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Abstract

In this thesis the nature of distributive lattieed Boolean function is studied.
Distributive lattices have played many roles in tlevelopment of lattice theory. Distributive
lattices have been studied by several authors dimjuAbbott [6], Cornish [17], Nieminen
[10].A poset(L,<)is said to form a lattice if for everg,bO L if supfa,b}and infa,b} exist in
L. A lattice L is said to be distributive ifa,b,cOL,

ad(bOc) =(abb)O(alc) holds.
In this thesis we give several results on distieutattice and Boolean function which will
certainly extend and generalize many results tic&atheory. We have proved thatx N is
modular whereN is the chain of naturals under usual We also generalize the following
theorem of L.Nachbin[16], lek be a distributive lattice with 0 and 1 thé&nis Boolean iff all

its prime ideals are unordered by set inclu§ion
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CHAPTER 1

Preliminaries

1.1 Introduction:
In this chapter we have discussed the basic defniof relation. We recall some
definitions and results on lattice, convex suldatticomplete lattice and complemented
lattice. We consider this chapter as the base ankgoound for the study of subsequent

chapters.

1.2 Redations:

Definition (Relation): Let A and B be two non-empties set, any subsetfof B (Cartesian

product) is called relation fronAtoB. The elementsa,b(al] A blJ Bare in relation
with respect toR if (a,b)d R For (a,b)0 R we will also write “aRb” or “a=b(R)”

and read asdis related tob by R”.

Example1.2.1: Let A={1,2,3}; B={4,5}
Then AxB={(,4),(1,5),(2,4),(2,5),(3,4),(3,5
R ={1,4).1,5)}. R, ={(2,5)} ,R, ={(3,4),(1,5)} are all relations fromA to B.

Definition (Inverserelation): Every relationRfrom Ato Bhas an inverse relatioR™ from
Bto Awhich is defined byR* ={(h 3:(a b0 R
In other words, the inverse relatidR™ consists of those ordered pairs which when

reversed, i.e., permutated, belongRto

Example1.2.2: Let A={1,2,3}and B={a B .Then
R={(, 39, (1, b),(3, a)}is a relation fromAtoB. Then the inverse relation &is

R™={(a1),(b1),(a3)}.



Definition (Reflexive relation): A relation Rin a setA is called a reflexive relation if, for
everyall A (a al R

In other wordsR is reflexive if every element irA is related to itself.

Example 1.2.3: LetA={1,2,3}. Then
R={(1,2),(2,2),(2,3),(3,2),(3,3)
HereR is reflexive sincgl,1), (2, 2)and (3, 3) belongs to the relation.

Definition (Symmetricrelation): Let R be a subset of Ax A | i.e., letR be a relation inA

Then R is called a symmetric relation ifa, b) 0 Rimplies (b,a)0 R

that is, ifa is related tdb thenb is also related t@.

Example 1.2.4: LetA={1,2,3}. Then
R={(1,1),(3,2),(2,3)} Is symmetric relation.

Definition (Anti-symmetric relation): Let R be a subset oAx A, i.e. let R be a relation in
A. ThenR is called a anti- symmetric relation (@, b) 0 Rand (b, a) J Rimpliesa=b
In other words, ifa# b then possiblya is related tob or possiblybis related t@a, but
never both.

Remark: Let D denoted the diagonal line oAx A, i.e., the set of all ordered pairs
(a,a)0 Ax A.
Then a relatiorR in Ais anti-symmetric if and only if

Rn R*0O D.

Example1.25: Let A={1,2,3} .Then
R ={(1,1)}, R ={(1,2)} both are anti-symmetric relation.

Definition (Transitiverelation): A relation R in a setA is called a transitive relation if
(a,b)0 Rand (b, c) 0 Rimplies (a,c)0 R



In other words, ifa is related tdb andb is related toc thena is related t@.

Example 1.2.6: Let A={1,2,3}. Then
R ={12),(2,2)}, R ={(1,2)} both are transitive relation.

Definition (Equivalence relation): A relation R in a setA is an equivalence relation if
(1) R is reflexive , that is for everg[1 A (a @0 R

(2) R is symmetric, that iga,b)[0 R ,implies (b,a) 0 R
(3) R istransitive, thatiga,b)d Rand (b,c) Rimplies (a,c)0 R.

Example 1.2.7: Let A={,2,3} be a set andR={(1,1),(2,2),(3,3),(1 2),(2,1),(1,3),(B,
(2,3)} be a relation ofAx A then the relation is an equivalence relation,esinc
(1) R isreflexive,(1,1),(2,2),(3,3R,
(2) R is symmetric,1,2),(2,1),(1,3),(3,1) Rand
(3) R is transitive,(2,1),(1,3),(2,3UR.

1.3 Posetsand L attices;

Definition (Poset): A non-empty seP, together with a binary relatioRR is said to be a
Partially Orderd set or a Poset if
(P1) aRafor everyalP, i.e., Ris reflexive.
(P2) aRbandbRa impliesa=b, i.e., Ris anti-symmetric, for, b0 P
(P3) aRb andbRc impliesaRc, i.e., R is transitive, fom, b, c P.

Remark: For our convenience, we use the symbol ‘in place of R. We read< as “less
than or equal to”. Thus iP is a poset then we automatically assume tkdti$ the

partial ordered relation i, unless other symbol is mentioned.



Examples1.3.1: i) The setN of natural numbers under the usxais a poset.

i) The setX ={2,4,8,16} under the divisibility relation is a poset.

116
18
14

42
Fig- 1.1

Definition (Chain): If P is a poset in which every two members are compaiias called a
totally ordered set or a toset or a chain.

Thus if Pis a chain and, yO Pthen eitherx< yor y< x.

Clearly also if x, y are distinct elements of a chain then eitkeryor y < x.

Definition (Greatest element): Let P be a poset. If0 an elementadP s.t. x< afor all
xOPthen a is called greatest or unit element Bf. Greatest element if exists, will be

unique.

Definition (Least element): Let P be a poset. If0 an elementbOP s.t. b<x for all

xOPthenb is called least or zero elementBf Least element if exists, will be unique.

Example 1.3.2: Let X ={1,2,3}. Then(P(X),0) is a poset.
Let A={@{1,2},{2},{38}} then(AD) is a poset withp as least elemen#\ has no greatest
element. LetB={{1,2},{2},{3},{L.2,3}} then B greatest elemen{, 2,3} but no least
elements. IfC ={@{1},{2},{1,2}} thenC has both least and greatest elements namely,
and{i, 2}

Definition (M aximal element): An elementa in a posetP is called maximal element & if

a<x fornoxOP.



Example 1.3.3: In the poset2,3,4,6,7,21 under divisibility 4,6 and 21 are three maximal

elements (none being the greatest).
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Fig- 1.2

Definition (Minimal element): An elementb in a posetP is called a minimal element ¢t

if x<b for noxdOP.

Definition (Upper bound of a set): Let S be a non empty subset of a poget An element
aldP is called an upper bound & if x<a OxO S.

Definition (Supremum): If a is an upper bound o s.t.a<b for all upper bound$® of S

then a is called least upper bounlub) or supremum ofS. We write supS or

supremums.

It is clear that there can be more upper bound séta Butsup, if it exists, will be

unique.

Definition (Lower bound): An element adlP will be called lower bound ofS if
a< x,0xO S.

Definition (Infimum): If a is a lower bound of a s&. Thena will be called greatest lower

bound(g.lb) or Infimum S (inf S) if of a setb< afor all lower bound$ of S.

Example 1.3.4: Let (Z,<) be the poset of integers
Let S={--, 2,-1,0,1,2)then 2 = supS
Again the pose(R,<) of real numbers iS={ xJ R|x<0,x# 0} the supS = C (and it does

not belong t®).



Definition (Lattice): A poset (L,<)is said to form a lattice if for everg b L, sup{a,b} and
inf{a B existinL.
In that case, we write
supfa,b}=alb (reada join b)
inf{a B =alb (reada meetb)
Other notations likea+b and alb or aldb and an b are also used fosupfa,b}and
inf{g B .

Definition (Algebraic definition of a lattice): A set L together with two binary operation
‘0" (meet) and' (join) is called a lattice if it satisfies the foWing identities
() idempotentlawdalL, alla=a alla=a

(i) commutative lawda, b0 L, aOb=bOaandalOb=bOa
(iii) associative lawla,b,cd L, aO(bOdg=(adbh 0 cand al(bOg=(aldbhO c

(iv) absorption lawOa,b L, al(allb=a and all(alb) = a.

Example 1.3.5: Let X be a non empty set, then the pog#tx),0) of all subset is a lattice.
Here for A, BO P( X)
AOB=An Band A0B= A B
As particular case, whex ={1,2,3}
P(X) ={0{}{2}.{3}.{1. 241, 3},{2,3}.{1,2,3} }

It represented by the following figure

(123

&

¢
Fig- 1.2
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Example 1.3.6: Every chain is a lattice. Since any two elemeni$ of a chain are
comparable, sag < b,we find

alb=inf{ab =a alb=sup{a = h.

Definition (Dual): Let R be a relatiordefined on a seP . Then converse oR (denoted by
R) is defined bya Rb = bRa, a,bLUP. Let (P,R) be a poset thenP(,R) is called

dual of P, whereP=P andR is the converse oR.

Remark: If a statementy is true in all posets, then its dual is also tiuall posets. As an
example take forp the statement: “IfsupH exist it is unique”, we get as its dual; “If

inf H exists it is unique”.
Theorem 1.3.7: Show that a poset is a lattice iff it is algebrHyca lattice.

Proof: Clearly Lis a non empty set.

So setalb=inf{a B andab=sup{a, b

ThenaOa=inf{a & = a; alla=sup{a, &= a

So LI and LI are idempotent

alb=inf{a b anf{ bla= K ¢

alb=sup{a,bf=sup{h ¢ = 0 ¢

-0 andU are commutative.

