.62 REJECT

2003 1201 1st yr, 2nd sem. 95 0.351952 3.6261084 2.64 REJECT

2002 2101 2nd yr, 1st term 44 0.88629 12.40212 2.68 REJECT

2004 2101 2nd yr, 1st term 95 0.402555 4.240895 2.64 REJECT

2012 2101 2nd yr, 1st term 115 0.585991 7.721266 2.62 REJECT

2013 2101 2nd yr, 1st term 116 0.535068 6.702844 2.62 REJECT

2009 2101 2nd yr, 1st term 114 0.673547 9.686753 2.62 REJECT

2010 2201 2nd yr, 2nd term 110 0.632979 8.497001 2.62 REJECT

Table 4.8 Correlation between Attendance and Final Grade in CE department and their test
of significance
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For this study we first consider Civil Engineering (CE) Department. The experimental results

are displayed in the Table 4.8. The value of coefficient of correlation of each course is

calculated and presented in the column 5 of the Table 4. 8. Note that in the Tables (4. 8 – 4.

13), 1st column indicates conducting year of the courses and course code is given in the

second column of the tables. It is observed that, in most of the cases, the value of RA,G are

greater than or near equal to 0.6. In some few cases the value of RA,G are less than 0.5 but

always greater than 0.3.

To test the significance of correlation between Attendance and Final Grade regarding RA,G

value, we have to calculate t for each RA,G value. The calculated t values for each RA,G are

reputed in the column 6 of the Table 4.8. Also standard t(ν,α) values, with ν d.f. and 0.005 level

of significance i.e. 99.5% confidence level, are given in column 7 of the table.

The inferences about the test of hypothesis are mentioned in column 8 of the table as well. It

is noticed that, except one case, all the Null hypotheses are rejected with 99.5% confidence

level. That is the RA,G values are significance with 0.005 level of significance. Now we would

again mention here that though, in one case, Null hypotheses is not rejected with 0.005 level

of significance but with 0.05 level of significance, the Null hypotheses of all of those are

rejected. Therefore it may conclude that with 5% level of significance almost all RA,G values

are highly significant.

In our study we were supposed to study the effect of socio-economic changes. But due to lack

of data from ordinary sources it cannot be done. So we may require questionnaire survey to

get the data for further analysis. But due to some other constraints it has not been done.

Fortunately within the period of study, the institute has undergone in different changes: BIT is

converted to KUET at 2000 and the course credit system has been also introduced at 2009.

With these changes, if the change in the class Attendance or in the Results is assessed, we

may consider them as the impact due to Socio-economic changes. For the purpose, the time

series analysis will be effective.
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In order to study the effect of time series analysis regarding the correlation between class

attendance and Final Grade, we plot RA,G with respect to years which is depicted on the

Figure 4.1. In the figure ‘rho’ indicates RA,G values. It is observed from the figure that the data

are clustered into two groups. One group ranges from 2000 – 2005 and another from 2009 –

2013. It is worthwhile to mention here that we have no data during 2005 to 2008 (as

conducting teacher was not available at KUET in that time). Anyway, it is remarkable that the

rho value is highest near 2000-2001. The trend of rho decreases gradually up to 2005. In next

cluster, the value of rho is increased at 2009 and again gradually decreases. Perhaps the

reason of this kind of nature of rho values is as follows: In 2000-2001, BIT is converted to

KUET and course-credit system was introduced in this period. Again in 2009-2010, term

system was introduced from semester based system. Therefore, in any initial stage of a new

system, student performance is highly correlated with class attendance.

Now we have calculated the average value of coefficient of correlation between Class

attendance and Final Grade regarding CE department. The average correlation is 0.572152

and corresponding tCal value is 5.88 on average 73 students. We observed that the standard t(ν,α)

values, with 71 d.f. and 0.005 level of significance is about 3.416. Since tCal (=3.857539) >

t(ν,α)(= 3.416) therefore the average value of coefficient of correlation between Class

attendance and Final Grade regarding CE department is highly significance.

