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Abstract

In the present study, numerical investigations have been performed to examine the MHD mixed
convection boundary layer flow over an impulsively started vertical permeable plate with
thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. Under some simplified
assumptions and using usual Boussinesq approximation, the governing boundary layer partial
differential equations have been transformed first into a non-dimensional system of non-linear
coupled partial differential equations by introducing suitable transformations. Secondly, the
transformed set of partial differential equations has been solved numerically using the implicit
finite difference numerical method. Numerical solutions are obtained for the velocity and
temperature fields as well as the concentration distribution for different values of the physical
parameters entering into the problem. The effects of these various involved parameters on the
velocity and temperature fields and on the concentration distribution have been investigated.
Finally, the obtained results involving the effects of these physical parameters on the flow
phenomena have been discussed with the help of graphs. The numerical results have shown that
the above mentioned effects have to be taken into consideration in the flow field and in the heat
and mass transfer process. It is also expected that the finding of this investigation may be useful
for the study of power engineering, geothermal and geophysical process.
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CHAPTER I

Introduction

1.1 Literature Review

The effect of thermal diffusion on MHD heat and mass transfer fluid flow past a

continuously moving surface has a great importance to the engineering community and to

the investigators in dealing with the problems related to many industrial processes and

many technological fields. The free convection process involving the combined heat and

mass transfer mechanism in a porous medium has been attracted considerable attention in the

last decades, due to its much importance in industrial applications and in many engineering,

geophysical and chemical engineering systems. In recent years, the study of free convective

heat transfer flow along with mass transfer effects has become the object of extensive

research due to its versatile applications in the design of steel rolling and nuclear power

plants and in many engineering phenomenon such as rocket nozzles, cooling of nuclear

reactors, high sinks in turbine blades, high speed aircrafts and their atmospheric re-entry,

chemical devices and process equipment, cooling of electronic systems, thermal and

insulating engineering, chemical catalytic reactors and filtration process in chemical

engineering, aerodynamic heat shielding with transpiration cooling etc. The convection

problem in porous medium has other applications in geothermal reservoirs and geothermal

energy extractions. A comprehensive review of the studies of convective heat transfer

mechanism through porous media has been made by Bejan et al. (2004), Inham et al. (2005),

Vafai (2005), Nield and Bejan (2006) and so on. Moreover, considerable attention has been

paid to the study of MHD heat and mass transfer flow because of the applications in

geophysics, aeronautics and chemical engineering. Palani and Srikanth (2009) studied the

MHD flow of an electrically conducting fluid over a semi-infinite vertical plate under the

influence of the transversely applied magnetic field. Makinde (2010) investigated the MHD

boundary layer flow with heat and mass transfer over a moving vertical plate in the presence

of magnetic field and convective heat exchange at the surface. One the other hand, Duwairi

(2005) analyzed viscous and Joule-heating effects on forced convection flow from radiative

isothermal surfaces. The effect of viscous dissipation is usually characterized by the Eckert
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number and has played a very important role in geophysical flow and in nuclear engineering

that was studied by Alim et al. (2007). The effects of suction or injection on boundary layer

flow also play an important role in various processes of engineering applications and have

been widely investigated by numerous researchers. Various researchers have studied the

effects of viscous dissipation and constant suction in different surface geometries. An analysis

of two dimensional steady free convective flow of a conducting fluid in the presence of a magnetic

field and a foreign mass past an infinite vertical porous and unmoving surface is carried out by

Raptis (1983), when the heat flux is constant at the limiting surface and the magnetic

Reynolds number of the flow is not small. Assuming constant suction at the surface,

approximate solutions of the coupled nonlinear equations are derived for the velocity field,

the temperature field, the magnetic field and for their related quantities. Agrawal et al.(1980)

consider the steady laminar free convection flow with mass transfer of an electrically conducting

liquid along a plane wall with periodic suction. Sattar (1993) analyzed the effect of free and

forced convection boundary layer flow through a porous medium with large suction. The

effect of similarity solution for MHD flow through vertical porous plate with suction have

been studied by Mohammed et al. (2005). Mansour et al. (2008) described the influence of

chemical reaction and viscous dissipation on MHD natural convection flow. Khaleque and

Samad (2010) described the effects of radiation, heat generation, and viscous dissipation on

MHD free convection flow along a stretching sheet.

Uwanta (2012) studied the effects of chemical reaction and radiation on heat and mass

transfer flow past a semi-infinite vertical porous plate with constant mass flux and

dissipation. Govardhan et al. (2012) presented a theoretical study on the influence of

radiation on a steady free convection heat and mass transfer over an isothermal stretching

sheet in the presence of a uniform magnetic field with viscous dissipation effect. Jai (2012)

presented the study of a viscous dissipation and chemical reaction effects on flow past a

stretching porous surface in a porous medium. In another article, a detailed numerical study

on the combined effects of radiation and mass transfer on a steady MHD two-dimensional

Marangoni convection flow over a flat surface in presence of joule-heating and viscous

dissipation under influence of suction and injection is studied by Ibrahim (2013).

When heat and mass transfer occur simultaneously in a moving fluid affecting each other

causes a cross diffusion effect, the mass transfer caused by temperature gradient is called the

Soret effect, while the heat transfer caused by concentration effect is called the Dufour effect.
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Soret and Dufour effects are important phenomena in areas such as hydrology, petrology and

geosciences. The Soret effect, for instance, has been utilized for separation of isotope in a

mixture between gases with very light molecular weight (He, H2) and of medium molecular

weight (N2, air). The Dufour effect was recently found to be of order of considerable

magnitude so that it cannot be neglected (Eckert and Drake (1974)). Many researchers

studied Soret and Dufour effects; for example, Kafousiasis and Williaims (1995) examined

Soret and Dufour effects on mixed free-forced convective and mass transfer boundary layer

flow with temperature dependent viscosity. Uwanta et al. (2008) have analyzed MHD fluid

flow over a vertical plate with Dufour and Soret effects. Postelnicu (2010) analyzed the

effect of Soret and Dufour on heat and mass transfer. Later, Usman and Uwanta (2013) have

considered the effect of thermal conductivity on MHD heat and mass transfer flow past an

infinite vertical plate with Soret and Dufour effects. Recently, the effects of Soret and Dufour

on an unsteady MHD free convection flow past a vertical porous plate in the presence of

suction or injection have been investigated by Sarada and Shankar (2013). Most recently,

using implicit finite difference scheme of Crank-Nicolson, Uwatana and Usman (2014)

investigated the combined effects of Soret and Dufour on free convective heat and mass

transfer on the unsteady boundary layer flow over a vertical channel in the presence of

viscous dissipation and constant suction.