Next, ad(bd ¢ =inf{ a b k =nf{ ,mf{ , B}c
=inf{inf{ak }cwf{ alBc
=(adb)Oc

all(b0 ) =sup{a bl ¢ =sup{ asup{h ¢}
=supf{a,b0 ¢} =sup{a sup{b, ¢}
=sup{supfa,b}, ¢ =sup{ad b ¢
=(alb)0Oc

so Ll and Ll are associative.



Finally, ad(aOb) = alsup{a B =inf{ msup{ a B =
al(aldb = alinf{ a b=sup{ anf{ ,alp = i

Hencell and Lisatisfy two Absorption identity
So L=(L;,00,0) is a lattice.
Conversely Sincel is idempotenti.e.alla=a OallL

So ax<a

O< is reflexive.
Sincell is commutative
OalOb=b0a
—a=b [Jalb=aand dl b= b

So,< is anti symmetric.

Leta<b andb<c

Than a=alb b=b0Oc

=al(bOc)

=(alb)Oc

=—allc

=a=alc

—>asc

So,< is transitive

0(L,<) isaposet. =

Theorem-1.3.8: Prove that a posgt,<)is a lattice ifsupH andinf H exist for every non-

void or non-empty subséd of L.

Proof : Let (L,<)is a poset andH be a non void finite subset df. If H ={g& , then
supH = infH = {a} follows from reflexivity of ‘<’ and the definition osup andinf .
Let H ={a b ¢ to show thaisupH exist.
Let d =sup{a,b}, e=sup{d, ¢



We claim thate=supH . First of alla< d,b< d andd < e c< ¢, therefore by transitivity
x<e. ForallxOH.

Secondly, if f is an upper bound dfl , thena< f,b< f and thusd< f,alsoc< f, so
thatc,d< f. Thereforee< f. Sincee=sup{d, ¢

0 e is the supremum oH .

If H={a, a, a,---, a_4 then

sup{---sup{suda,,a, }a,}---a,, } is thesupof H.

By duality, we conclude thanf H exist.

Hence a pose(L,<) is a lattice. m

Theorem 1.3.9: A poset(L,<) is a lattice iff every non-empty finite subsetlofhassup and

inf .

Proof: Let (L,<) be a lattice andH be any non empty finite subset of. Then there are
several cases:

Case-1: If H has only one element, say a thehH =supH =a.

Case-2: If H has two elements, say and b, then by definition latticesupH and inf H

exist.

Case-3: Let H has three elements, s&/={a h ¢ , since by definition of a lattice, any two
elements ofL have sup and inf , let we taked =inf{g B and e=inf{¢inf{ a §
=inf{¢ ¢
We must showe=inf{a b ¢ .

By definition ofd ande, d<a, d<b, e<c es<d
thus,(e<d, d<a), (e<d, d<bh), esc
= e< a es<h ec<c(transitivity)
= eis any lower bound ofa i ¢ .
If f is any other lower bound §f b ¢ , thenf <a, f<b, f<c
i.e. f is alower bound ofa 3 andd =inf{g B given f <d



Again, f <cand f <sd= f is alower bound ofc d ande=inf{¢ ¢ .

Given f <e. Thuse is the greatest lower bound{d I §.

Hencee=inf{a b ¢ Inf H.

Similarly, supH exists.

This result can similarly be extended to any fimtenber of elements il . Indeed, if
H={a, a, a,-, 3}

Theninf H =inf{inf{inf{ & & B - B

By duality, we can saysupH exists.

Again let L be a non-empty set anid be any non-empty finite subset bf for which

supH andinf H exists.

We have to show thdt is lattice.

Now, Oa,bO L, let we consideH ={a .
By hypothesis, sud =allb and infinf H =aObexist.

i.e.albandaOdbOL

Hencel is a lattice. m

1.4 Convex sublattice and Complete lattice:

Definition (Bounded lattice): A Lattice with smallest and largest elements islechla
bounded Lattice. Smallest element is denoted bprd largest element is denoted by ‘I’

or‘u’.

Example 1.4.1: The bounded subset of all real number under uglation <is a bounded

lattice.

Definition (Complete lattice): A lattice L is called a complete Lattice if every non-empty

subset ofL has itssup andinf in L.

10



Example 1.4.2: Set of all sub space of a vector spateis a complete Lattice under set

inclusion.

Definition (Sublattice): Let (L,0,0) be a Lattice, A non empty subs8t of L is called a

sublattice ofL if S itself is a lattice under same operatioand Ll in L.

Example 1.4.3: Let L={0,a,b1} be a lattice.

0
Fig- 1.4

Sublattice ofL are:{0, a, b1},{0},{ B{ }41.{0, },{@, }{®1,{, a1}{ 4}

Definition (Convex sublattice): A sublatticeS of a latticeL is called a convex sublattice of
L.Ifforall a,b0S [aObadQdO S

Example 1.4.4: Let L={0,a,b c1} be a lattice.

el

Fig- 1.5

Here{0,a,b ¢ is convex sublattice.
Remark : In the lattice{l, 2,3,4,6,12) under divisibility {1,6} is a sublattice which is not
convex as2,30[1,6], but 2,30{,6}.Thus[1,6] 1 {1,6} .

11



Defination (Semilattice) : A poset is called a meet semilattice if for albO P,
inf{a B exist.
And a pose(P,<) is called a join semilattice if for ali, b[] P, sup{a,b} exists.
Both the meet and join semilattice are called &xtige.
Definition (Algebraic definition of Semilattice ) : A non-empty setP together with a

binary compositionl' is called a meet semilattice and called a join semilattice, if for
all a,b,cO P.

() alla=a alla=a
(i) aOb=b0Oa alb=b0Oa
(i a0(Og=(adh0¢ al(bOg=(adh0c

Both meet and join semilattice are called senndiatt

Theorem-1.4.5: Dual of a complete lattice is complete.

Proof : Let (L,p) be a complete lattice and Iét,p) be its dual. TheriL,p) is a lattice.
We have to show thdt,p) is complete lattice.
Let ¢ #SO L be any subset df .
Sincel is completesupS andinf S existinL.

Let,a=inf Sin L.
Thenapx,Ox0 L

— xpa,0x0 L
— a is an upper bound & in L.

Let b be any other upper bound 8fin L
Thenxpa OxO L

= bpx OxO L
—bpaasa=inf S inL.
—apb orthat‘a’is lub of S'in L

Similarly, we can show thatupS in L will be S in L. Hence(L,p) is complete. m

12



Theorem-1.4.6: A lattice is complete unless it has a subset wfodms an infinite chain.

Proof: SupposelL is a lattice without infinite chain. Now we hawe ghow thatL is
complete. For this purpose we need to show thatyesubset ofL has suprimum and
infimumin L.

Let M be any subset df and let
M ={Xy X %"}
If %, is an upper bound oM , then the theorem is proved. Nowxf is not an upper
bound ofM , then there is some O M such thatx > x,.
Thenx, Ox # x,
Sincex, Ox = %, S0 we deduce thag 0 x > x,
=% <X%0Ox
If x, 0% is an upper bound df1 , then the theorem is proved. Nowxf x is not an
upper bound oM , then there is somg, 1M
Such thatx, # x, 0 x.
Thenx, Ox 0% %0 X.
Since x, Ox Ox,# x,0 %, SO we deduce that
X 0% 0% > %0 %
=% 0Ox <x0x0x
If x, 0x Ox, is an upper bound d#l , then the theorem is proved.
If x, 0x Ox, is not an upper bound & , then there is am, (1M
Such thak, # x, 0 x 0 x,. and such that
X% 0% 0% < %0x0x%0 %
Proceeding in this way we get two cases:
Case-1: The process continue on and on or, the latticeahasfinite ascending chain
X <% U X <%0 x0x%< %0 X0 %0 %<
Case-2 : The process stops at certain stage Givenlthaas no infinite chain, so first cas can

not occur. Therfore case-2 must occur.

13



Suppose the chain stopsx@i x O x, 0---0 x
Theni:DOx Is an upper bound d¥1 . Consider any other upper boundMf, sayy .

OX% <Y, XS Y %S ¥y XS

I:I—<

Ox<y

i=0
So, _:Dox is the least upper bound & , HenceM has supermum.

Similarly we can show thaM has infimum. Hence a lattice without infinite amas

complete. m

Theorem-1.4.7 : The set of all convex sublattice of a lattice undet inclusion is a

sublattice.

Proof : SupposelL is a lattice.
Letus consideC={A[x yO AOx yJ A
We have to show thgC,0) is a lattice.OP,Q0OC
POQ=PNQ
Ox,yO PN Q
x,yO P andx, ydQ
O[x y]O Pand[xy]0Q
O[x y]O PN Q
SoPOQOC
Again supposePIQ={x x< pd g fiJ P4 ®
Let o,OP0OQ, thenO p,p,0P andg,q,0Q S.t.
aspUqg, BspUg,
Now OyO[a, B]
Soa<y<p
= pUg=<ysplUqg
=ysp,Ug

14



OyOPOQ
O[a,plOPOQ
OPOQOC

HenceC is a lattice.

i.e. Set of all convex sublattice of a lattice endet inclusion is a latticen

Theorem-1.4.8 : Show that the poséP,<) is a lattice if it is a join and meet semilattice

Proof: We know that a posdP,<) is called a lattice if it satisfied in the follovgraxims:
(i) Dab0P= albd Pi.e.inf{a b} exists in P.
(i) Oa,b0P= al b Pi.e.supfa,b} exists in P.
Given that the poséP,<) be meet semilattice and join semilattice which el
Oa, b0 P=inf{ a b exists inP {By the definition of meet semilattice}
and Oa, b0 P= sup{a, I exists inP {By the definition of join semilattice}
Sincesup{a,b} andinf{a } existsinP.