It is worthwhile to remark that the correlation between Attendance and Final Grade are more

significance than correlation between Attendance and Class Test marks in the case of CE
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Figure 4.1 Scatter diagram of correlation coefficient with respect to time (CE Department)
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department. In other way we may say that class attendance is highly correlated with the final

Grade on comparison to Class Test marks. The tentative reason may as follows: In general,

the schedule of Class Test is declared about four/five days before the examination but the

syllabus is very short. On the other hand, though the schedule of final examination is

predefined but students get only a few days for preparation and the length of syllabus is

relatively large. Therefore the student who does not attend the class frequently, he could not

understand all of the course material within these few days.  As a result the students who have

poor class attendance, his Final Grade also become relatively poor. Therefore if students do

not follow the classes i.e. do not attend in the class soundly, they cannot perform better in

final examinations.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,α) H0

2001 1103 1st yr, 1st sem. 63 0.677395 7.19208 2.66 REJECT

2000 1203 1st yr, 2nd sem. 60 0.57119 5.2997 2.66 REJECT

2005 2103 2nd yr, 1st sem. 114 0.33321 3.74004 2.62 REJECT

2012 2103 2nd yr, 1st sem. 118 0.57633 7.59560 2.62 REJECT

2001 2103 2nd yr, 1st sem. 61 0.78954 9.88198 2.66 REJECT

2000 2203 2nd yr, 2nd sem. 51 0.21633 1.55106 2.68 ACCEPT*

Now we consider Electrical and Electronic Engineering (EEE) Department to investigate the

correlation between Attendance and final Grade. The experimental results are displayed in the

Table 4.9. The value of coefficient of correlation of each course is calculated and presented in

the column 5 of the Table 4.9. It is observed that, in most of the cases, the value of RA,G are

greater than 0.5. In only one case, the value of RA,G are near 0.3 and at least greater than 0.2.

To test the significance of correlation between Attendance and Final Grade regarding RA,G

value, we have calculated t, for each RA,G value and incorporated in the column 6 of the Table

Table 4.9 Correlation between Attendance and Final Grade in EEE department and their test of

significance
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4.9. Also standard t(ν,α) values, with ν (= n-2) d.f. and 0.005 level of significance, are displayed

in column 7 of the table.

The inferences about the test of hypothesis are mentioned in column 8 of the table as well. It

is noticed that except one case all the Null hypotheses are rejected with 99.5% confidence

level. That is the corresponding RA,G values are significance with 0.005 level of significance.

Note that though, in one case, the Null hypothesis is not rejected with 0.005 level of

significance but with 5% level of significance the Null hypothesis of this case is also rejected

and obviously all are rejected with 5% level of significance. Therefore it may conclude that

with 5% level of significance all RA,G values are highly significant.

Now we consider Mechanical Engineering (ME) Department to investigate the correlation

between Attendance and Final Grade. The experimental results are displayed in the Table

4.10. The value of coefficient of correlation of each course is calculated and presented in the

column 5 of the Table 4.10. It is observed that there exist only two set of information and in

both cases the value of RA,G is  greater than  0.5. Again we have calculated tCal values and

compared with tabulated t(ν,α) for 0.005 level of significance. We observed that for both cases

H0 are rejected for 5% level of significance. Therefore there exists significant correlation

between Class Attendance and Final Grade with 5% level of significance.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,α) H0

2010 2105 2nd yr, 1st sem. 115 0.538843 6.79954 2.62 REJECT

2012 2105 2nd yr, 1st sem. 112 0.573806 7.34822 2.62 REJECT

Now to investigate the correlation between Attendance and Final Grade for Computer Science

and Engineering (CSE) Department. The experimental results are displayed in the Table 4.11.

The value of coefficient of correlation of each course is calculated and presented in the

Table 4.10 Correlation between Attendance and Final Grade in ME department and their test

of significance
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column 5 of the Table 4.11. It is observed that, in most of the cases, the value of RA,G are

greater than or near equal to 0.4. In one case the value of RA,G are less than 0.2.

Now to test the significance of correlation between Attendance and Final Grade regarding

RA,G value, we have  calculated tCal for each RA,G and are reputed in the column 6 of the Table

4.11. Also standard t(ν,α) values, with ν d.f. and 0.5% level of significance i.e. 99.5%

confidence level, are given in column 7 of the table.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,α) H0

