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Abstract 

 

 

An analytical technique has been developed based on an iteration method to determine 

higher-order approximate periodic solutions for nonlinear oscillatory differential equations. 

Usually, a set of nonlinear algebraic equations is solved with this method. However, 

analytical solutions of these algebraic equations are not always possible, especially in the 

case of large oscillations. A new technique based on the Mickens iterative method has been 

presented to obtain approximate analytic solutions of the Inverse Cubic Truly Nonlinear 

Oscillator. In this thesis, we have adopted the method of Fourier series and utilized truncated 

terms in each steps of iteration. The solutions obtained by this method nicely matched with 

the exact frequency. Also the obtained solutions are much more accurate than other existing 

results and the method is convergent and consistent. 
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CHAPTER I 

 

 

Introduction 

 

 

Differential equation is a mathematical tool, which has its application in many branches of 

knowledge of mankind. Numerous physical, mathematical, economical, chemical, biological, 

biochemical and many other relations appear mathematically in the form of differential 

equations that are linear or nonlinear, autonomous or non-autonomous. Generally, in many 

physical phenomena, such as spring-mass systems, resistor-capacitor-inductor circuits, 

bending of beams, chemical reactions, the motion of pendulums, the motion of the rotating 

mass around another body, etc., the differential equations are occurred. Also, in ecology and 

economics the differential equations are vastly used. Basically, many differential equations 

involving physical phenomena are nonlinear. Differential equations, which are linear, are 

comparatively easy to solve and nonlinear are laborious and in some cases it is impossible to 

solve them analytically. In such situations mathematicians, physicists and engineers convert 

the nonlinear equations into linear equations by imposing some conditions. In case of small 

oscillation, linearization is a well-known technique to solve the problems. But, such a 

linearization is not always possible and when it is not possible, then the original nonlinear 

equation itself must be used. The study of nonlinear equations is generally confined to a 

variety of rather special cases, and one must resort to various methods of approximation.  

At first Van der Pol [1] paid attention to the new (self-excitations) oscillations and indicated 

that their existence is inherent in the nonlinearity of the differential systems characterizing 

the procedure. This nonlinearity appears, thus, as the very essence of these phenomena and 

by linearizing the differential equation in the sense of the method of small oscillation, one 

simply eliminates the possibility of investigating such problems. Thus, it is necessary to deal 

with the nonlinear problems directly instead of evading them by dropping the nonlinear terms. 

To solve nonlinear differential equations, there exist some methods such as Perturbation 

technique, Harmonic Balance, Method of Multiple Scales, Homotopy Perturbation, Iteration 

method etc. Among the methods, the method of Perturbations, i.e., asymptotic expansions in 

terms of a small parameter are foremost. 

Perturbation methods have received much attention as these methods for accuracy and 

quickly computing numerical solutions of dynamic, stochastic, economic equilibrium models 
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for both single-agent or rational expectations models and multi-agent or game theory models. 

A perturbation method is based on the following aspects: the equations to be solved are 

sufficiently “smooth” or sufficiently differentiable a number of times in the required regions 

of variables and parameters.  

The Krylov-Bogoliubov-Mitropolaskii (KBM) [2- 3] method was developed for obtaining the 

periodic solutions of second order nonlinear differential equations. Nowadays, the KBM 

method is used to obtain oscillatory as well as damped, critically damped, over damped, near 

critically damped, more critically damped oscillatory and non-oscillatory solutions of second, 

third, fourth etc., order nonlinear differential systems by imposing some restrictions to obtain 

the uniform solution. The method of KBM [2] is an asymptotic method in the sense 

that 0 . An asymptotic series itself may not be convergent, but for a fixed number of 

terms, the approximate solution tends to the exact solution as 0 . It may be noted that the 

term asymptotic is frequently used in the theory of oscillations in the sense that 0 . It is 

an important approach to the study of such nonlinear oscillations in the small parameter 

expansion. Two widely spread methods in this theory are mainly used in literature; one is 

averaging asymptotic KBM method and other is the Method of Multiple Scales [4]. The 

KBM method is particularly convenient and is the extensively used technique to obtain the 

approximate solutions among the methods used to study the nonlinear differential systems 

with small nonlinearity. The KBM method starts with the solution of linear equation 

(sometimes called the generating solution of the linear equation), assuming that in the 

nonlinear case, the amplitude and the phase variables in the solution of the linear differential 

equations are time dependent functions instead of constants. On the other hand the Method of 

Multiple Scales is needed for problems in which the solutions depend simultaneously on 

widely different scales. A typical example is the modulation of an oscillatory solution over 

time-scales that are much greater than the period of the oscillations. 