So (P,<) be a lattice. m

Theorem 1.4.9 : A sub latticeS of a latticeL is a convex sublatice iffla,b0 S with a<b;

[abOS.

Proof : First supposesS is a convex sublattice ih.
Then we have to show that,bOS (a<bh), [a b0 S

Let Ua, b S be any elements, then by definition of a convexadtice, we have,
[a0b a0l O S........ (1)

But given thata< b

OalOb=a alb=b

Therefore (i) becomda,b]0 S

Conversely supposga, bl Swith a<b

15



[a,bOS.....(2)
we have to show the8 is convex sublattice i .
Since S is a sublattice oL
So, by definition of a sublattice,
aObOdSandaObOsS OabdSs
Again, Oa,b we know.
alb<alb

So by given condition. [i.e. (2) become]
[a0bablg O S

ThereforeS is convex sublattices

1.5 Complimented and Relatively complimented lattices:

Definition (Complimented lattice) : Let [a,b] be an interval in a lattice .
Let xO[a be any element. If0yOL st xOy=axdy=L we sayy is a

complement ofx relative to[a, b], or y is a relative complement of in [a,b] .

Definition (Relatively complimented lattices) : If every elementx of an interval[a, b]
has a least one complement relative [tpb], the interval [a,b] is said to be

complemented.
Further, if every interval in a lattice is complamex, the lattice is said to be relatively

complemented.

Theorem 151 : Let A be a non-empty finite set. Show th&(A),0) is uniquely

complemented lattice.

Proof : Let A=® finite set andp(A) be the power set oA. We know (p(A),00) form a

lattice with least elemend and greatest elemew.
Any X,YOp(A, XOY=Xn YandXOY=XOY

16



Since AO(A-X)= An(A- XY=

AO(A-X)= AO(A- X)= £

We seeA- X is complemented oK relative to[®,A]

Thenp(A) is any complemented lattice. Suppdéeas any complemented of then
XOY=XnY=0

Xay=XdyY= £

ie, XnY=An(A-X

XOY=AD(A- X

or that A- X is uniquely complemented of .

So(p(A),0) is an uniquely complemented lattice.

Now we provep(A) is also relative complemented.

Consider any intervdlX, Y] in p(A)

Let ZO[ X, Y] be any number, Then

Zn(XO(Y=-2)=(Zn XO(Zn (¥ D= XJd= )
ZO(XO(Y-2)=(Z0 XO(Y- Z= ZO( ¥ Y=

Showing that X 0 (Y - 2) is the complemented & relative to[ X, Y].
Z is any element of any interval pfA).

Hencep(A) is relative complementeds

Theorem 1.5.2 : Two bounded latticeA and B are complemented if and only &x B is
complemented.

Proof: Let A and B be complemented and supposd @nd 0',1 are universal boundes &
and B respectively.

Then (0,0) and (1,1) will be least and greatest elements/of B
Let (a,b)00 Ax B be any element.

Thena,d A b0 Band asA, B are complemented] a D ABO B s.t.,
ala=0,alad =1 bOb =0, bOb =1
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Now (a,b)0(d,B)=(ald 4, HI b)=(0,0)
(a,b)0(d,B)=(al & i b=(1,1)

Shows thata',b’)is complement ofa,b)in AxB.
Hence Ax B is complemented.
Conversely, letAx B be complemented.
Let al A b0 B be any elements.
Then (a,b)0 Ax B and thus has a complement, gayb')
Then(a,b)d(d,B)=(0,0), (a,b)0(d,B)=(11)
— (ada,bOB)=(0,0), (ada,bdB)=(@11)
= ala =0, a0d=1

bOb =0, bOKB=1

i.e., a'andb’ are complementaandb respectively. HencAandB are complementeds

Theorem 1.5.3 : Two lattice A and B are relatively complemented if and only Aix B is

relatively complemented.

Proof: Let A B be relatively complemented.
Let [(a,h), (a,,b)] be any interval ofAx B and supposéx,y) is any element of this
interval.
Then(a,b)s(xy)<(a.h) a.,a,x0ARQ b, yIE
=>a<x<a h<sy<h
= x0[a, &] aninterval inA, yO[h, b] an interval inB.
Since A, B are relatively complementex, y have complements relative fa, a,] and
[b,b] respectively.
Let X andy be these complements. Then
xUxX=a yOy=h
xUxX=a yly=h
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Now xNOX Y)=(xOx ¥ 9=(a b
(x YO Y)=(x0 %y Y)=(a b
= (X,Y) is complement ofx, y) related to(a, b),(a,, b)]
Thus any interval inAx B is complemented.
Hence Ax B is relative complemented.
Conversely, letAx B be relatively complemented.

Let[a,a] and[b,b] be any intervals irAand B.
Let xO[a, a], yO[ b b be any elements.
Thena <x<a, h<y<h
=(a,b)<(xy)=(a, b)
= (x,y)0[(a, h),(a, )] an interval inAx B
= (x,y) has a complement, sdy, y) relative to this interval
Thus (x ) O(X, ¥)=(a, h)
(x y)O(X,¥)=(a,h)
= (xOx,ydy)=(a, b)
(xOx,yOy)=(a. )
= xOX =g, xOX =3
yOy=h, ydy=b
= X' is complement ok relative to[a, a,]
y' is complement ofy relative[b, b,]

Hence A, B are relatively complementecs

Theorem 1.5.4 : Dual of a complemented lattice is complemented.

Proof: Let (L,p) be a complemented lattice wifh1 as least and greatest elements. (Lep)
be the dual ofL,p) . Then1,0 are least and greatest elements of

Let aOL=L be any element

SincealL, L is complemented,]a’'0L s.t.,
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alla=q ala=linlL
i.e.,0=inf{g a} inL
= Opa, Opa
= ap0, a' p0inL
= 0 is an upper bound d¢f a} in L
If k is any upper bound dg& a} in L then apk, a'pk
= kpa, kpd = k0 as O isinf .
:>05k
i.e.,Oislub {aa} inL
i.e.,alda =0 inL
Similarly, ada =1 in L
or thata' is complement of in L

HenceL is complemented.m
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CHAPTER 2

Prime ldeal and Homomor phisms

2.1 Introduction :
In this chapter we discuss ideals, homomorphisnheelting mapping and kernel. We

have proved the following theorem,lf, L,, M,, M, are lattices such thatOOM, and
L, OM, then
L xL, OM,;xM,0OM ,xM,.
We also proved, ifp: L - M is an onto homomorphism, wheteM are lattices and

is least element oM , thenkery is an ideal ofL .

2.2 Basic Concept of Ideals:

Definition (Ideal) : A non-empty subselt of a latticeL is called an ideal oL if
() Oa,bOl=albOl
and (i)0Dad1,0/0L=a 0l 01 hold.

Note: If L is bounded then {0} is always an ideal lofand it is called the zero ideal &f.s

Example 2.2.1: Let L={,2,5,10}be the lattice of factors of 10 under divisibilitfhen
{.,41,2},{1,5},{1,2,5,10} are all the ideal ot . But {5,10} is not an ideal of_.

10
5
2
1
Fig- 2.1

Definition (Proper Ideal): Anideal | of the lattice is said to be proper ideal i L.
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Example2.2.2: Let L ={0, a, b1} be a lattice whose Hasse diagram is given adjacent
Hencel, ={0}, 1, =0, 4, 1,40, B each of them are proper ideal lof

1

0
Fig- 2.2

Definition (Dual Ideal): A non empty subset of a latticeL is called dual ideal (or filter) of
L if
() Oab0l=abbdl

(i) Da01,010L=a0lOl .

Example2.2.3: Dual ideals ardl} , {1,¢ , {L,c, &, {L,c B, {L,c,a b0} in L={0,abcl}.

0
Fig- 2.2

Note: Dual ideal generated by a subs¢tof L is denoted byH].

Definition (Principal Ideal):Let L be a lattice and [ L be any element. The set

(a]= {xOL: x< & forms an ideal oL, is called principal ideal generated ay
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Example 2.2.4: 1

Fig- 20.4
In the figure, the principal ideal are
(0]={0}
@={0,a}
(b]={0, b}
c]={0,a,b,c}
(1=

In a finite lattice, every ideal is a principatal.

Definition (Principal Dual Ideal) : Let L be a lattice and[J L be any element the sg) =

{xOL: a< % forms a dual ideal oL is called the principal dual ideal generatedaay

Example2.25: In L ={,2,5,10} then{5,10} is a principal dual ideal of generated by 5.

Theorem 2.2.6 : A non-empty subset of a latticeL is an ideal iff
() a,b0l =albOl

(i) adl, x<a= xO1I.

Proof: Let | be an ideal of a lattice.. Then by definition of an ideal, condition (i) is
satisfied.

Now let, alll, x<a= x= al xThen by definition of an ideal we gegOxOli.e.,
xOl. [xOLsincel OL]
i.e., condition (ii) is satisfied.
Here we show that.
adl,I0OL=all 0l
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Sinceall <a andall, so from condition (ii) we gea I J1 . Hencel is an ideal. m

2.3 Primeldeal & Ideal Lattice:

Definition (Prime ldeal): An ideal | of a lattice L is called a prime ideal oL if | is

properly contained i and wherevea (Db | thenall or bO1 .

Example2.3.1: In the lattice {1,2,5,10} under divisibility {} is not a prime ideal as
205=10{3, but 2,50{} . Here{t, 2} is a prime ideal.

Definition (Dual Prime Ideal): A proper dual ideall of a lattice L is called a dual prime
ideal if aObO I = allorbOl .

Example 2.3.2: In the latticeL ={1, 2,5,10},{5,10} is a dual prime ideal of .

Definition (Ideal lattice): The set of all ideals of a lattice is called ideal lattice of.. It is
denoted byl (L).