Hence our aim of this research is to extend the work of Usman and Uwanta (2013). The

problem has been solved by finite difference method. The governing equations involved in

this problem have been transformed into non-similar coupled partial differential equation by

usual transformations. Finally, the results has been shown graphically.

The present thesis is composed of Five Chapters. An introduction including basic literature

review, some available information on MHD and useful dimensionless parameters regarding

our problem are presented in CHAPTER I.

Basic equations governing the problems with some simplifying assumptions are given in

CHAPTER II. In CHAPTER III brief description of the Finite Difference calculation

technique has been given. CHAPTER IV deals with the mathematical model of the problem

with dimensional  analysis. The numerical solution including the graphs and result and

discussion have been given in this chapter. The conclusion gained from this research have

been discussed in CHAPTER V.
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1.2 Some Available Information on MHD

1.2.1 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the flow of electrically conducting fluids in

electric and magnetic fields which is a branch of magneto fluid dynamics i.e. continuum

mechanics. Probably the largest advance towards an understanding of such phenomena

comes from the field of astrophysics. It has long been suspected that most of the matter in the

universe is in the plasma or highly ionized gaseous state and much of the basic knowledge in

the area of electromagnetic fluid dynamics evolved from these studies.

The field of MHD which consists of the study of a continuous, electrically conducting fluid

under the influence of electromagnetic fields, is a branch of plasma physics. Originally,

MHD included only the study of strictly incompressible fluid but today the terminology is

applied to the study of partially ionized gases and therefore different names have been

suggested, such as magneto-fluid-mechanics or magneto-aero-dynamics, but original

nomenclature still persists. The essential requirement for problems to be analyzed under the

laws of MHD is that the continuum approach be applicable.

There are many natural phenomena and engineering problems which are susceptible to MHD

analysis. It is useful in astrophysics because much of the universe is filled with widely spaced

charged particles and permeated through magnetic fields so that the continuum assumption

becomes applicable. Geophysicists encounter MHD phenomena in the interactions of

conducting fluids and magnetic fields that are present in and around heavenly bodies.

Engineers employ MHD principles in the design of heat exchangers, pumps and flow meters,

in space vehicle propulsion, control and re-entry problem, in designing communications and

radar system, in creating novel power generating systems and in developing confinement

schemes for controlled fusion.

The most important application of MHD is the generation of electrical power with the flow

of an electrically conducting fluid through a transverse magnetic field. Recently, experiments

with ionized gases have been performed with the aim of producing power on a large scale in

stationary plants with large magnetic fields. Cryogenic and superconducting magnets are

required to produce these very large magnetic fields. Generation of MHD power on a smaller
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scale is of interest for space applications.

Generally it is known that, several intermediate transformations are necessary to convert the

heat energy into electricity. Each of these steps involves a loss of energy. This naturally

limits the overall efficiency, reliability and compactness of the conversion process. Methods

for direct conversion to energy are now increasingly receiving attention. Of these, the fuel

cell converts the chemical energy of fuel directly into electrical energy; fusion energy utilizes

the energy released when two hydrogen nuclei fuse into a heavier one, and thermo electrical

power generation uses a thermocouple. MHD power generation is another important new

process that is receiving worldwide attention.

In the experiment of Faraday (1832), the principal MHD effects were first demonstrated. He

discovered that a voltage was induced across the tube due to the motion of the mercury

across the magnetic fields, perpendicular to the direction of flow and to the magnetic field by

the experiment of the flow of mercury in glass tubes placed between poles of a magnet. He

also suggested that electrical power could be generated in a load circuit by the interaction of

a flowing conducting fluid and a magnetic field. Later, Alfven (1942) discovered MHD

waves in the sun. These waves are produced by disturbances which propagate simultaneously

in the conducting fluid and the magnetic field. The analogy that explains the generation of an

Alfven wave is that of a harp string plucked while submerged in a fluid. The string provides

elastic force and the fluid provides inertia force and they combine to propagate a perturbing

wave through the fluid and the string.

In summary, MHD phenomena result from the mutual effect of a magnetic field and

conducting fluid flowing across it. Thus an electromagnetic force is produced in a fluid

flowing across a transverse magnetic field and the resulting current and magnetic field

combine to produce a force that resists the fluid’s motion. The current also generates its own

magnetic field which distorts the original magnetic field. An opposing or pumping force on

the fluid can be produced by applying an electric field perpendicularly to the magnetic field.

Disturbance in either the magnetic field or the fluid can propagate in both (fields/directions?)

to produce MHD waves as well as upstream and downstream wave phenomena. The science

of MHD is the detailed study of these phenomena, which occur in nature and are produced in

engineering devices.
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1.2.2 MHD Boundary Layer Phenomena

Boundary layer phenomena occurs when the influence of a physical quantity is restricted to

small regions near confining boundaries or when the viscous effect may be considered to be

confined in a very thin layer to the boundaries or when the non-dimensional diffusion

parameters such as the Reynolds number and the Pe’clet number or the magnetic Reynolds

number are large. The boundary layers are then the velocity and thermal or magnetic

boundary layers and each thickness is inversely proportional to the square root of the

associated diffusion number.