Harmonic Balance (HB) [11-31] method is a procedure of determining analytical 

approximations to the periodic solutions of differential equations by using a truncated Fourier 

series representation. An important advantage of the method is that it can be applied to 

nonlinear oscillatory problems for which the nonlinear terms are not “small” i.e., no 

perturbation parameter need to exist. A disadvantage of the method is that it is a priory 

difficult to predict for a given nonlinear differential equation whether a first order harmonic 

balance calculation will provide a sufficiently accurate approximation to periodic solution. 
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The Iteration method [49] was introduced R E Mickens in 1987. The method introduces a 

reliable and efficient process for wide variety of scientific and engineering application for the 

case of nonlinear systems. There are two important advantages of Iteration method, one is 

“Only linear, in homogeneous differential equations are required to be solved at each level of 

the calculation” and another is “The coefficients of the higher harmonic, for a given value of 

the iteration index decrease rapidly with increasing harmonic number. This implies that 

higher order solutions may not be required”.   

It is noted that the majority of scientists have not been led to their discoveries by a process of 

deduction from general postulates, or general principles, but rather by a through examination 

of properly chosen particular cases. The generalizations have come later, because it is far 

easier to generalize an established result than to discover a new line of argument, 

Generalization is the temptation of a lot of researchers working now with nonlinear 

dynamical systems. 

The important development of the theory of nonlinear dynamical systems, during these 

centuries, has essentially its origins in the studies if the “natural effects” encountered in these 

systems, and the rejection of non-essential generalizations, i.e. the study of concrete nonlinear 

systems have been possible due to the foundation of results from the theory or nonlinear 

dynamical system. The main purpose of this thesis is to improve the accuracy of the 

approximate solution of the „Inverse Cubic Truly Nonlinear Oscillator‟ by iterative method so 

that it will help us to investigate the nature (amplitude, frequency etc.) of the nonlinear 

dynamical systems. 

The chapter outline of this thesis is as follows: In Chapter II, some basic conceptions are 

given. In Chapter III, the review of literature is presented. In Chapter IV, the Iteration 

method has been described for obtaining approximate analytic solutions of the Inverse Cubic 

Truly Nonlinear Oscillator. In Chapter V, the convergence and consistency analysis of the 

adopted method has been shown. Finally, some concluding remarks are included in Chapter 

VI. 

 

  

 

 

 

 

 



 4 

CHAPTER II 

 

 

 Basic Conceptions 

 

 

This chapter introduces the basic, but fundamental concepts relating to the thesis: 

Nonlinear Ordinary Differential Equation 

A nonlinear ordinary differential equation is an ordinary differential equation that is not 

linear. 

The following ordinary differential equations are all nonlinear: 

            
2

2

2
5 6 0

d y dy
y

dxdx
    

          
32

2
5 6 0

d y dy
y

dxdx

 
   

 
 

           
2

2
5 6 0

d y dy
y y

dxdx
    

but the following ordinary differential equations are all linear: 

          

2

2
5 6 0

d y dy
y

dx dx
    

           

2

2
0

d y dy
x y

dx dx
  

 

 

Phase Plane 

If a plane is such that, each point of this plane describe the position and velocity of a 

dynamical particle, then this plane is called phase plane. 