Theorem 2.3.3: An ideal is a sublattice. Converse is not true.

Proof: Let | be an ideal of a lattice . Also leta, b0 |
Then, by definitionaOb I . Again by definition
aldl,bOIOL=aObOl

Hence,l is a sublattice of the lattice.
10

Fig: 2.5
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We given here a counter example, lgt ={1,2,5,10} be the lattice of factors of 10
under divisibility. Again let | ={5,10}, | OL. Moreover, | is a sublattice
sincepJ10= 501 and5010= 1011 . But | is not ideal oL, since501 and20L,,
and205=101. =

Theorem 2.3.4: Let | be a prime ideal of lattice . iff L—1 is a dual prime ideal.

Proof: Since | is a prime ideal ofL, so | is non-empty. TherL -1 is also non-empty
proper subset of. .
Let a,b0L-1, thenabOL
a,bll=albdLl albdl
= albOL-1
Again, LetadL-1landl 0L
we need to show that Ol OL -1
Now, alJL-1landlOL
= alLl, aldlandlOL
=aldl 0L, aOl
= allOL,adldl
OabOlOL-|
= L -1 is adual ideal.
We have to show that-1 is a dual prime ideal.
Let, aObO L~ I,then
adbOL aObOl
=a,bdL, adl orbOl
—aldL-1lorbOL-1I

= L -1 is adual prime ideal.

Conversely, suppose -1 is a dual prime ideal, Sa, -1 is proper ideal and non-empty
then| is also proper subset &f.

Let a,b0 1= a,b0dL- |
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=albOL-1 [.L-1I isprime duel ideal]
= albOl
Again, letadl and|OL
We need to show thatl =L
Now a0l and!lOL
—alL-1 andlOL
—adldL-I
= adldl
Thus| is aideal.
Again letaOb0O |
= albOL-1
= alL-1 or bOL-1
= all or bOl

Ol isaprimeideal.m
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2.4 Homomorphism and | somor phism:

Definition (Meet homomor phism): Let (L,0,0) and (L,,0,00)be any two lattices then the

map y:L, - L, is called a meet homomorphismif,bOLy:L, - L,
P(ab) =y(a) Dy(b holds.

Example 2.4.1: Let L ={0,a, b1} and L, ={0,c, d,1} be two lattices. Let us define the map
:L - L, by the following way
Herew(aOb)=y(0)=0, a,bl L

=00c
=y(a) Oy(b)
1 1
4d
b
a
C
0 0
L
boEigioe

Therefore, the mapping is a meet-homomorphism.

Definition (Join homomorphism): Let (L,0,0) and (L,,0,0)be any two lattices. Then the
mapy:L, - L, is called a join-homomorphism ifa, b0 L,

w(alob) = (8 Dy(b holds.
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Example 2.4.2: Let us consider the map: L, - L, whereL, ={0,a, b1} and L, ={0,c,1} be

two lattices andp be defined as follows.

Fig: 2.€

Here.y(aOb)= (1), a b0 L
=1
=10c
=g(a)0w(b)

Therefore, the map is a join-homomorphism.
Definition (Homomor phism): The mapuw : (L,0,0) - (L,,0,0) is said to be homomorphism

if Oa,bOL,p(alb)=y(d OY(h andy(@bb)=y(a Oy(h

hold simultaneously.
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Example 2.4.3: Let us consider the mapy:L, - L, where, L ={0,a bl and

L, ={0,c d, e1} be two lattices and be defined as follows.

Fig: 2.7

Here, Ox, yO L, y(xO Y=g (Q0W(Y
andg(xOy) =w(x) Ow(y)
hold simultaneously.

Hence the mag is a homomorphism.

Definition (Isomorphism): Let (L;;00,0) and (L,;0,0) be two lattices.
Then the mapp: L, - L, is called an isomorphism if
(i) g is a homomorphism.
and(ii) ¢ is one-one and onto.
Note: (i) If ¢ is an isomorphism fronh to L we call it an automorphism.
(i) A homomorphism fromL to L is called endomorphism Ify:L - L is onto
homomaorphism.
(iii) If the map y:L, - L, is an homomorphism, theh, is said to be the homomorphic

image ofL, .
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Theorem 2.4.4: If L,L,,M;,M, are lattices such that, M, and L, OM, then show that

LxL, OM,xM,OM ,xM ,.

Proof: Let f:L, - M, andg:L, -~ M, be the given isomorphism.
Define  y:L xL, - M,xM,, S.t.,
w((a,b)=(f(a), g(h)
Then W((a,b)) =w((c d))

= (f(a),9(b) =(f(9, «(d)
= f(a)=f(c), 9o(B=dd
= a=cb=d
- (a,b)=(c d)

Shows thatp is well defined 1-1 map.

Again,  ((a,b)O(c d)=w((al ¢ b 9)
=(f(alc), g(b d)
=(f(@0f(0,9(b0 o d)
=(f(a),9(0) O((f(9, A d)
=g((ab)) Op((c d)

Similarly, ¢((a,b)0(c d)) =w((a B)Ow((¢ J)

showing thereby thap is a homomorphism.

Finally, for any(m, m)O M, x M,,sincem OM, & m,0 M, and f,g are onto,

oL oy, LoLs.t,f()=m, g(l,)=m,
and (1)) =(f )9 ()= Mm.m,)
shows thatp is onto and hence an isomorphism.
To showM, xM, OM,xM, we can define
¢:M;xM, - M,xM,S.t,,
¢:((m,m;))=(m,,m)
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It is now easy to verify thag is an isomorphism.m

Theorem 2.4.5: | is a prime ideal ofL iff there is a homomorphisng of onto C,with

| =™(0).

Proof: Let | be a prime ideal and defing by
Y(x)=0if xO1
andy(x) =1if x0O1
If a,b01 thenaObO ! andl is an ideal.
No, a,b0 I = w(a)=0and y(b) =0
Also aOb0 1= =y(a) Oy(b
Therefore,p(alb)=y(a) OY(b
Again leta, b0 I then sincel is prime ideal.
So,aldb0 1 = Y(a) =y(b) =1land y(aOb) =1
Consequentlyyp(aOb) =1=y(a) Oy(b)
So gy is homomorphism.
Conversely, leth be a homomorphism df onto C, and | =y ™(0).
If a,b01, then
W@ =w(b) =1
Thusy(aOb)=y(a) Oy(bh =1
Therefore,albO |

Hencel is a prime ideal.m
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2.5 Embedding mapping and Kernd :

Definition (Embedding mapping): Let L,L, be Lattices whereL OOL,. A one-one
homomorphismy: L, - L, is called an imbedding or embedding mapping.

In that case, it is said thaét is embedded ind.

Example 25.1: Let us consider the mapy:L, - L,wherel OL,,L ={0,a b1 and

L, ={0,c d,e1} be two lattice andy be defied asp is one one and, embedded irL, .

Ly Fig: 2.€ L,

Definition (Kernel of y): Let the mapy: L - L, be onto homomorphism ar@d be the
least element oL,. Then the sefxOL: y(® =07 is said to be the kernel @f and is
denoted bkery .

Note: If L, does not have the zero or least element, thetkéegr does not exist.

Example 25.2: Let L ={0,a b1}, L,={0), ¢ dL} and a mapy:L, - L, defined as then
kery ={0,a}

Fig: 2.1C
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Theorem 2.5.3: If ¢:L - M is an onto homomorphism, wheteM are lattices and’ is

least element oM, thenkery is an ideal ofL .

Proof: Since g is onto,0'0M, thuskery #¢ as pre mag® exists inL.
Now x yU kery= P x)=0=y(y)
Y(xOy) =w(xOP(y=000=0= xJ y kenp
Again xOkery, I 0L, givesy(x)=0
Also Y(xO)=y(x)Ow(y)=00I=0
= x Ol Okery

Hencekery is anideal ofL. =

Theorem 25.4: Let L be a lattice, M be a finite chain andL -~ M is an onto

homomorphism. Show th&ery is prime ideal ofL.

Proof: Given thatL is a lattice andM is a finite chain.
O M is a lattice.

Y:L - M is a onto homomorphism.

Let 0' be the least element & .

To showkery is a prime ideal. First we show thigdry is an ideal.
Let 0' be the least element oA .
Sincey is onto, so
Ox O Lsuch thaty(x) =0
= xOkery
Thereforekery # ¢
Leta,O0kery=>P@)=0pw@E)=0
Now, Y(a OB) = (o) Jw(R) [~ @is homomorphism]
=000
=0
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= o dp=kery
Next Da Okery andl 0L
Yo O =yw(a) Ow() [+ ¢ is homomorphism]
=00y()
=0
O aOlOkery
Hencekery is an ideal ofL .
Let o OBOkery . We have to show thatCkery or BOkery.
Now, a OO kery = Y@ OB)=0
= (@) DY) =0 .....(1)
SinceM is a chain so eithap(a) <(B) or Y(P) < Y(a)
If (o) <yY(P) then form (1)
Y(o)=0
= aOkery
Again, if g(B)<y(a) then form (1).
W(p)=0
= B0kery
So, a ORUkery = eithera Okery or BOkery .

Hencekery is a prime ideal ofL. =
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CHAPTER 3

Distributive L attices

3.1 Introduction:
Distributive lattices have provided the motivatior many results in general lattice
theory. In many applications the condition of dizitivity is imposed on lattices arising
in various areas of mathematics especially algebnarefore a thorough knowledge of
distributive lattices is indispensable for worklattice theory. In this chapter we discuss

modular and distributive lattices. We also provied ideal latticel (L) of a distributive

lattice L is distributive iff L is distributive.
3.2 Modularity:

Definition (Modular lattice): A lattice (L,<) is called a modular lattice ifix, y, zO L, with
X2y,
xO(yd2=(x0 yo(xd y=[ yI( X}
Remark: i) If in the above definitiom =y, we find
xO(yO2=xO(xX1 2=
yO(xO2=xA(xd 2=

I.e., the postulate is automatically satisfied.