2000 1207 1st yr, 2nd sem. 60 0.10781 0.82583 2.66 ACCEPT*

2005 2107 2nd yr, 1st sem. 52 0.68087 6.57357 2.68 REJECT

2003 2107 2nd yr, 1st sem. 57 0.43946 3.62824 2.66 REJECT

2012 2207 2nd yr, 2nd sem. 58 0.56608 5.13873 2.66 REJECT

2011 2207 2nd yr, 2nd sem. 59 0.62167 5.99207 2.66 REJECT

2002 2207 2nd yr, 2nd sem. 45 0.38360 2.72379 2.68 REJECT

2003 2207 2nd yr, 2nd sem. 58 0.55999 5.05808 2.66 REJECT

2009 2207 2nd yr, 2nd sem. 53 0.69051 6.81741 2.68 REJECT

2010 2207 2nd yr, 2nd sem. 59 0.60107 5.67816 2.66 REJECT

The inferences about the test of hypothesis are mentioned in column 8 of the table as well.  It

is noticed that except one case all the Null hypotheses are rejected with 99.5% confidence

level. That is the RA,G values are significance with 0.5% level of significance. But in one case

where tCal is less than 1.0 and therefore Null hypothesis is not rejected at 70% confidence too.

Therefore except one case it may conclude that with 0.5% level of significance there exists

strong evidence of correlation between Attendance and Final Grade in perspective to CSE

department.

Table 4.11 Correlation between Attendance and Final Grade in CSE department and their test

of significance
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Now we consider Electronics and Communication Engineering (ECE) Department to

investigate the correlation between Attendance and Final Grade. The experimental results are

displayed in the Table 4.12. The value of coefficient of correlation of each course is

calculated and presented in the column 5 of the Table 4. 12. It is observed that, in most of the

cases, the value of RA,G are greater than or near equal to 0.4. In two cases the value of RA,G

are less than 0.2.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,.05) H0

2002 1109 1st yr, 1st sem. 31 0.41273 2.4402 1.697 REJECT

2003 1109 1st yr, 1st sem. 27 0.34632 1.8458 1.703 REJECT

2003 2109 2nd yr, 1st sem. 31 0.07498 0.40494 1.697 ACCEPT*

2009 2109 2nd yr, 1st sem. 30 0.75673 6.12514 1.699 REJECT

2012 2209 2nd yr, 2nd sem. 53 0.55243 4.73291 1.671 REJECT

2009 2209 2nd yr, 2nd sem. 29 0.12373 0.64792 1.7 ACCEPT*

To test the significance of correlation between Attendance and Final Grade regarding RA,G

value, we have calculated tCal for each RA,G and the values are presented in the column 6 of

the Table 4.12. Also standard t(ν,α) values, with ν d.f. and 5% (rather than 0.5%) level of

significance, are displayed in column 7 of the table.

The inferences about the test of hypothesis are mentioned in column 8 of the table as well. It

is noticed that except two cases all the Null hypotheses are rejected with 95% confidence

level. That is the RA,G values are significance with 5% level of significance. But for the

remaining two cases, Null hypotheses are not rejected with 30% level of significance too.

Therefore it may conclude that except two the RA,G values are significant with 5% level of

significance.

Table 4.12 Correlation between Attendance and Final Grade in ECE department and their test

of significance
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Now we consider IEM and LE Departments to investigate the correlation between Attendance

and Final Grade. The experimental results are displayed in the Table 4.13. It is observed that

there is only one set of information is available for IEM and one set of information is

available for LE department. We notice the RA,C value for IEM is greater than 0.3 and the RA,C

value for LE is greater than 0.6. It is also observed that for both cases the Null hypothesis is

rejected with 1% level of significance. Therefore there exist significance correlation between

class Attendance and Final Grade with 99% confidence level.

Conducted

Year

Course

Code

(Math)

Semester/term No. of

Student

(N)

RA,G tCal t(ν,.01) H0

2011 1211 1st yr, 2nd sem. 58 0.33441 2.65537 2.390 REJECT

2013 2119 2nd yr, 1st sem. 43 0.66872 5.75898 2.423 REJECT

Table 4.13 Correlation between Attendance and Final Grade in IEM and LE department and

their test of significance
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CHAPTER V

REGRESSION ANALYSIS OF ATTENDANCE AND ACADEMIC ATTAINMENTS

5.l Introduction

In Chapter IV we have investigated extensively for the existence of the correlation between

attendance and Class Test as well as correlation between Attendance and Final Grade. We

observe that attendance has significance impact on both Class Test Marks as well as Final

Grade regarding Mathematics courses. Here we will perform extensive experiments to

establish a simple meta regression model of academic performance on attendance.

5.2 Experimental study

Before carry on experiments about regression analysis among attendance and academic

performance, it is noted here that we will consider all data and conditions used in Chapter IV

in perceptive CE department. It is worthwhile to mention here that among the all departments;

we have able to collect comparatively more data about CE department. Therefore we will

investigate regression between attendance and academic attainments only for CE department.