From experimental flows, Prandtl observed that for large Reynolds number, the viscosity and

thermal conductivity appreciably influenced the flow only near a wall and fathered classical

fluid dynamic boundary layer theory. When distant measurements in the flow direction are

compared with a characteristic dimension in that direction, transverse measurements

compared with the boundary layer thickness and velocities compared with the free stream

velocity then the Navier-Stoke’s and energy equations can be considerably simplified by

neglecting small quantities. The number of component equations is reduced to those in the

flow direction and pressure changes across the boundary layer are negligible. The pressure is

then only a function of the flow direction and can be determined from the inviscid flow

solution. Also the number of viscous term is reduced to the dominant term and the heat

conduction in the flow direction is negligible.

The MHD boundary layer flows are separated into two types for considering the limiting

cases of a very large or a negligible small magnetic Reynolds number. When the magnetic

field is oriented in an arbitrary direction relative to a confining surface and the magnetic

Reynolds number is very small, the flow direction component of the magnetic interaction and

the corresponding Joule heating is only a function of the transverse magnetic field

component and local velocity in the flow direction. Changes in the transverse magnetic field

component and pressure across the boundary layer are negligible. The thickness of the

magnetic boundary layer is very large and the induced magnetic field is negligible.

However, when the magnetic Reynolds number is very large, the magnetic boundary layer

thickness is small and is of nearly the same size as  the viscous and thermal boundary layers

and then the MHD boundary layer equations must be solved simultaneously. In this case, the
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magnetic field moves with the flow and is called frozen mass.

1.2.3 Mass Transfer

Mass transfer problems are of importance in many processes and have therefore received a

considerable amount of attention. In many mass transfer processes, heat transfer

considerations arise owing to chemical reaction and are often due to the nature of the process. In

processes such as drying, evaporation at the surface water body, energy transfer in a wet cooling

tower and the flow in a desert cooler, heat and mass transfer occur simultaneously. In many of

these processes, the interest lies in the determination of the total energy transfer, although in

processes such as drying, the interest lies mainly in the overall mass transfer for moisture

removal. Natural convection processes involving the combined mechanisms are also encountered

in many natural processes, such as evaporation, condensation and agricultural drying, in

many industrial applications involving solutions and mixtures in the absence of an externally

induced flow and in many chemical processing systems. In many processes such as the curing of

plastics, cleaning and chemical processing of materials relevant to the manufacture of printed

circuitry, manufacture of pulp-insulated cables etc., the combined buoyancy mechanisms arise

and the total energy and material transfer resulting from the combined mechanisms, has to be

determined.

The basic heat and mass transfer problem is governed by the combined buoyancy effects

rising from the simultaneous diffusion of thermal energy and of chemical species. Therefore the

continuity, momentum, energy and concentration equations are coupled through the buoyancy

terms alone, if the other effects, such as the Dufour effects are neglected. This would again

be valid for low species concentration levels.

1.2.4 MHD and Heat Transfer

With the advent of hypersonic flight,  the field of MHD, as define above, which has attracted

the interest of aero dynamists and associated largely with liquid metal pumping. It is possible

to alter the flow and the heat transfer around high velocity vehicles provided that the air is

sufficiently ionized. Furthermore, the invention of high temperature facilities such as the

shock tube plasma jet has provided laboratory sources of following ionized gas, which

provide an incentive for the study of plasma accelerators and generators. As a result of this,

many of the classical problems of fluid mechanics have been reinvestigated. Some of these
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analyses awake out of the natural tendency of scientists to search a new subject. In this case it

was the academic problem of solving the equations of fluid mechanics with a new body force

and another source of dissipation in the energy equation. Some time there were no practical

applications for these results. As for example, natural convection MHD flows have been of

interest to the engineering community only since the investigations directly applicable to the

problems in geophysics and astrophysics. But it was in the field of aerodynamic heating that

the largest interest was awaked.

The first paper on this subject was presented by Rossow (1957). His result for incompressible

constant property flat plate boundary layer flow indicated that the skin friction and heat

transfer were reduced substantially when a transverse magnetic field was applied to the fluid.

This encouraged a multitude analysis for every imaginable type of aerodynamic flow and

most of the research centered on the stagnation point, where in hypersonic flight, the highest

degree of ionization could be expected. The result of these studies were sometimes

contradictory concerning the amount by which the heat transfer would be reduced (some of

this was due to misinterpretations and invalid comparison).

Eventually, however, it was concluded that the field strength, necessary to provide sufficient

shielding against heat fluxes during atmospheric flight, where not competitive (interms of

weight) with other method of cooling (Sutton and Gloersen (1961)). However the invention

of new light weight super conducting magnets has revived interests in the problem of

providing heat projection during the very high velocity re-entry from orbital and super orbital

flight (Levy and Petschek (1962)).

1.2.5 Mixed Convection

Practically sometimes both the processes, natural and forced convection, are important and

heat transfer is by mixed convection, in which neither mode is truly predominant. The main

difference between the two really lies in the word external. A heated body lying on stagnant

air loses energy by natural convection. But it also generates a buoyant flow above it and body

placed on a moving air flow is subjected to an external flow and it becomes necessary to

determine the natural, as well as the forced convection effects in the regime in which the heat

transfer mechanisms lie.

When the study of MHD become a popular subject, it was normal that these flows would be
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investigated with the additional ponder motive body force as well as the buoyancy force. At a

first glance there seems to be no practical applications for these MHD solutions, for most

heat exchangers utilize liquids, whose conductivity is so small that prohibitively large

magnetic fields are necessary to influence the flow. But some nuclear power plants employ

heat exchangers with liquid metal coolants, so the application of moderate magnetic fields to

change the convection pattern appears feasible. Another classical natural convection problem

is the thermal instability that occurs in a liquid heated from below. This subject is of natural

interest to geophysicists and astrophysicists, although some applications might arise in

boiling heat transfer.

The basic concepts involved in employing the boundary layer approximation to natural

convection flows are very similar to those in forced flows. The main difference lies in the

fact that pressure in the region beyond the boundary layer is hydrostatic instead of being

imposed by an external flow and that the velocity outside the layer is zero. However the basic

treatment and analysis remain the same, the book by Schlichting (1968) is an excellent

collection of the boundary layer analysis. There are several methods for the solution of the

boundary layer equations namely the similarity variable method, the perturbation method,

analytical method, numerical method etc. and their details are available in the books written

by Rosenberg (1969) and Patanker and Spalding (1970).