Example 3.2.1: The lattices given by the following diagrams areduar
1

1
a b a b c
0 0
Fig: 3.1 Fig: 3.2
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In the first we cannot find any triplet b, c s.t.,a>b andc is not comparable witla or

b. Hence by the remarks above it is modular. By Isinrargument the second lattice is

also seen to be modular.

Example 3.2.2: A chain is a modular lattice, by similar argument.

Definition (Semimodular Lattice): A finite lattice (L,<) is called a semimodular lattice if
0x, y,0 L, the following condition hold:

r()+r(y) 2r(xdy)+r(xdy)

wherer is a rank function.

Example 3.2.3: A lattice without finite chain is semimodular lat.

Theorem 3.2.4: A lattice L is modular of finite lengthl(x) +I1(y) =1(xOy)+1(xOy) where
[(x) is the length of the element.

Proof: Since L is modular lattice so for any
X yOUx xO N0y y
Thud([x,xOy]) =I([xOy W)
=1(x0y)-1(x) =1(y) -1(xOy)
=1(x0Oy)+1(x0y) =1(x) +(y)
OIx)+I(y) =IxOy)+I(xOy). =

Theorem 3.2.5: Prove thatN x N is modular, whereN is the chain of naturals under usual

‘<ll

Proof: Let N be a chain of natural numbers under usual ‘* Now, we show thatN is
modular.

Let x, y, z be any three elements dfwith y< x
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OxO(yd2=(xO yO( xd 2z
=yUl(xd2 [-ysxxOy=y
=N is modular.

Last of all, we have to show thatx N is modular, let

(4, Y1), (%, ¥2)s (%, Y3) O Nx N with (%, y,) < (X, V)

00 ¥ BI0O% ¥ O06 W= Y OIC %0 300 ¥y
= (006 Ox), yO(y,1 W)
=06 003 Ux), %Oy W]
= (%, ¥2) HI(x B %), (4 H Wl
=06, ¥2) DI W), 06 W]

=NxN is modular.=

Theorem 3.2.6: Homomorphic image of a modular lattice is modular.

Proof: Let y:L -~ M be an onto homomorphism and suppbses modular.
Let x,y, z00 M be three elements wik y.
Since Y is onto homomorphism[J p,q,rOL s.t., Y(p)=x Y(q = yy(r=z where
p>aq
Now L is modular,p,q,rdJL, p> q, thus we get
pU(qbr) =qb(pdr)
Now xO(ydz)=y(P)0 W (@)0w(r)
=W(p) J(W(abin) =w(pO(qtn)
=P(qU(ptn) =w(qg Oy(pdr)
=W(a) O[w(p Oy(n] = yO(xO 3

HenceM is modular. =
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Theorem 3.2.7: Two latticeL, and L, are modular iffL, xL, is modular.

Proof: Let (p,q).(p, %), (B, &)0 Lx L be three elements wittp,,q) = (p,, )
Then  p,p,p0L  p2p
4% UL, q2q

and sincel, andL, are modular, we get
pO(p,0p)= p,0O(RO p)
¢ 0(, )= 0(q0

Thus
(P @) O[(P &) O(p WI=( R 9O( pD B g0 Q

=(p, (R0 p), q0(0 q))

=(p U(p 0 p), xU(q0 q))

=(P> %) 0(R0 R, q0 q)

=(P> &) OI(p, @) U Ry ]
HencelL, xL, is modular.
Conversely, lelL xL, be modular.
Let PP UL P2 R

4G GU L, g2 g
then(p, ). (R, &), (R, @0 Lx L and(p, )= (p,, ).
Sincel, xL, is modular, we find
(P @) O[(P» &) O(py ®I=( R PO R Q0( R 9]
(P @) O(RUR G0 Y=(p YU(RI B 4 9
= (rO(RUR)q0(e0 ®)=(p0O( RO B, g0( I 9)
= P O(p0OR)= RO(RD B
¢ 0(, 00) = q0(q0 q)

= L, andL, are modular. =

U
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Theorem 3.2.8: A lattice L is modular iff | (L), the ideal lattice oL is modular.

Proof : Let L be modular.
Let P,Q,R0O I(L) be three members s@.[1P.

We showPn (QUR=QI(Pn RB
Let xOPn (QU R be any element.
ThenxOP andxOQOR.
= xOP andx<qOr forsomeqOQ, rOR
Since gUQO P, xOqOP. Let xLIg=p
Now x<qOr, x<p= x< pd(gqdn
=x<ql(pdr) asp=qg andL is modular.

Again, pdr<p, pdP= pOrOP

pdr<r, rOR= pOrdR

Thus pdrOPn R and asqdQ we find xOQO(Pn R

i.e. Pn(QUROQI(Pn R
QU(Pn RO Pn (QJ R follows by modular inequality, or to prove it iqgendently, let
yOQU(Pn R.

Theny<qgOk whereqOQ, kOPn R

Thus y<qOk (qOQUP kOP= qU kOB

= ydP

Also y<qOk qOQ, kOR= yI QO F

i.e., yOPN (QOR

Showing thatQO(Pn RO Pn(QJ R

HencePO(QU R = QU( Pn R orthatl(L) is modular.

Conversely, letl (L) be modular, Sincd. can be imbedded intb(L), it is isomorphic to
a sublattice ofl(L). This sublattice must be modular &4.) is modular. Hencd. is

modular. m
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Theorem 3.2.9: Any non modular lattice contains a sublattice isomorphic with the
pentagonal lattice.

Proof: SinceL is non modulai at least three elemenisb,c a> b
s.t.,ad(bOc)# bO(ad q.
In view of the remarks of definition, we must hawve b, and as in any lattice the
modular lattice inequalitya>b,al( b0 §= kI( & ¢)holds.
we get aO(bOc)>bO(adq
Consider the chain
alcsbO(alg< al(Hd ¢< B v (1)

We show at all place, strict inequality holds.
Suppose aOc=b0(al g

Thenbs<alc (x=yOx=> y< %

= bOc<(adqOc

= bOc<scsbOc

= blOc=c

= al(bOg=alg a contradiction to (1)

ThusaOc<bO(adq Similarly ad(bOc)< b0 c.
Hence chain (1) becomes
alc<bO(aldg< ald( M ¢< B toovveriiiiiciiiinnne, (2)

Consider now the chain
allcscshOc
As seen abovébc=c leads to a contradiction and similarytic=c would give a
contradiction.
Hence alc<c<bOC.....cccovrrrrnnnnnn. 3)
We thus have two chains (2) and (3) with samepamiaks.
We showc does not lie in chain (2). For this it is sufficieto prove thatc is not

comparable witraO(bO¢).

Suppose alO(bOc¢)<c

ThenaO(aO(bO d)< al ¢

= al(bOc)<alc a contradiction to (2)
Again, if aO(bOc)>c

thenas a=al(bOc)

We find a>c which givesallc=c, a contradiction to (3)
Hence the chain (2) and (3) form a pentagonal subse
s={alc( a1 ¢ .4( W .0 cof L.
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bllc
al(bOo

b(allc)
allc
Fig. 3.3

We show now this pentagonal subset is a sublafioethat meet and join of any two

elements of S should lie inside S. Meet and joimmf two comparable elements being
one of them is clearly in S.

Now [aD(bOc)|Oc=ad[(b1 90 d= a & !
Also [aD(bOc)|Ocz[ bd(ad ¢]O cby (2)
bE[(alg O q = bl c

and aO(bOc)< bO c gives
(aD(bO¢))Des(b0 90 &= 1 «

Thus [aD(bOc)]Oc=bddd S

Similarly, we can show [bO(a0c)|0c= bd ¢

[bO(abc)|0c= al d]
Hence S forms a sublattice bf =

rn

rn

3.3 Distributive Latticeand itsrelated theorems:

Definition (Distributive lattice): A lattice (L,<) is called a distributive lattice if and only if

the distributive laws hold; that is, for atl y,z[] L, we have
xO(yd2=(xd yO(xd ¥ and
xO(yO2=(xd0 yO(xd 2

Example 3.3.1: If X is any set, then the latticg(X),<) is a distributive lattice.

Remarks: For a distributive Latticel, J(L) denotes the set of all nonzero join irreducible
elements, regarded as a poset under the partiatiogdof L. H(J(L)) denotes the set
of all hereditary subsets partially ordered byiselusion. H(J(L)) is a Lattice in which
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meet & join are intersection & union respectivelyence H(J(L))is a distributive

Lattice foraOL, setr(a)={x0J 1)|x< & .

Example 3.3.2: We now give an example of a lattice where the ithgtive laws do not hold.
Let L ={1,2,3,5,30}.Then Lis a poset under the relation divides. The opanatble for

O andd on L are:

oj1r 2 3 5 30 0o(l1 2 35 30
111 2 3 5 30 1711111
2 |2 2 3030 30 2121112
3|3 303 30 30 3|11313
5|5 3030 5 30 511155
30|30 30 30 30 30 30|1 2 3 5 30

Since every pair of elements in has both a join and a meet, &as a lattice (under
divides). But

20(503)= 20 1= zand

(205)0 (20 3)= 300 30= 3
so that xO(yd2#(xd yO( xJ 2 for some values of, y, z[0 L. Hence L is not

distributive lattice.

Theorem 3.3.3: LetL be a finite distributive lattice. Then the maipa - r(a) is a
isomorphism betweeh and H(J(L)).