In this section, we will perform several experiments to examine the existence of the simple

meta regression model of Class Test Mark on Class Attendance and also examine the

existence of the simple meta regression model of Final Grade on Class attendance by ignoring

proxy variables. Note that total numbers of classes of each course are normalized to 30

classes. Class test marks are also normalized to 30 marks and Final Grade are calculated in

out of 4. Also note that, to find the regression model, we use Least Square Curve fitting tools

of MatLab package. It is also noted that in the figures CT means Class Test Marks.
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5.2.1 Regression analysis between Class Attendance and Class Test (CT) Marks

Firstly, we will investigate regression between class attendance and class test marks. For this

experimental study we have considered data of Civil Engineering Department. For the

regression model, we have considered three type of regression model given bellow:

 Linear model: ( ) = 1 ∙ + 2 (5.1)

 Polynomial model ( ) = 1 ∙ + 2 ∙ + 3 (5.2)

 Power/Exponential model ( ) = ∙ (5.3)

At first we consider the data of 1st year 1st semester, CE: 2001. The data are plotted and then

fitted by using MatLab fitting tools. The plotted data as well as fitting curves are displayed in

Figure 5.1(a), 5.1(b) and 5.1(c).
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Figure 5.1(a) Linear fitting of Attendance vs. CT (1st year 1st semester, CE: 2001)

Figure 5.1(b) Polynomial fitting of Attendance vs. CT (1st year 1st semester, CE: 2001)
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It is observed that most of the data regarding attendance are lies between 20 – 30 because

60% attendance is imposed. Now Figure 5.1(a) represents the linear fitting whereas Figure

5.1(b) represents polynomial fitting and Figure 5.1(c) represents exponential fitting for the

same data. The values of coefficient of determination (R2) of (a) linear fitting is 0.3317, (b)

polynomial fitting is 0.3772 and (c) exponential fitting is 0.3755. In this data set, the R2 values

of nonlinear fitting are a bit better than that of linear model.

Again we consider another data set namely 1st year 2nd semester, CE: 2001. The data are

plotted and then fitted by using Mat Lab fitting tools. The plotted data as well as fitting curves

are displayed in Figure 5.2(a), 5.2(b) and 5.2(c). Here Figure 5.2(a) represents the linear

fitting whereas Figure 5.2(b) represents polynomial fitting and Figure 5.2(c) represents

exponential fitting for the same data. Here it is noticed that though much amount of data are

greater than 20 regarding attendance but there exist more significant data less than 15.

Consequence the values of coefficient of determination (R2) value are significantly large. We

notice that R2 values of all the fitting curves are almost identical and approximately 0.6.
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Figure 5.1(c) Exponential fitting of Attendance vs. CT (1st year 1st semester, CE: 2001)
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Figure 5.2(a) Linear fitting of Attendance vs. CT (1st year 2nd semester, CE: 2001)

Figure 5.2(b) Polynomial fitting of Attendance vs. CT (1st year 2nd semester, CE: 2001)

Figure 5.2(c) Exponential fitting of Attendance vs. CT (1st year 2nd semester, CE: 2001)
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Again we consider another data set namely 2st year 1st semester, CE: 2009. The data are

plotted and then fitted by using Mat Lab fitting tools. The plotted data as well as fitting curves

are displayed in Figure 5.3(a), 5.3(b) and 5.3(c). Again it is noticed that most of the data

regarding attendance are lies between 20 – 30 because 60% attendance is imposed.
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Figure 5.3(a) Linear fitting of Attendance vs. CT (2nd year 1st semester, CE: 2009)

Figure 5.3(c) Exponential fitting of Attendance vs. CT (2nd year 1st semester, CE: 2009)

Figure 5.3(b) Polynomial fitting of Attendance vs. CT (2nd year 1st semester, CE: 2009)
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Conducted