1.2.6 Heat and Mass Transfer

Combined heat and mass transfer problems (Jaluria (1980)) are of importance in many

processes and have therefore received a considerable amount of attention. In many mass

transfer processes, heat transfer considerations arise owing to chemical reaction and are often

due to the nature of the process. In processes such as drying, evaporation at the surface water

body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass

transfer occur simultaneously. In many of these processes, the interest lies in the

determination of the total energy transfer, although in processes such as drying, the interest

lies mainly on the overall mass transfer for moisture removal. Natural convection processes

involving the combined mechanisms are also encountered in many natural processes, such as

evaporation, condensation and agricultural drying, in many industrial applications involving

solutions and mixtures in the absence of an externally induced flow and in many chemical

processing systems. In many processes such as the curing of plastics, cleaning and chemical
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processing of materials relevant to the manufacture of printed circuitry, manufacture of pulp-

insulated cables etc., the combined buoyancy mechanisms arise and the total energy and

material transfer resulting from the combined mechanisms, has to be determined.

The basic heat and mass transfer problem is governed by the combined buoyancy effects

arising from the simultaneous diffusion of thermal energy and of chemical species.

Therefore, the continuity, momentum, energy and concentration equations are coupled

through the buoyancy terms alone, if the other effects, such as the Soret and Dufour effects

are neglected. This would again be valid for low species concentration levels. These

additional effects have also been considered in several investigations, for example, the work

of Caldwel (1974), De Groot and  Mazur (1962), and Hurle  and Jakeman (1971).

1.3 Useful Dimensionless Parameters

Prandtl Number Pr

The Prandtl number is the ratio of kinematic viscosity to thermal diffusivity and may

be written as follows,






 p

p

c

c


ydiffusivitThermal

viscosityKinemstic
Pr

where pc is the specific heat at constant pressure and  is the thermal conductivity.

The value of



  shows the effect of viscosity of the fluid. The smaller value of 

is, the narrower is the region which is affected by viscosity and which is known as

the boundary layer region when  is very small. The value of
pc


shows the thermal

diffusivity due to heat conduction. The smaller value of
pc


is, the narrower is

the region which is affected by the heat conduction and which is known as thermal

boundary layer when
pc


is small. Thus the Prandtl number shows that the relative im-

portance of heat conduction and viscosity of a fluid.

Evidently, the value of Pr varies from fluid to fluid. For air at 20 C , 71.0Pr  (approx.),
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for water at 20 C , 0.7Pr  (approx.), for mercury at 20 C , 044.0Pr  (approx.) but for

high viscous fluid it may be very large e.g. for glycerin at 20 C , 7250Pr  (approx.).

Magnetic Parameter M

This is obtained from the ratio of the magnetic force to the inertia force and is defined

as,

2 23
0 0Magnetic  force

Inertia  force
e eB L H L

M
U U

   
 

  
,

where e is the magnetic permeability,  is the electrical conductivity, 0H be the constant

Schmidt Number Sc

It is the ratio of the viscous diffusivity to the chemical molecular diffusivity and is defined as,

DmydiffusivitmolecularChemical

ydiffusivitsusVisco
Sc




Grashof Number Gr

The Grashof number is defined as ,2

3


 TLg

Gr




where g is the local acceleration due to gravity,  is the thermal expansion coefficient

and T be the temperature difference.

It is a measure of the relative importance of buoyancy forces and viscous forces. The

larger it is, stronger is the convective current.

Modified Grashof Number Gm

This is defined as 2

3*


 CLg

Gm




where * is the concentration expansion coefficient and C be the concentration

difference.

induced magnetic field.
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Eckert Number Ec

The Eckert number is defined as = ( ) , which is the ratio of the kinetic energy at the

wall to the specific enthalpy  difference between wall and fluid. Eckert number phenomena is

being the result of dissipation created by shear stress in the fluid at the wall. In other  words,

it is the kinetic energy of the flow relative to the enthalpy  difference.

Soret Number Sr

The Soret Numberis defined as
 
 







CCT

TTkD
Sr

wm

wTm



where Tk is the thermal diffusion ratio, mT is the mean fluid temperature, wT and T are

temperature of the fluid at the wall and far away from the plate respectively as well as wC

and C are concentration of the species at the wall and far away from the plate

respectively.

Dufour Number, Du

A dimensionless number used in studying thermo-diffusion, equal to the increase in enthalpy

of a unit mass during isothermal mass transfer divided by the enthalpy of a unit mass of

mixture.

The Dufour number is defined as
 
 







TTcc

CCDk
Du

Wps

Wt


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CHAPTER II

Governing Equations

2.1 Basic Governing Equations

From the basis of studying Magneto Fluid Dynamics, fluid flows for a combined heat and

mass transfer are governed by the continuity equation, momentum equations, concentration

equation, and energy equation together with the generalized Ohm’s law and Maxwell’s

equations. The thermal-diffusion and diffusion-thermo effects together with viscous

dissipation and Joule heating effect have been considered throughout the study.

The continuity equation for a viscous compressible electrically conducting fluid in vector

form is

  0



q

t

(2.1)

where  is the density of the fluid,  wvu ,,q is the fluid velocity vector in three

dimensional Cartesian coordinate system. Here u , v and w are the components of velocity

vector in the x , y and z directions respectively.

For incompressible fluid  ,constant so that the equation (2.1) yields

0 q (2.2)

i.e. 0











z

w

y

v

x

u
(2.3)

The Momentum equation for a viscous compressible fluid moves through a porous medium

in vector form is

  qqqF
q

1

2

3

1

k
P

dt

d








 (2.4)

where  zyx FFF ,,F is the body force per unit mass; xF , yF , zF be the components of the

body force in the x , y , z directions respectively; P is the fluid pressure,  is the kinematic

viscosity,  is the fluid viscosity and 1k is the permeability of the porous medium.