Proof: Define y:L — H(J(L)) by y(a)=r(a),adL.
SincelL is finite, so every element is the join of joireducible elements. Thus
alL=a=0r(a).
Obviously y(aOb)=y(a)n w(b). Soy is a meet homomorphism. To show tigais a
join homomorphism. We are to show thga Ob) =r(a) O r(b).
Now r(a)Or(b) Or(aOb) is obvious.
Let xOr(aOb)

= x<alb
= x=x0(aldb)
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=(xOa)0(x0Ob)
SincexOJ(L), so we have eithex= xLlaor x=x0Ob
—eitherx<a or x<b
= either xOr(a) or xOr(b)
=x0Or(a)Or(b)
Hence,r(aOb)Or(a)Or(b).
Therefore,r(aOb)=r(a)Or(b). Soy is a join homomorphism.
Therefore,p is a homomorphism.
Supposep(a) =y(b), abOL
=r(a)=r(b)
= Or(a)=0r(b)
—a=b
Hencey is one-one.
To showy is onto. LetAOH(J(L)) andadL. Seta=0A. We are to show that
r(a)=A.
Clearly, Al r(a).
LetxOr(a) = x< a
= x=xUa
=x0O(OA)
=[ xOt|tO A)(sincelL is distributive)
SincexJ(L) so x=xOt for somet J A.
= X<t
= xO Aas AOH(J(L))
=r(a)0A
Or(a)=A
=y(a)=A
Hencey is onto.
Therefore,L OH(J(L)). =

Theorem 3.3.4: Prove that a distributive lattice is always moduddat converse is not true.

Proof: Let, L is a distributive latticea, b, cOJ L with c< a
Then,all(bO¢g=(al0hO(al ¢
=(alb)Oc
Thus L is modular.

For the converse, consider the lattice
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M5
0
Fig-3.4
It is easy to check tha¥l, is modular.
Butin M, all(b0¢=all= a
(albO(alg=000=0
ie.,al(bOg#(adph0(al ¢

Therefore,L is not distributive latticen

Theorem 3.3.5: A lattice L is distributive if and only if for any two idealand J ofL,
10J={igj:ion,jo}

Proof: First suppose a modular lattiteis distributive. Letl,J O1(L).Then forxO10J
implies thatx<idj for someiOl,j OJ.
Then x=x0O(i0j)
=(xOi)dxdj)
SincelL is distributive, wherx i1 andxOjOJ
Therefore,l 0J ={iOj:i 0O ,j U}
Conversely, suppose thatlJ ={i0j:i 01 ,j 03} for any two ideald andJ ofL. We

are to show that. is distributive.

Supposel is not distributive, then it has a sublattice isopinism toM, orN;.

e
1

b

M. a ; N
0 .
Fig-3.5 Fig. 3.6

Here observe that in both cabé$(a] (g, butb# i) for anyil(a] andj (c].
Hence L isdistributive. W
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Theorem 3.3.6: A lattice L is distributive iff
xO(yO2=(x0 yO(xd 2 0Oxyd

Proof : Let L be distributive.

Now (xOvy) O(xO 2 =[( xJ yO kO/( *xd yO 1z
=x0O[(xOyO4
=x0[(x020(yd 4
=[x0O(x0210( yO 2
=x0O(yO2

Conversely, letx, y, zO L be any three elements, then

(xOy)0(x0 2 =[(xd yO k0O X yO Jz

=xO[(xOy0O3
=x0O[(zO R O( z0 |
=[x0(zO R O( 0 X
=xO(yD2 =x0(yd2

l.e., L is distributive. m

Note: Dual of a distributive lattice is distributive.

Theorem 3.3.7: A lattice L is distributive if and only ifl (L) is distributive;1 (L) is the set of
all ideals.

Proof: Supposel is distributive. LeP, Q, RO I(L). We need to show that
POQUR=(POQO( A R.
The relation(POQ) (PO R O PI( QJ R is obviously true. LexO PO(QO R, then
xOP andxOQOR. Sincel is distributive.
Sox=x0(qOdn=(xO09gO(xd nO(POQU( I R for someqUQ,rJR.
Then, POQUOR O(POQO( PO R
OPOQQOIR=(POQO(PI R
O 1(L) is distributive.
Conversely, supposé(L) is distributive. Lek,y,z[] |, then
(xO(yd2]=(30( yd ¥
=(X]O(Y O( 3) asl(L) is distributive.
=(xOyl0(x0 3
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=((xOy)0(xd 2]
= xO(yO2=(xd yd(xd 2
so L is distributive. m

Theorem 3.3.8: A lattice L is distributive iff
(a0b)O(b0QO(cd 3d=(al hO( W ¥O( & p0J abl .

Proof: Let L be a distributive lattice.

(alb)O(bOgO(cl g={ al( bl el & )@ § B B) dI G)ha
=[{al(cUg} L bOY I b0 bl O dl]a
=[a0(b09d] O by cO ¥
=(a0Ob)0(adgO(bd ¢ O( I &
=(a0b)O(b0QO(c 3

Conversely, we first show that is modular.
Let x, y, z be any three elements bf, with x>y
Then xO(yO2=[xO(xJ A0( ¥ x (absorption)
=(xOy)0(x020(y0 2 (xz2y)
=(x0Oy)O(yd 20023 X
=(xOy)0O(yO 20040 x
=(yO(yD2)0(z0 ¥ (xz2y)
=yd(xd2
l.e., L is modular.
Now for anya,b,cO L
al(bOg=[ald(ad 9] O( O ¥
=[a0(a0b O(ad ¢ O( bd 3
=a0[(adb O(b0 9 O( < A
=a0[(adb O(bO 9 O( ¢ A
=al(bOg O((allh O cl ]
Now using modularity, aa>allb a> cl] agivesa=(albO(cd g we get

at(blg=[(al B O(cd gl L( b el |
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=(a0b)O(cOg O(cOal K
=(ab)d(cOa

Hencel is distributive. m

Theorem 3.3.9: Let L be a distributive andO L, the mapy:x - (xOm xO nj is an
embedding ofL into (m]x[m). Itis an isomorphism ifn has a complement.

Proof: For x,yO L
we have, y(x)=(xOm x0 mand g(y) =(yOm yd m
Then Y(xOy)=((xOy)Om(xJ yO m

(x0yOm(>amo( y1 )
(xOm)O(ya m),( X0 mO( ¥ )
(xOmxOmO(y0 m ¥

w(x)Bw(y)

(xOy)Om(>a yO m

(xOm)O(yd m),( X0 mO( ¥ )
(xOm xOmO( yd m yl
=W(x) Dw(y)

Hencey is a homomorphism.
Now let y(x)=w(y), x yO L
Then(xOm xO m=( ydJ m yJ mand
So, xUm=yUmandxUm=ylm
Now, x=x0(x0 m
=x0O(ydm)
=(xOy)O(xOm
=yO(xOm)
=yO(yOm)
=Yy
= x=y and soy is one-one.
Hencey is an embedding.

2nd part: LetmO L has a complement. Choose an element
(x,y)O(mx[ n}, thenx< m< y. Sincem has a complement inso it has a relative

complementn in the interval[x, y|
Then we havemun= xandmLin=y
O(x,yy=(mOn nd n

and Y(xdy)
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=y(n)
Hencey is onto. Thereforep is an isomorphism.m

Theorem 3.3.10: Homomorphic image of a distributive lattice istdisutive.

Proof : Let y:L- M be an onto homomorphism where L is distributivéde.
Let x,y,z00 M be any elements. Singe is onto,
Oa,b,cOLs.t, (@ =x Yb)=y, Y()=2z
Now xO(yO2=w(a O[w(hOu( 9]
=y(a) O(p(bL )
=y@tUo)
=y((abib)O(allg)
=@(atdb)Ow(alg
=((a) Dy(b) O(w(a) Dw(9)
=(x0y)0(x0 2

ThereforeM is distributive. =

Theorem 3.3.11: For any two ideal$ andJ of a distributive latticd if | UJand | 0JJ are
principal then both andJ are principal.

Proof: Let | 0J =(x]and | 0J =(y]

Theny=i0jfor someidl and jOJ . Setc=x0i andb=x0 j
Then clearlycO1 andbOJ
We have to show that=(c] and J =(b]

If 1 #(c], then there exists and element ¢ such thatal |
Moreover, the sefx,a,b, ¢, } form a lattice isomorphic to\,
y
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i.e.,L is not distributive. This is a contradiction
Hencel =(c] . Thereford is a principal ideal.

Similarly, we can show that] =(b] , l.e.,Jis also a principal ideal.Hence proveda

Theorem 3.3.12: A modular lattice is disributive if and only iflias no sublattice isomorphic
M,.
Proof: First suppose a modular lattiteis distributive. Then its every sublattice is also
distributive.
1

M5

0
Fig-3.8

SinceM,is not distributive (ForaO(bO ¢) = adl= a but (aOb)O(al ¢=000=0) So,
L can not contain any sublattice isomorphiavtg.
Conversely, suppose thatis not distributive. Then there exist elemerig,z] L such
that xO(yOd 2)#( xd ) O( X3 2 but
(xOy)O(xO2< xJ(y3d 2
=(xOy)O(x02 < xJ( yJ 3
Thus every modular lattice which is not distrilveticontains a sublattice isomorphic to
M;.
Hence L is a distributive. W

Theorem 3.3.13: The ideal latticel (L) of a distributive latticeL is distributive iff L is

distributive.

Proof: Let L be distributive.
Let P,Q, RO I(L) be any three members, thenQ, R are ideals oL, We show

POQUR=(POQUO(PIR
le., Pn(QOR=(Pn QO(Pn R
Let xOPn (QUR be any element.
ThenxOP and xOQUOR
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= 0OqUQ,rdORs.t.,x<qOr

= xO(gOr) =x

= (xOg O(xOrn=x (asL is distributive)

Now xOP,q0 QU L= xOJ qJ G

Again, xOP0O LandqO0Q= xOqd Q

= (xOgOPn Q.

Similarly, (xOr)OPn R

Since x=(x0Oqg) O(xO 1), by definition of LI in (L)

We find xO(Pn QO(Pn R

i.e., Pn(QURI(Ph QU(Pn R

Again, letxO(Pn Q O(Pn R be any element.