Year

Course

Math-

Model R2 p1 (or a) p2 (or b) p3

2001 1101 Linear 0.33 0.8844 -7.088
Polynomial 0.3772 0.0385 -0.5983 5.06

Power 0.3755 0.00542 2.443
2002 1101 Linear 0.42 1.015 -2.399

Polynomial 0.4227 -0.0059 1.204 -3.445
2001 1201 Linear 0.59 0.895 -4.124

Polynomial 0.6016 -0.0211 1.505 -7.376
Power 0.5734 0.24 1.347

2002 1201 Linear 0.19 1.531 -23.8
Polynomial 0.215 0.156 -5.888 62.91

Power 0.2049 0.0003949 3.249
2004 1201 Linear 0.13 0.7343 3.032

Polynomial 0.1838 -0.1078 5.579 -49.26
Power 0.1338 1.629 0.8005

2011 1201 Linear 0.03 0.2891 12.45
Polynomial 0.027 0.01313 -0.3452 19.87

Power 0.0248 6.414 0.3495
2003 1201 Linear 0.06 0.3279 11.9

Polynomial 0.0657 0.00857 -0.05742 16.1
Power 0.0616 6.091 0.3713

2002 2101 Linear 0.4 2 1.9
Polynomial 0.3 0.59 1.204 3.445

Power 0.59 0.895 4.124
2004 2101 Linear 0.4 1.9 2

Polynomial 0.3 0.9 1.2
Power 0.029 0.995 4.12

2012 2101 Linear 0.05 0.3553 11.49
Polynomial 0.0637 0.03622 -1.361 31.24

Power 0.0505 5.393 0.4137
2013 2101 Linear 0.09 0.3019 18.05

Polynomial 0.1078 0.01914 -0.5492 26.93
Power 0.0843 11.52 0.2494

2009 2101 Linear 0.26 0.5231 7.172
Polynomial 0.2608 0.00041 0.5056 7.338

Power 0.2578 3.071 0.5878
2010 2201 Linear 0.11 0.8074 -5.341

Polynomial 0.1393 0.1015 -4.158 53.84
Power 0.1117 0.09267 1.569

For Linear Model Linear 0.42 0.889569 1.941692

Table 5.1: Parameter values of fitted model for Attendance vs. CT and R2 values in CE department
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Figure 5.3(a) represents the linear fitting whereas Figure 5.3(b) represents polynomial fitting

and Figure 5.3 (c) represents exponential fitting for the same data. The values of coefficient of

determination (R2) of (a) linear fitting is 0.2608, (b) polynomial fitting is 0.2608 and (c)

Exponential fitting is 0.2578. In this data set, the R2 values of nonlinear fitting as well as

linear fitting are almost identical. Similarly we have tested several model equations with all

data regarding CE and try to fit each of the above mentioned models. The characteristics of

the fitted models are summarized in Table 5.1.

It is observed in the Table 5.1 that on an average the linear model is the best among the three

models considered here. It is also noticed that though the values of regression coefficient are

vary from data to data but on an average in case of linear regression model the value of R2 is

0.42, the value of  regression coefficient p1 = 00.89 and p2 = 1.94. So angle of the slope of

the linear regression line is about 400 and the line cut the ordinate at about 2.0 unit ahead.

Again we have performed regression analysis on average Attendance vs. average CT marks

for CE. The experimental results are depicted in Figure 5.4(a), 5.4(b) and 5.4(c). Here Figure

5.4(a) represents Linear fitting whereas Figure 5.4(b) represents polynomial fitting and Figure

5.4(c) represents exponential fitting for the same data. We observed that the R2 values of

linear fitting as well as Power fitting are almost identical and is 0.42.Whereas the R2 values of

Polynomial fitting is 0.69. But the graphical view (Figure 5.4(b)) imposes that it would be not

a valid model. Since according to this Polynomial model, when attendance becomes larger
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Figure 5.4(a) Linear fitting of average Attendance vs. average CT of CE
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than 24 the CT marks goes down. Again the graphical view as well as the estimated value of

the coefficients of Power methods (Figure 5.4(c)) reveals that the model is almost linear. Now

according to the estimated Linear model corresponding to the average Attendance vs. average

CT Marks of CE department p1 = 0.9 and p2= 1.9 which is agree with the previously

obtained average value of p1 and p2 of all linear models regarding CE departments.

Therefore according to the data of class Attendance and Class Test marks in perspective of

CE department, the estimated regression model be a linear Meta-model in which proxy

variables are ignored.  Moreover according to the average data the R2 value is 0.42 which is of
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55

no doubt a significant value. Therefore the estimated simple Meta linear regression model of

CT marks on class Attendance is as follow:( ) = 0.9 ∙ + 1.9 (5.4)

The graphical view of simple Meta Linear Regression model of CT marks on class

Attendance for CE is given in Figure 5.5. Similarly we will able to find out simple linear

regression model of CT marks on class attendance for each Department. But for the lack of

sufficient data we could not establish Meta regression model for other departments as well as

a general Meta model for the whole university, KUET.