Since  qq
qq






tdt

d
and for incompressible fluid 0 q so the equation (2.4)
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becomes

  qqFqq
q

1

21

k
P

t 









(2.5)

A strong uniform magnetic field B=  0,,0 0B is imposed along the y-axis and the magnetic

Reynolds number of the flow is assumed to be small enough so that the included magnetic

field is negligible in comparison with applied magnetic field. The magnetic lines are fixed

relative to the fluid. Using the relation 0 J for the current density  zyx JJJ ,,J where

constantyJ . Since the plate is non-conducting, 0yJ at the plate and hence zero

everywhere. The generalized Ohm’s law in the absence of electric field to the case of short

circuit problem (Meyer (1958) and Cowling (1956));

    BBJBJBqJ 





 

00

1

BB
pgrad

ne
eie

e




where eee pen  ,,,,, and i are the electric conductivity, the magnetic permeability,

the number density of electron, the electric charge, the electron pressure, Hall parameter, and

Ion-slip parameter, respectively. If we neglect the electron pressure, Hall parameter, and Ion-

slip parameter, we have

wBJ x 0

uBJ z 0

Then the equation (2.5) becomes as following form

    qBJqFqq
q

1

2 11

k
P

t 











(2.6)

Now  
z

w
y

v
x

u
zyx

wvu




























 ,,,,q (2.7)

   wvu
z

w
y

v
x

u ,,


















 qq



































































z

w
w

y

w
v

x

w
u

z

v
w

y

v
v

x

v
u

z

u
w

y

u
v

x

u
u ,, (2.8)



















z

P

y

P

x

P
P ,, (2.9)

 wvu
zyx

,,
2

2

2

2

2

2
2




















 q
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































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































2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

,,
z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u
(2.10)

 uBwB 00 ,0, J (2.11)

and  wBuB 2
0

2
0 ,0, BJ (2.12)

In three-dimensional Cartesian coordinate system the momentum equation (2.6) with the help

of the equations (2.7)-(2.12) become,

u
k

uB

z

u

y

u

x

u

x

P
F

z

u
w

y

u
v

x

u
u

t

u
x

1

2
0

2

2

2

2

2

21

















































(2.13)
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


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






















(2.14)

w
k

wB
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w
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z
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F

z

w
w

y

w
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t

w
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21


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
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



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









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


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



















(2.15)

The concentration equation for a viscous incompressible electrically conducting fluid with

thermal-diffusion is;

  T
T

Dk
CDC

t

C

m

t 22 



q (2.16)

where C is the concentration variable of the species, T is the fluid temperature, D is the

coefficient of mass diffusivity, tk is the thermal diffusion ratio and mT is the mean fluid

temperature. Also using the equation (2.1.3) we have

 
z

C
w

y

C
v

x

C
uC












q (2.17)

2

2

2

2

2

2
2

z

C

y

C

x

C
C











 (2.18)

2

2

2

2

2

2
2

z

T

y

T

x

T
T











 (2.19)

In three-dimensional Cartesian coordinate system the concentration equation (2.16) with the

help of the equations (2.17)-(2.19) become























































2

2

2

2

2

2

2

2

2

2

2

2

z

T

y

T

x

T

T

Dk

z

C

y

C

x

C
D

z

C
w

y

C
v

x

C
u

t

C

m

t (2.20)

The energy equation for a viscous incompressible electrically conducting fluid with

diffusion-thermo effect, Joule heating and viscous dissipation term is
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     
 ppps

t

p cc
C

cc

Dk
TTK

c
T

t

T 1
.

1

1

2
2 


 J

q (2.21)

Where pc is the specific heat at the constant pressure, sc is the concentration susceptibility

and    TTKTK 10 1)(  , 0K is the thermal conductivity of the ambient fluid.

.2
222222
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Also  denotes the dissipation function involving the viscous stress and it represents the rate

at which energy is being dissipated per unit volume through the action of viscosity. In fact

the energy is dissipated in a viscous fluid in motion on account of internal friction given for

incompressible fluid. This is always positive, since all the terms are quadratic.

Again using the equation (2.7) we have

 
z

T
w

y

T
v

x

T
uT












q (2.22)


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





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






z

T

y

T

x

T
T ,, (2.23)

and from the equation (2.11) we have

 222
0

22 wuB J (2.24)

In three-dimensional Cartesian coordinate system the energy equation (2.21) with the help of

the equations (2.22) – (2.24) become
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(2.25)

In three-dimensional Cartesian coordinate system the continuity equation (2.3), the

momentum equations (2.13) – (2.15), the concentration equation (2.20) and the energy

equation (2.25) are as follows
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The Continuity equation:

0











z

w

y

v

x

u

The Momentum equations:

u
k

uB

z

u

y

u

x

u

x

P
F

z

u
w

y

u
v

x

u
u

t

u
x

1

2
0

2

2

2

2

2

21

















































v
kz

v

y

v

x

v

y

P
F

z

v
w

y

v
v

x

v
u

t

v
y

1
2

2

2

2

2

21














































w
k

wB

z

w

y

w

x

w

z

P
F

z

w
w

y

w
v

x

w
u

t

w
z

1

2
0

2

2

2

2

2

21

















































The Concentration equation:
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The Energy equation:
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Consider an unsteady fluid flow for a combined heat and mass transfer past an electrically

non-conducting continuously moving semi-infinite impulsive vertical porous plate. It has

been considered the effect of thermal-diffusion, diffusion-thermo, Joule heating effect and

viscous dissipation effect. The physical configuration and coordinate system are shown in

Figure 2.1
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Figure 2.1: Physical configuration and coordinate system.

0U

The flow is assumed to be in the x-direction which is taken along the plate in upward

direction and y-axis is normal to it. The leading edge of the plate is taken as coincident

with axisz . Hence mathematically we can write 0


z

. A uniform magnetic field 0B

can betaken as  0,,0 0B to the considered plate which is assumed to be electrically non-

conducting.
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Initially the plate as well as the fluid is at the same temperature  TT and the

concentration level  CC everywhere in the fluid is same. Also the fluid and the plate is

at rest. After that the plate is to be moving with a constant velocity 0U in its own plane and

instantaneously at time 0t , the temperature of the plate and the concentration are raised to

 TTw and  CCW respectively, which are thereafter maintained constant, where wT , wC

are the temperature and concentration at the wall and T , C are the temperature and

concentration far away from the plate respectively.