Thenx<k Ok, for somek, OPn Q k,0Pn R.

Now k Ok,0P, x< k Ok, thusxOP

Also k,0Q, k,DRandx<k Ok,= xJ QU R

Thus xOPn (QOR

Orthat (PnQU(Pn RO Ph(Q@ R

le., Pn(QUR=(Pn QO(Pn R

and hencd (L) is distributive.

Conversely, sincel11-1 homomorphism fromL - I(L),L will be isomorphic to a
sublattice of I(L). If I1(L) is distributive, this sublattice and hende will be

distributive. Thus converse also holds.

50



3.4 Atomic Lattice

Definition (Atom): An element in a poset which covers 0 is calledtama

Definition (Dual Atom): An element in a poset which is coveredlthe greatest element of

the poset is called an dual-atom.

Definition (Atomic Lattice): An atomic lattice is one in which each element ptti@an 0

includes at least one atom.

Example 3.4.1: Any power setP(A) of the setA is an atomic lattice since the one element
subsets of A are clearly atoms oP(A) and every subset oA excepting the void

subset, includes at least one atom.

Theorem 3.4.2: In an atomic lattice in which each element has iguen complement two

elements are equal if and only if they containgame atoms.

Proof: Suppose thak and z contains exactly the same atoms. That is to say
P<xe P<z

Now if P< xthenP< z= P< xO z

Now, P< x and P < xJ zshows that

x and x Lz contains exactly the same atoms.

But if x# z, then either
xOz< xor xtz< z

Take,xn z=y

Now, x>xn z= y= yO »x yO y1

Theny' n x#0, for otherwise ify' n x=0then
yOx=1landy n x=0

Also y'O y=1 andy' n y=0, gives
x=y
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So there exists and atobh such that
P<ynx
= P<xandP<y
= P<xandPny<yn y=0
andP£y=xn z
If xn z< x then x contains an atonP not contained inxn z. The contradication
shows that the suppositionz z is false. Since the argument in the other casemsar.
We see that ik and z contain the same atoms ther z
Conversely, letx and z be two equal elements. We have to show that tbetach same
atoms.
If possible letp and g are two distinct atoms of and y respectively. Therp is atom
of x= psx=1z2
= psz
Again, q is atom ofz= g< z
= p<Q< z= X
= p<gs X
which shows thap is not atom ofx.

a contradiction, thup=q. =
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4.1

4.2

CHAPTER 4

Boolean function and its different forms

Introduction:

A complemented distributive lattice is called a Bam Lattice. Let(B,0,0,',0,) be a

Boolean. Expressions involving member d and the operationsi,Ll and
complementation are called Boolean expression. fingtion specifying these Boolean
expressions is called a Boolean function. A Booleenttion is said to be in Disjunctive

normal form (DN form) inn variablesx;, X,, X,..c.cccovereennene. x If it can be written as join
of terms of the typé (x)Of,(x,) 0 fy(x)O......... O f( ), where f (x)=xfor all
i1=1,2,3,. e n and no two terms are same. A Boolean functforis said to be in
Conjunctive Normal Form (CN from) im variables x, x,, %..........., x if fis meet of
terns of the typef,(x) 0 f,(%,) 0. 0 f (%) where f(x)=xor x for all

i=1,2,3,...... n and no two terms are same.

Boolean function:

Definition (Boolean lattice and Boolean Algebra) : A complemented distributive lattice is

called a Boolean Lattice. Since complements arguéin a Boolean Lattice we can
regard a Boolean Lattice as an algebra with twaryimperations_land_iand one unary
operation’ . Boolean Lattice so considered is called Boolelgebra. In other words, by
a Boolean Algebra, we mean a system consistinghoheempty set. together with two

binary operations!and Uand unary operatioh 0 and 1 satisfyingJ,a,b,cO L).
(JaDa=aala= a

(i)aOb=bOa alb= b0 a

(iii )a O(b Oc)=(aOb)Oc ad( b0 9=( ad BO «

(

ivJaOd(aOb)=a ad(ad f= ¢
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(vjaD(bOg=(adyO( ad ¢
(vijDaOL,0a'0L,s.t,ala' =0aba'=1

where 0,1 are elements bf satisfying0< x<1 OxOL.

Example4.2.1: Let B={0,x,y,} . If we defineL,U and complementation ~ by

L 0 X y 1 W 0 X y 1

ol o] o] o] o ol o] x| vy |1 0| 1
X 0 X 0 X X X X 1 1 X |y
yl o] o|y]|Y yly |l 1]y |1 y | x
1] 0] x|y 1 1| 1] 1] 1] 1 1] o

Then B forms a Boolean algebra under these operatiomeeSA Boolean Algebra is
distributive (and thus, modular) and complementedl, properties of modular,

distributive and complemented lattices hold in @Ban algebra.

Definition (Boolean expression): Let (B,0,[0,,0,1) be a Boolean algebra. Then any expression

involving members ofB and the operationJ,L/ and complementation is called a

Boolean expression or Boolean Polynomial.

Example4.2.2: If x,yOBthenxUy, xOy, xUy, X Oy etc are Boolean expressions.

Remark: If ¢ ande, are Bollean expressions, then e Oe, e Oe are Bollean expressions.

A Boolean expression that contaims distinct variables is usually referred to as a

Bollean expression afi variables.

Definition (Boolean function): Let (B,0,0,,0,1) be a Boolean algebra. A functidn B" - B

is called a Boolean function if it can be specifimda Bollean expression of variables.

Example4.2.3: f(x,y)=x0y is a Boolean function.
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Remark: f(x,y)=x0Oy then f is a Boolean function andL!y is the Boolean expression

(or value of the function). In fact, the Booleampesssions are the Boolean functions.

Examples 4.2.4: A function f :{0,1}* -{0,1} is defined by
f(0,0)=0,f(0,1)=1, f(1,0)= 0, f(1L1)=0
Is a Boolean function as the Boolean expresgiofly)0(x0y) over the Boolean

algebra({0,1}, J O0') defines the functior .

Example4.2.5: Every functionf : B" -~ B can not be specified by a Boolean expression over
(B,0,00,"). For example, in the following function

f:{0,1,2,3 - {0,1,2,3} is defined by

£(0,0)=1 f(L0)=1 f(2,0)=2 f(3,0)=3

f(0,1)=0 fLD=1 f(21)=0 f(310)=0

£(0,2)=0 f(L2)=0 f(2,2)=1 f(3,2)=0

£(0,3)=3 f(L3)=3 f(2,3)=1 f(3,3)=2
Fig. 4.1

There is no Boolean expression over the Booleagba#y{0,1,2,3,},00,00, ) that defines

the function in Fig. 4.1 .

Hence f :{0,1,2,3F - {0,1,2,3} is not a Boolean function.
Theorem (Birkhaf stone theorem) 4.2.6: Let | be an ideal andD be a dual ideal of a

distributive latticeLwith | n D =¢. Then there exist a prime ide&d | such that

PnD=4¢.
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Theorem 4.2.7: Let L be a distributive lattice witl® and1. ThenL is a Boolean lattice if
and only if P(L), the set of all prime ideals bfis unordered.

Proof: First suppose is a Boolean lattice.
SupposeP(L) is not unordered. Then there exsQO P( L). Then there exists

anal0Q-P.Now ada =00P. Since P is prime andP impliesa OPO Q

=a Q.

ThusaOa =10 Q. Which is a contradiction & is prime.

HenceP(L) is unordered.

Conversely, suppose tiRfL) is unordered. We have to show thas a Boolean lattice.

If L is not Boolean, then there exist an element. which has no complement.
SetD={x|a0x=%. Then D is a dual ideal.Considef =D O[a) ={ x| x= dO & for

somedOD.[D={x|a0x=1 [ad={x/a< ¥, D0 &{ ¥ = & & J for somedOD]

Now we have to show thay does not contain 0.I1b, contain O, thero=d Oa for some

dOD. Then we havel Da=1. Which gives a contradiction &ss not Boolean.Hence
00D,. Then there exists a prinkesuch thatP n D, = ¢.

Now 10[a) OP for otherwisel=al p for somepdP. Then by stone representration
theorem we have there exist a prime ideal Q com@g[1(a]. Thus P [0 Q which is

impossible as the set of prime ideals are unordered
HencelL must be Boolean. =

4.3 Digunctive normal form or DN form:

Definition ( DN form) : A Boolean function (Expression) is said to be igjulctive normal

form (DN form) in n variablesx, x,,....... X, if it can be written as join of terms of the

type f,(x) 0 f,(x,)0.....0 f (x,) Where f (x)=x or x', foralli=1,2,..n.
Definition (Complete DN form): If number of variables isn, then the total number of

minterms will be 2". If a disjunctive normal form inn variables contains all the

2"minterms then it is called the complete disjunctieemal form inn variables.
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Definition (Minterm): A Boolean expression oh variables x, x,,....... %, Is said to be a

minterm or minterm polynomial if it is of the fornfi(x) O f,(x,) U......0 f, (x,), where

f(x)=x orx,foralli=12,.n.

Example4.3.1: (xOyOZ)O(x0O yO 20( X0 y1 ¥
is in disjunctive normal form in there variables,y and z. Here the terms
(xOyO2)O(x0O yO 2 and (X Oy0O 2 are minterms or minterm polynomials.

Remark : i) Thus each minterm is a meet of all thevariables with or without a prime

(complementation operation).
i) If we have three variableg, y, z then any function in the DN form will be join of

some or all the minterms.
xOyOzxOydzxdyd zK ¥ 'zX 'YW 'z Oy Zx 'Oy , Zx"' 0y’ which will

be 2" (n=3) in number.

Theorem 4.3.2 : Every Boolean function can be put in disjunctivemnal form.