5.2.2 Regression analysis between Class Attendance and Final Grade

Now we will investigate regressions between class attendance and Final Grade. For this

experimental study we will again consider Civil Engineering Department. For the regression

model we consider three type of regression model as considered earlier. Now we consider the

data of 1st year 2nd semester, CE: 2001. The data are plotted and then fitted by using MatLab

fitting tools. The plotted data as well as fitting curves are displayed in Figures 5.6(a), 5.6(b)

and 5.6(c).
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Figure 5.6 (c) Power model of GPA on Attendance; CE: 1201, 2001
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It is observed that the GPA is 0 when number of attendance is 15. Because greater that 50%
(actually 60%) attendance is mandatory to appear in the final examination. Now Figure 5.6(a)
represents the linear fitting whereas Figure 5.6(b) represents polynomial fitting and Figure
5.6(c) represents exponential fitting for the same data. The value of coefficient of
determination (R2) of (a) linear fitting is 0.77, (b) polynomial fitting is 0.79 and (c)
exponential fitting is 0.74. In this data set, we observe that the R2 values of nonlinear fitting
are a bit better than that of linear model as well as Power model. Note that the polynomial
model is almost looked like a logarithmic curve.

Similarly we have tested several model equations with all data regarding CE and tried to fit

each of the above mentioned models.  The characteristics of the fitted models are summarized

in Table 5.2. It is observed in the Table 5.2 that on average the value of R2 is almost identical.

The values of R2 of Linear model, Polynomial Model and Power model are 0.37, 0.38 and

0.36 respectively. Since the R2 value of Power model is relatively small so we will consider

here only Liner model and Polynomial model. Now, on average, the p1 and p2 values of

linear model are 0.138 and -0.899 respectively. Therefore according to the linear model the

slop of regression line is about 80 and Eq. (5.5) be the corresponding equation.

 Linear model: ( ) = 0.138 ∙ − 0.899 (5.5)

 Polynomial model ( ) = 0.0028 ∙ + 0.125 ∙ − 0.487 (5.6)

On the other hand, on average, the p1, p2 and p3 values of Polynomial model are 0.002808,
0.125212 and -0.48677 respectively. Therefore Eq. (5.6) represents corresponding Polynomial
regression model.

Conducted

Year

Course

Math-

Model R2 p1 (or a) p2 (or b) p3

2001 1101 Linear 0.42 0.1457 -1.716
Polynomial 0.4462 0.003834 -0.002011 -0.5065

Power 0.4345 0.0007034 2.444
2002 1101 Linear 0.48 0.1405 -0.9961

Table 5.2: Parameter values of fitted model for Attendance vs. GPA and corresponding
R2 values in CE department
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Polynomial 0.5127 0.003626 0.02479 -0.3534
2001 1201 Linear 0.77 0.1579 -0.6514

Polynomial 0.7923 -0.005254 0.3099 -1.461
Power 0.7417 0.0592 1.247

2002 1201 Linear 0.13 0.1221 -0.3941
Polynomial 0.1787 0.01942 -0.8017 10.4

Power 0.1347 0.04636 1.256
2004 1201 Linear 0.12 0.05701 1.213

Polynomial 0.1205 -0.0007972 0.09284 0.8264
Power 0.1202 0.5191 0.506

2011 1201 Linear 0.3386 0.1982 -2.899
Polynomial 0.3398 0.002444 0.08017 -1.519

Power 0.337 0.0005665 2.533
2003 1201 Linear 0.12 0.1071 0.1636

Polynomial 0.124 0.0006411 0.07825 0.478
Power 0.1237 0.1359 0.9443

2002 2101 Linear 0.79 0.1629 -1.011
Polynomial 0.8454 -0.01124 0.528 -3.301

Power 0.7505 0.03119 1.423
2004 2101 Linear 0.16 0.09662 -0.2661

Polynomial 0.1672 -0.003318 0.2441 -1.847
Power 0.1612 0.0605 1.108

2012 2101 Linear 0.34 0.1626 -1.376
Polynomial 0.3492 -0.004822 0.3911 -4.005

Power 0.3381 0.02029 1.515
2013 2101 Linear 0.29 0.1064 0.5954

Polynomial 0.287 0.0008946 0.06663 1.011
Power 0.2847 0.2477 0.8011

2009 2101 Linear 0.45 0.127 -1.238
Polynomial 0.4573 0.001719 0.05496 -0.5558

Power 0.4554 0.003558 1.946
2010 2201 Linear 0.40 0.2157 -3.118

Polynomial 0.4035 -0.004105 0.4166 -5.513
Power 0.3868 0.001315 2.31

Average

Linear 0.36989

2

0.13844 -0.8995
Polynomial 0.38038

7

0.002808 0.125212 -0.48677
Power 0.35570

8

0.09387 1.51004

Now according to Polynomial model Eq. (5.6), we have plotted the graph which is shown in