The componentx of momentum equation (2.13) reduces if the only contribution to the

body force is made by gravity, the body force per unit volume, gFx  , where g is the

local acceleration due to gravity. There is no body force in the ,directionsand zy that is,

.0 zy FF Thus 0



y

P
which implies that  xPP  . Hence the componentx of

pressure gradient at any point in the boundary layer must equal to the pressure gradient in

the quiescent region outside the boundary layer. However, in this region wvu  .

Therefore the componentx of pressure gradient of the momentum equation, g
x

P



 ,

where  is the density of the surrounding fluid at the temperature T .

Therefore,

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g .

For small differences, the density difference term   is related to the temperature

difference TT and the mass difference CC through the thermal expansion

coefficient T and the concentration expansion coefficient C by the relation

   
 


CCTT CT 



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Hence the continuity equation (2.26), the momentum equations (2.27) – (2.29), the

concentration equation (2.30) and the energy equation (2.31) become
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If the plate is infinite in extent then all physical quantities depend on y and t . Thus under the

Boussinesq approximations and by neglecting the small order terms, the continuity equation

(2.33), the momentum equations (2.34) – (2.36), the concentration equation (2.37) and the

energy equation (2.38) become
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where    TTKTK 10 1)(  and 0v is the suction velocity.

The corresponding initial and boundary conditions are prescribed as follows:

yallforCCTTut   ,,0,0 (2.43)

0,,,0 0  yatCCTTUut WW

  yasCCTTu ,,0 (4.44)
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CHAPTER V

Conclusions

The finite difference solution of MHD mixed convection flow through an impulsively started

permeable vertical plate with diffusion-thermo and thermal-diffusion effects have been

investigated.

Some important findings of this investigation are listed below;

1. The fluid velocity increases with the increase of Grashof Number, Modified Grashof

Number, Dufour Number, Soret Number, Eckert Number, and Variable thermal

conductivity Parameter.

2. Reverse effects are observed with the increase of Prandtl Number, Schmidt Number,

Magnetic Parameter, Permeability of the porous medium and Suction Parameter.

3. The fluid temperature increases with the increase of Grashof Number, Modified Grashof

Number, Dufour Number, Soret Number, Eckert Number, and Variable thermal

conductivity parameter.

4. Reverse effects are seen with the increase of Prandtl Number, Magnetic Parameter,

Permeability of the porous medium and Suction Parameter.

5. The fluid concentration increases with the increase of Soret Number and reverse effect

are observed with the increase of Schmidt Number and Suction Parameter.

6. There is no significant effect of the observed parameters on the concentration

distributions except Schmidt number, Soret number and suction parameter. Here

concentration profiles are decreasing with the increase of both Sc and , but it

decreased quickly with the increase of the suction parameter  . It On the other hand

concentration profiles show increasing behaviour with the increase of Soret number, Sr .
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As the basis for many engineering and scientific applications, for study more complex problems

involving the MHD flow, it is hoped that the findings of this investigation may be useful for

study of movement oil or gas and water through the reservoir of an oil or gas field, in the

migration of underground water or oil as well as in the filtration and water purification processes.

These results may also be useful for plasma studies as well as in power engineering, geothermal

energy extractions, geophysics and astrophysics.
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CHAPTER III

Calculation Technique

Many physical phenomena in applied science and engineering when formulated into

mathematical models fall into a category of systems known as non-linear coupled partial

differential equations. Most of these problems can be formulated as second order partial

differrential equations. A system of non-linear coupled partial differential equations with

the boundary conditions are very difficult to solve analytically. For obtaining the solution

of such problems advenced numerical methods have been employed. The governing

equations of our problem contain a system of partial differrential equations which are

transformed by usual transformation into a non-dimensional system of non-linearcoupled

partial differential equations with boundary conditions. Hence the solution of our problem

would be accomplished by the advanced numerical method, the Finite Difference numerical

method has been used for solving our obtained non-similar coupled partial differential

equations.

3.1. Finite Difference Method

In order to solve the governing partial differential equations by Finite Difference Method,

let us consider a two-dimensional region as shown in Figure 3.1. It is covered by a

rectangular grid formed by two sets of lines drawn parallel to the coordinate axes with grid

spacing x and y in x and y directions respectively.

The numerical values of the dependent variables are obtained at the points of intersection

of the parallel lines, called mesh points, lattice points or nodal points. These values are

obtained by discretizing the governing partial differential equations over the region of

interest to derive approximately equivalent algebraic equations. The discretization consists
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Figure 3.1: Space-Time index notation

of replacing each derivative of the partial differential equation at a mesh point by a finite

difference approximation in terms of the values of the dependent variable at the mesh

point and at the immediate neighboring mesh points and boundary points. In doing so, a

set of algebraic equations arise.

Let the temperature T at a representative point be a function of two special coordinates ,x

y and time t . We adopt the following notation:
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Let the subscripts i and j represent x and y coordinates and superscript n represents

time. Let the mesh spacing in x and y directions are denoted by x and y also the

time step by t . Thus ),,( tyxT can be represented by
n

jiTtnyjxiT .),.(  . With this

notation, let us assume that the function T and its derivatives are continuous. Then from

Taylor’s series expansions, the finite difference approximations to derivatives can be

obtained. For example, the Taylor’s series expansion of jiT ,1 about the grid point ),( ji

gives
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Both approximations are first order accurate.

Subtracting equation (3.2) from equation (3.1), we obtain
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with a truncation error of

order 2)( x , which is second order accurate.