Proof: We prove the result by talking the following steps:

1) If primes (complementation operation) occursadé brackets, then open the brackets
by using De Morgan’s laws,

(xOy)y=x0y; (xay=x0y

i) Open all brackets by using distributivity astmplify using any of the definition
conditions like idempotency, absorption etc.

iii) If any of the terms does not contain a certaariable x (or x') then take meet of
that term withx 0% . Do this with each such term (it will not affeétet function as
x Ox =1 and10x= x)

Now open brackets and droop all terms of the typés<{(=0). Again, if any of the

terms occur more than once, these can be omitiealibe of idempotency. The resulting
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expression will be in DN form. Hence every functiona Boolean algebra is equal to a

function in DN form. =

Theorem 4.3.3 : Every Boolean function can be expressed in DN forrone and only one

way.

Proof: Supposef is a Boolean function and

AA, ... A and allB,B,,......,B, will be distinct by definition.
In general, if X andY be two distinct minterms thex 0Y=0 as X would always
contain at least ong such thaty containsx '.
Now, f =AOAO...0A=BOBO...0B
= A<BOBO....0B di=12,..1n.
=A=A0(B0OBO...0B)
=(AO0B)O(AOB)O....O0(AOB)Ji=1,2,...0
Now if Adoes not equal any oB,B,.,.....,B, then the R.H.S. is zero which means

A =0, But it is not true. Thug\ equals someB, (it can not be equal to two or mdBgs
as B;’s are all distinct).
Similarly eachB, is equal to same) . Hence the two representations bf are same

(because of commutativity, the order in which teers occur is immaterial). We thus
conclude, there is once and only one way to writggvan Boolean function in the DN

form (in a given number of variables

Problem 4.3.4 : Put the functionf =[(x0y)'02Z] O( xO ¥' in the DN form.

Solution: We have
f=[(xOy)'0Z10(x0 ¥
=[(xX0Yy)0210(X0 2
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=[(xXOyD0Z10x3 2

=(XOyO2)O(xd 2

=(xXOxO02)O(yD xJ H0( 20 < '}

=(00Z)YO(xOyd 2O(>x3 2

=00(x0Oyd2)d(xO 2)

=(x0Oy02)0[(x0 )00 yd 9]

=(xOyO2)0[( xO 20 yO( xa ‘4o 9

=(xOyO2)O(xO yd 20X yd 2

=(xOyOd2)0O(xd yd 2, Which is the DN form of f . =

Problem 4.3.5 : Write the functionxOy in the disjunctive normal form in three variables

XY, Z.

Solution: We have
xOy =[xO(ydy)0(z0 9100 Yo ¥ XO( 2
={(x0Oy D(xOWy 03 I YO xU Y)ixO @)z
=(x0yD020(x0 yd 2003 YO pa( & 'y ('Y X )z
(yOxO2)O(yD xO 30( YO X0 3
=(x0yO20(x0 yd 2000 Y0 p( K 'y PO 'K 'Y )E( 'R Y )

which is disjunctive normal form of 0y in three variablex,y,z =

Problem 4.3.6 : Find the Boolean expression that defines the fancti given by

£(0,0,0)= 0 f(1,0,0,)=1
£(0,1,0)=1 f(1,0,1)= 1
£(0,0,1)= G f(1,1,0)= C
£(0,1,1)= C f(L,1,2)=1
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Solution: We consider those values 6fx, y, 2 which are equal to 1.
The minterms corresponding tof (0,1,0), f(1,0,0),f(1,0,1) and f(,11) will be
(X OyO?2), (xOyOd2),(xO0yO2 and(xOyOd2
Hence the function in DN form is,
f(xy,2=(x0yd 0(x3 WO 20( K 'y )2( X )
Which can be simplified,
f(xy.2=(x0yd 20 X[ YO 200 )A( ¥ )k

=(xOy02)0x0[ yOI( z0 B I ¥k
=(xOy02) 00yt O( yd A
=(xOy02)0x00 yO( yd A
=(xOy02)0x0[(yD yo( yo A
=(xX'0OyO2)O0xO(yOd 2

=(xX Oy0O2)0[( xO y) O( xJ ¥, which is the required Boolean functiom.

Problem 4.3.7 : Find the Boolean (function) expression for the tiorcf given by

1 when x= =1 ¥ 0; 1 ¢ z(
0 otherwise

f(X,y.Z)={

Solution: We consider those values 6{x, y, z which are equal to 1. The minterms

corresponding tof (1,0,1), f (1,0,0 will be (xOy 02&( xd yO 2

Hence the DN form off is=(xO0y O20(xd0 yOd 2. =

Problem 4.3.8: Let f(x,y,2=(x0 YyO(xd YO( X3 %

be a Boolean expression over the two-valued Boadgabra. Writef (x,y, 2) in

disjunctive normal form.
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Solution: We first find all values off (x, y, 2 when x, y, ztake values either O or 1.

£(0,0,0)= (00 OYJ (0 10 (U OF @ O %
£(0,0,)= (00 0)J (@ OY (00 1F @ U %
£(0,1,0)= (00 L0 (@ 10 (00 OF U @ %
f1,0,0= (D00 (MO (10 0O 0 M &
f(0,,)= (0010 (W10 (00 5 U O %
fQLOD=(10O00 (DO (0 1 0 0 %

fQLL0)== (101 (@M10 @ O 0 T &
fQLL)= (00 (O10 (10 1 0 O %

Now we consider those values bfx, y, 2 which are equal to 1. The minterms
corresponding tof (1,0,1) and f (1,1,1) will be (xOy 02 &( xOJ ydI . Hence the

Disjunctive normal form of f is
=(xO0yd20O(xOyd 2. m

4.4 Conjunctive Normal form:

In this section we discuss conjunctive normal f¢@MN form) which is dual of the DN

form.

Definition (CN form) : A Boolean function f is said to be in conjuctivermal form (CN
form) in n variablesx, x,,...,...., x, if f is meet of terms of the type

f.(x) 0 f,(x,)0.....0 f,(%,) where f,(x)=x or x', forall i =1,2,........ n and no two

terms are same.

Remark : A normal form is also called a canonical form.
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Definition (M axterm): A Boolean expression af variablesx, x,......, x,is said to be a

maxterm or maxterm polynomial if it is of the form,

£,(x) 0 f,(%,) 0 f(x) 0.0 £ (%)

Where f (x)=x or x', foralli=1,2,........ n.

Problem 4.4.1 : Put the function,f =[(xOy)'0Z] 0( xO X' in the CN form.
Solution : Given,
f=[(x0y)' 0z 0(x0 ¥
=[(x0y)0210( X0 2
=(xOy02)0(xd 2
=(x0yO02)0[(x0 00 yd 9]
=(x0y0)O{(xd20y0O( X g0 F
=(xOyO2)0[(x1 yO( 20 yo( < yO( 2 Y
=(xX0yO2)0[( x0 yo( 40 B §( Z0)yl )k
H(xOy) O(zO 2} 4( z0 0 X3 )y
=(x0y02)00d yd 200 ¥ 200’2 ¥ )d('@d I ).
OxOyO020(x0 yd H0( 20 YO WI( 0 'V 'y
=(xX0y0D2)0(xd yd 2000 ¥ 20( K Y1) X 'Y H20( 'R 'Y )

which is the required conjunctive normal form bf =
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Problem 4.4.2 : Find the Boolean expression in CN form that defitesfunction f given by

X y z f(xy, 2
0 0 0 1
0 0 1 0
0 1 0 1
1 0 0 0
0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

Solution : We consider that values df(x, y, 2 which are equal to 0. The maxterms

corresponding tof (0,0,1), f (0,1,1),f (1,0,0)f (1,0,1f, (1,1, will be

(XOyO02,(x0y0 3,(X0 0 2,( K'Y )z & ')
Hence the conjunctive normal form &f is

=(x0yO020(Xx0y0 30(x 0 30( X P)O( R ¥ ') m
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Problem 4.4.3 : Find the complement of the DN form
f=(x0OyD2)0(XxOy0 30( %0 W 30(50 §)O( X 'Y )
Solution : Given,
f=(x0OyD2)D(XxOy0 30( %0 W 30(50 §)O( X 'Y )
We know the complete DN form in 3-variables is,
(x'OyO0Z2)0(x0yd z0(%0 yJ 200% ¥ )4 X "§ )20 K'Y )
OxOyO2)O(xO yd 2

Now, if we pickup the DN form f form the complet&NDorm then complement of f will
contain the “left out” terms in the complete DNrfor

Of'=(x0yO020(xdyd 90(0 {1 p. m

Problem 4.4.4: Find the CN form of the functiori =(xO(y U 2)0 Z and then find its DN

form from it.
Solution :Given
f=(xO(yDO2)02
=(x02)0((yD 30 2
=(x02)0(yd(zd )
=(x02)0(y 01)
=x0Z=(xd020( yO ¥

=(xO0ZO0y0O(xa zO )

64



=(xOyd2Z)0O(xd yd 2,which is the required CN form of.
Now, we find the DN formf =(xOyO Z) O(xd yO 2
We know, f =(f")
={(xOy02 O xd yd 24]°
=[(xO0yD2'0(x0 yO 2T
=[(xX 0Oy 020(x0yd o
We know the complete DN form in 3- variables is,
(xOyOz0(x0yd 300 O pOC K 9 0% "YW )Ed( 'K )z
(xOyO02)0(x0 yO ?)
Hence the DN form off is

(xOyO20(x0y0O 2003 yJ 2005 8 pP0O(C X "9 )00 'Y 7). =

Here given eacl8 being a minterm is of the form
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mOmO......... O m,where eachm = x or x, i=1,2,...n
ThusB' =nmOmO.....0 m, where eachny = x or x, and thereforeB’ is a maxterm.

HenceB OB, O.....0B is the CN form off’. =
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