Figure 5.7. It is observed in the figure that when attendance is greater or equal to 25 then
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estimated GPA becomes greater than 4 (out of 4) which is inconsistent. So we should regret

the polynomial Model.

Again we have plotted equation (5.5) which is corresponding to linear model. The graphical

representation of the linear model is shown in Figure 5.8. It is observed in the figure that

when attendance is, on average, 30 than on average the final Grade i.e. GPA becomes about

3.25. Now let us modify the above Linear model given by equation 5.5 as 5.7. This has been

done under the following consideration.

 Linear model: = 0.138 ∙ − 0.155 ;when 13 < ≤ 30= 0;when 0 ≤ ≤ 13 (5.7)

y = 0.0028x2 + 0.125x - 0.48
R² = 1
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As we mentioned earlier that attendances are normalized to 30 and 60% (above 45%

attendance was allowed in some instances) attendance is mandatory to appear in the final

examination. So number of attendance less than 13 will get 0 as GPA.  Moreover kept

unchanged the regression coefficient p1 and replaced the constant term p2 = -0.889 to p2= -

0.155, we have the new Linear regression model. Now we have plotted the modified linear

model which is displayed in the Figure 5.9. It is noticed in the Figure 5.9 that when value of

attendance is 30 than corresponding estimated GPA becomes about 4 (out of 4). Note that in

the Eq. (5.7) variable x represent normalized class attendance.

y = 0.1384x - 0.8995
R² = 1
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parameter values
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5.2.3 Multiple Regression analysis among Attendance, CT marks and Final Grade

Now we will investigate multiple linear regression models on Final Grade on class attendance

and CT marks. The mathematical form of the multiple linear model and multiple polynomial

model are described by the equation (5.8) and (5.9).

 Multiple Linear model: = 00 + 10 ∙ + 01 ∙ (5.8)

 Multiple Poly. model: = 00 + 10 ∙ + 01 ∙ + 20 ∙ + 11 ∙ (5.9)

At first, in this aspect, we consider CE: Math 1201, year 2001. We have plotted the data and

fit by a linear multiple regression model. The estimated multiple linear regression model is

displayed in the Figure 5.10. It is observed that the R2 value of the model is 0.81 which

implies that this model sufficiently significant. According to the estimated model the

mathematical equation of the multiple linear regression model is as follow:= −0.45 + 0.1142 + 0.0488 (5.8)

where x represents for  attendance and y represents for CT marks.
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of CE department
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Again the estimated polynomial multiple regression of the above data are displayed in Figure

5.11. It is observed in the Figure 5.11 that the R2 value is only 0.202 which in not very

significant. So we regret polynomial multiple regression model.

Similarly we have estimated the multiple regression models for other departments especially

we have considered the data which have significant R2 values. The estimated models are

summarized in the Table 5.3. From the experimental study it is observed that linear models

and Polynomial (only of Attendance value) model are almost identical regarding R2 values.

Figure 5.10 Multiple linear Regression model of GPA on Attendance and CT

of CE: Math 1201, Year: 2001

Figure 5.11 Polynomial Multiple regression Model of GPA on Attendance and CT

of CE: Math 1201, Year: 2001
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Moreover it also worthwhile to be mentioned here that the patterns of the models are vary

year to year as well department to departments.

Year Course

Math-

Model R2 p00 p10 p01 p20 p11

2001 1201 Linear 0.8058 -0.45 0.1142 0.04884

Polynom

ial

0.8674 -0.1937 -0.006572 0.3364 0.005891 -0.01456

2001 2103 Linear 0.6566 -0.2459 0.1141 0.03618

Polynom

ial

0.6649 -0.4008 0.1113 0.09006 0.0005617 -0.002521

2005 2107 Linear 0.5631 -3.859 0.1873 0.04976

Polynom

ial

0.5665 -6.864 0.4999 -0.08193 -0.007258 0.00463

2009 2109 Linear 0.6733 -1.156 0.121 0.03976

Polynom

ial

0.739 2.599 -0.4492 0.401 0.01544 -0.01289

Table 5.3 Some estimated multiple regression of GPA on Attendance and CT marks of different

departments which have good R2 values.
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CHAPTER VI