The central difference approximation to a second order partial derivative 2

2

x
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can be

similarly obtained by adding the equations (3.1) and (3.2).
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The expressions for mixed derivatives can be obtained by differentiating with respect to
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Proceeding in a similar manner, the central difference approximation to the third

derivative is found to be
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Similar approximations can be obtained even to higher order derivatives.
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CHAPTER IV

Finite Difference Solution of MHD Mixed Convection Flow through an Impulsively Started
Permeable Vertical Plate with Diffusion-Thermo and Thermal-Diffusion Effects

4.1. Mathematical Model of the Flow

An unsteady mixed convective heat and mass transfer flow of an electrically conducting

incompressible viscous fluid through a porous medium along electrically non-conducting isothermal

infinite impulsively stretched vertical porous plate with thermal diffusion and diffusion thermo

effects have been considered. The positive x coordinate is measured along the plate in the direction

of fluid motion and the positive y coordinate is measured normal to the plate. Initially, it is considered

that the plate as well as the fluid is at the same temperature   TT and concentration   CC . Also

it is assumed that the fluid and the plate is at rest. After that the plate is to be moving with a constant

velocity 0U in its own plane. Instantaneously at time 0t , the temperature of the plate and spices

concentration are raised to   TT w and   CC w respectively, which are there after maintained

constant, where wT , wC are temperature and spices concentration at the wall  and T , C are the

temperature and concentration of the species outside the plate respectively. The physical configuration

of the problem is furnished in Figure 2.1

The imposed uniform magnetic field B is taken as  0,,0 0B . The magnetic Reynolds number of the

flow is taken to be small enough so that the included magnetic field is negligible in comparison with

applied magnetic field. The magnetic lines are fixed relative to the fluid. Using the relation 0 J

for the current density  ,,, zyx JJJJ where constantyJ . Since the plate is non-conducting, 0yJ

at the plate and hence zero everywhere. The fluid is assumed to have constant properties except that

the influence of the density variations with temperature and concentration, which are considered only

in the body force term.

Within the framework of the above stated assumptions with reference to the generalized equations

described in Chapter 2, the physical variables are functions of y and t only. Assuming that the

Boussinesq and boundary-layer approximations hold and using the Darcy-Forchheimer model, the
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equations governing the problem are (Alam and Rahman (1992)) governed by the following system of

coupled non-linear partial differential equations (as stated in Chapter II):

Continuity equation:
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Momentum equation:
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Concentration equation:
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Energy equation:
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The corresponding initial and boundary conditions are prescribed as follows:

yTTCCut allfor,,,0,0   (4.5)

0at,,,0 0  yTTCCUut WW

  yTTCCu as,,0 (4.6)

Here x , y are Cartesian coordinate system; u and v are the velocity components along and normal

to the plate,  is the kinematic viscosity,  is the fluid viscosity and 1k is the permeability of the

porous medium, g is the acceleration due to gravity, T is the thermal expansion coefficient, C and

the concentration expansion coefficient,  is the density, D is the coefficient of mass diffusivity, tk

is the thermal diffusion ratio and mT is the mean fluid temperature, pc is the specific heat at the

constant pressure, sc is the concentration susceptibility and    TTKTK 10 1)(  (Usman and

Uwanta (2013)), 0K is the thermal conductivity of the ambient fluid.
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4.2. Mathematical Formulation

Since the solutions of the governing equations (4.2) – (4.4) under the initial conditions (4.5) and

boundary conditions (4.6) will be based on the Finite Difference Method it is required to make the

equations dimensionless. For this purpose we will now introduce the following non-dimensional

quantities:
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From the above dimensionless variables, we have
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Now substitute the values of the above derivatives into the equations (4.2) – (4.4) together with the

initial conditions (4.5) and boundary conditions (4.6), the following nonlinear coupled partial

differential equations in terms of dimensionless variables are obtained
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with the corresponding initial and boundary conditions are

YTCU ofvaluesallfor0,0,0,0  (4.10)
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0,as0,0,00,as0,0,0   YTCYTCU (4.11)

where  represents the dimensionless time, Y is the dimensionless Cartesian coordinate, U is the

dimensionless primary velocity, T is the dimensionless temperature, C is the dimensionless
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4.3. Numerical Solution

In this section, we attempt to solve the governing second order nonlinear coupled dimensionless partial

differential equations with the associated initial and boundary conditions. For solving a transient free

convection flow with mass transfer past a semi-infinite plate, Callahan and Marner (1976) used the

explicit Finite Difference Method which is conditionally stable. On the contrary, the same problem

was studied by Soundalgekar and Ganesan (1980) by an implicit Finite Difference Method which is

unconditionally stable. The only difference between the two methods is that the implicit method being

unconditionally stable is less expansive from the point of view of computer time. However, these two

methods respectively employed by Callahan and Marner (1976) and Soundalgekar and Ganesan

(1980), respectively produced the same results.

From the concept of the above discussion, for simplicity the Finite Difference Method has been used to

solve equations (4.7) – (4.9) subject to the conditions given by (4.10) and (4.11). To solve the non-

dimensional system by the finite difference technique, it is required a set of finite difference equations.

In this case, the region within on the boundary layer is divided by some perpendicular lines of Y -axis,

where Y -axis is normal to the medium as shown in Figure 4. It is assumed that the maximum length of

boundary layer is  25max Y as corresponds to Y i.e. Y varies from 0 to 25 and the number of

grid spacing in Y directions is  400p , hence the constant mesh size along Y axis becomes

 2500625.0  YY with a smaller time-step 001.0t .

Figure 4.3.1: Implicit finite difference system grid.
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Let nn CU , and nT denote the values of CU , and T at the end of a time-step respectively. Using the

implicit finite difference approximation, the following relations are obtained as;
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Substituting above values into equations (4.7) – (4.9), we obtain
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with the corresponding initial and boundary conditions are

0,0,0 0
0

0
0

0
0  TCU (4.15)

1,1,1 000  nnn TCU (4.16)

0,0,0  n
L

n
L

n
L TCU where L

Here the subscript k designates the grid points with Y coordinate and the superscript n represents a

value of time, ,  n where ,...2,1,0n . The velocity  U , concentration  C and temperature

 T distributions at all interior nodal points may be computed by successive applications of the above

finite difference equations. The obtained values are graphically shown in Figures 4.1– 4.35.
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4.4. Results and Discussion

To obtain the steady-state solutions, the computations have been carried out up to dimensionless time

50 . Figure 4.1 represents the velocity profiles at several times. The area enclosed by a curve with

both axes are represented by


25

0
UdY

A
U (4.17)

Similarly for concentration and temperature profile it can be write as:


25

0
CdY

A
C (4.18)


25

0
TdY

A
T (4.19)

Figure 4.1: Velocity profiles for various values of dimensionless time, .
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Figure 4.2: Area against dimentionless time, .

Figure 4.2 shows effects of the areas verses dimensionless time. In this figure it can be conclude that

the results of the computations show little changes in the above mentioned quantities after

dimensionless time, .20 Thus, the solutions for dimensionless time, 20 are essentially steady-

state solutions. To observe the physical situation of the problem, the steady-state solutions have been

illustrated in Figures 4.3 – 4.35.

The influence of Grashof number Gr on the velocity, temperature and concentration distributions are

presented in Figures. 4.3 – 4.5. It is observed that velocity and temperature profiles are increasing with

the increase of Gr but no remarkable effect of Gr on the concentration distributions is found. The

effects of Modified Grashof number Gm on the velocity, temperature and concentration distributions

are shown in Figures 4.6 – 4.8. It is observed that velocity and temperature profiles are increasing with

the rise of Gm . But the concentration profiles are found decreasing a little with the increase of Gm

close to the plate and a reverse effect is observed far away before asymptotically approaches to zero.

The effects of Prandtl number Pr on the velocity, temperature and concentration distributions are

presented in Figures 4.9 – 4.11. It is shown that velocity and temperature profiles are decreasing with
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the increase of Pr . There is no significant effect of Pr on the concentration distributions as to be

shown. The influence of Dufour number Du on the velocity, temperature and concentration

distributions are presented in Figures 4.12 – 4.14. It is observed that velocity and temperature profiles

show increasing effect with the increase of Du . No remarkable effect of Du on the concentration

distributions is observed here. The effect of Schmidt number Sc on the velocity, temperature and

concentration distributions are presented in Figures 4.15 – 4.17. It is observed that velocity,

temperature and concentration profiles are decreasing with the increase of Sc . The influence of Soret

number Sr on the velocity, temperature distributions and concentration distributions are discussed in

Figures. 4.18 – 4.20. It is observed that velocity, temperature and concentration profiles show

increasing behaviour with the increase of Sr .

Figure 4.3: Velocity profiles for various values of Grashof Number, Gr .
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Figure 4.4: Temperature profiles for various values of Grashof Number, Gr .

Figure 4.5: Concentration profiles for various values of Grashof Number, Gr .
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Figure 4.6: Velocity profiles for various values of Modified Grashof Number, Gm .

Figure 4.7: Temperature profiles for various values of Modified Grashof Number, Gm .
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Figure 4.8: Concentration profiles for various values of Modified Grashof Number, Gm .

Figure 4.9: Velocity profiles for various values of Prandtl Number, Pr .
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Figure 4.10: Temperature profiles for various values of Prandtl Number, Pr .

Figure 4.11: Concentration profiles for various values of Prandtl Number, Pr .
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Figure 4.12: Velocity profiles for various values of Dufour Number, Du .

Figure 4.13: Temperature profiles for various values of Dufour Number, Du .

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

=0.50, Sr=0.10, M=0.50, =0.10, Gr=2.00,
Gm=2.00, Ec=0.01, =0.10, Pr=0.71, Sc=0.60

Y

U
Du=0.10
Du=0.50
Du=1.00

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

=0.50, Sr=0.10, M=0.50, =0.10, Gr=2.00,
Gm=2.00, Ec=0.01, =0.10, Pr=0.71, Sc=0.60

Y

T

Du=0.10
Du=0.50
Du=1.00



40

Figure 4.14: Concentration profiles for various values of Dufour Number, Du .

Figure 4.15: Velocity profiles for various values of Schmidt Number, Sc .
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Figure 4.16: Temperature profiles for various values of Schmidt Number, Sc .

Figure 4.17: Concentration profiles for various values of Schmidt Number, Sc .
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Figure 4.18: Velocity profiles for various values of Soret Number, Sr .

Figure 4.19: Temperature profiles for various values of Soret Number, Sr .
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Figure 4.20: Concentration profiles for various values of Soret Number, Sr .
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that velocity and temperature profiles are increasing with the increase of  . But no remarkable effects
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Figure 4.21: Velocity profiles for various values of Magnetic Parameter, M .

Figure 4.22: Temperature profiles for various values of Magnetic Parameter, M .
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Figure 4.23: Concentration profiles for various values of Magnetic Parameter, M .

Figure 4.24: Velocity profiles for various values of Permeability of the porous medium,  .
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Figure 4.25: Temperature profiles for various values of Permeability of the porous medium,  .

Figure 4.26: Concentration profiles for various values of Permeability of the porous medium,  .
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Figure 4.27: Velocity profiles for various values of Suction Parameter,  .

Figure 4.28: Temperature profiles for various values of Suction Parameter,  .
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Figure 4.29: Concentration profiles for various values of Suction Parameter,  .

Figure 4.30: Velocity profiles for various values of Eckert Number, Ec .
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Figure 4.31: Temperature profiles for various values of Eckert Number, Ec .

Figure 4.32: Concentration profiles for various values of Eckert Number, Ec .
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The influence of variable thermal conductivity,  on the velocity, temperature and concentration

distributions are described in Figures 4.33 – 4.35. It is observed that velocity and temperature profiles

are increased with the increase of  . No effect of  on the concentration distribution is observed

here.

Figure 4.33: Velocity profiles for various values of Electrical Conductivity,  .
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Figure 4.34: Temperature profiles for various values of Electrical conductivity, .

Figure 4.35: Concentration profiles for various values of Electrical conductivity, .
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