CONCLUSION

As it has been seen from the earlier researches, the performance of students depend on many

factors such as, attendance, motivation, level of engagement etc. which may be considered as

the students attributes towards learning and some other attributes of the teachers on the

process. No such research has been conducted and is published in case of universities of our

country, especially of KUET in which at least 60% attendance is imposed. Though it has been

seen from other researches, many factors may be considered but we are interested and

selected the factors namely class attendance for the assessment of the academic attainment.

Name of Departments Number of Courses

CE 11

EEE 07

ME 01

CSE 06

ECE 05

IEM 01

LE 01

TOTAL 32

There are many departments in this university (KUET) and a lot of subjects are taught. But

Mathematics is common to all. Hence Mathematics is chosen for this study. This study is

done among the students of first year and second year in several engineering departments

regarding mathematics courses during the period 2000 -2013. It is of no doubt that for the

existence of proxy variables (Teacher’s attribute, student’s attribute, subjects, socio-economic

Table 6.1 Number of courses of different departments considered for the study
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environment etc.), it is very difficult and hard working to find out the impact of class

attendance on academic attainment. Moreover, due to the imposed of mandatory percentage

of class attendance, it is very difficult to find out the impact of attendance on final grade.  In

this study we have considered only existing old data (student attendance and academic

performance), where the effect of proxy variables are ignored. Moreover, for better

comparison as well as for finding some test statistics, all the data are normalized.

Name of Departments AT (30) CT(30) GPA(4)

CE 24.58 19.70 2.50

EEE 25.46 18.90 2.76

ME 24.76 16.62 2.56

CSE 23.80 18.60 2.68

ECE 25.78 17.73 2.86

IEM 27.11 20.20 2.27

LE 24.88 20.32 2.61

In this study we have considered 32 set of courses, within 2000 – 2013, which are displayed

in the Table 6.1. We also have summarized the student average statistics namely average

number of attendance, average CT marks and average GPA and displayed in the Table 6.2.

Anyway, in CHAPTER IV, we have rigorously studied about the correlation between class

Attendance and Class Test Marks for each course. From these experimental studies, it may

conclude that there exist correlation between class Attendance and Class Test marks in each

department. In this we have also investigated thoroughly in each course for the existence of

correlation between class Attendance and Final Grade. From the experimental study, it has

been seen that the values of correlation coefficients vary from year to year as well as

department to department. Perhaps it was the results of proxy variables and socio-economic

effects.

Table 6.2 Different parameters of student’s academic performance (in average)
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The experimental studies reveal that there exist strong correlations between Attendance and

Final Grade in perceptive of all departments. Though there exist correlation between Class

Attendance and CT marks as well as correlation between Class Attendance and Final marks,

but correlation between Class Attendance and final Grade is stronger than that of Class

Attendance and CT marks. It may reveals that class attendance grow some intuitive

knowledge to the students which effect on his final Grade.

After finding the existence of correlations among attendance, CT and Final Grade, we have

performed intensive experiments for regression analysis. It is observed from the experimental

study that though there exist regression model of CT on attendance as well as GPA on

attendance but according to the R2 value the regression models of GPA on attendance are

more significant than that of CT on attendance. It is also noticed that regression coefficients

are varying from year to year as well as department to department. We have also estimated a

Meta linear model of CT as well as a Meta linear model of GPA on attendance in perspective

CE department. Finally we have investigated a multiple regression model of GPA on

attendance and CT marks.  It is observed that though multiple linear models shows good

result but some instances show very poor results regarding R2 values.

In spite of mandatory of 60% attendance, from the experimental results, it is revealed that

attendance has a great effect on academic attainments. But the effect is varying department to

department as well as semester to semester. To establish a general Meta model regarding

academic attainments, class attendance and socio-economic changes further experiments need

to perform especially sufficiently much more data will be required.  In this study though we

have much information regarding CE departments but we have no sufficient data in other

departments.
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t  Table
cum. prob t .50 t .75 t .80 t .85 t .90 t .95 t .975 t .99 t .995 t .999 t .9995

one-tail 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
two-tails 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001

df
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300

z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291
0% 50% 60% 70% 80% 90% 95% 98% 99% 99.8% 99.9%
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