The differential equation describing many nonlinear oscillators can be written in the form: 

              0,
2

2











dt

dx
xf

dt

xd
                                                                                                 (2.1) 

A convenient way to treat equation (2.1) is to rewrite it as a system of two first order ordinary 

differential equations 

               yxf
dt

dy
y

dt

dx
,,                                                                                        (2.2) 

Equations (2.2) may be generalized in the form 
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           yxG
dt

dy
yxF

dt

dx
,,,                                                                                       (2.3) 

A point which satisfies   0, yxF  and   0, yxG  is called an equilibrium point. The 

solution to (2.3) may be pictured as a curve in the yx -  phase plane [6] passing through the 

point of initial conditions  00 , yx .  Each time a motion passes through a given point  yx , , its 

direction is always the same. This means a given motion may not intersect itself. A periodic 

motion corresponds to a closed curve in the yx -  plane. In the special case that the first 

equation of (2.3) is y
dt

dx
 , as in the case of equations (2.2), the motion in the upper half-

plane 0y  must proceed to the right, that is, x  must increase in time for 0y , and vice 

versa for 0y . 

 

Limit Cycle  

A closed trajectory in the phase plane such that other non-closed trajectories spiral toward it, 

either from the inside or the outside, as t  , is called a limit cycle [7]. If all trajectories 

that start near a closed trajectory (both inside and outside) spiral toward the closed trajectory 

as t , then the limit cycle is asymptotically stable. If the trajectories on both sides of the 

closed trajectory spiral away as t , then the closed trajectory is unstable. 

 

Trajectory 

If a curve is such that each point of the curve represents the position and velocity of a 

dynamical particle, the curve is called the path or Trajectory of the particle. 

Consider a second order nonlinear differential equation of the form 

          









dt

dx
xf

dt

xd
,

2

2

                                                                                                           (2.4) 

If we put
dt

dx
y  , then the equation (2.4) is replaced by the equivalent system 

           yxf
dt

dy
y

dt

dx
,,                                                                                               (2.5) 

More generally, we shall consider systems of the form  

             yxQ
dt

dy
yxP

dt

dx
,,,                                                                                      (2.6) 

where P  and Q  have continuous first order partial derivative for all ( , )x y . 
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For any number 0t t and any pair 0 0( , )x y  of real number, there exists a unique solution of the 

equation (2.6), we obtain 

           
( )

( )

x f t

y g t




                                                                                                                        (2.7) 

where 0 0 0 0( ), ( )x f t y g t   

If both f  and g  are not constant functions, then equation (2.7) defines a curve in the phase 

plane, which is called a path or orbit or trajectory of the system. 

 

The Autonomous System 

Consider the systems of the form 

         

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





 

where P  and Q  have continuous first partial derivatives for all ( , )x y . Such a system, in 

which the independent variable t  is not explicitly appears in the function P  and Q on the 

right, is called an autonomous system. 

The following example is an autonomous system 

            

dx
y

dt

dy
x

dt



 

 

The Non-autonomous system 

Consider the systems of the form 

            

( , , )

( , , )

dx
P x y t

dt

dy
Q x y t

dt





                                                                                                              

where P  and Q  have continuous first partial derivatives for all ( , )x y . Such a system, in 

which the independent variable t  is explicitly appears in the function P  and Q on the right, is 

called a non-autonomous system. 

The following example is a non-autonomous system 

        

sin

cos

dx
t

dt

dy
t

dt




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Critical Point 

Consider the autonomous system of the form 

          

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





                                                                                                                   

a point 0 0( , )x y  at which both 0 0( , ) 0P x y   and 0 0( , ) 0Q x y   is called a critical point. 

Isolated Critical Point 

A critical point 0 0( , )x y  of the system 

         

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





                                                                                                                   (2.8) 

is called isolated if there exists a circle    
2 2 2

0 0x x y y r     about the point 0 0( , )x y  such 

that 0 0( , )x y  is the only critical point of the system (2.8) within this circle. 

Classifications of Critical Point: 

(a) Centre 

The isolated critical point (0, 0)  of the system 

        

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





 

is called a Centre if there exists a neighborhood of  (0, 0)  which contains count ably infinite 

numbers of closed path  , 1, 2,nP n      each of which contains (0, 0)  as interior point and 

which are such that the diameters of the paths approaches to 0  as n . 

(b) Saddle Point 

The isolated critical point (0, 0)  of the system 

        

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





 

is called a saddle point if there exists a neighborhood of  (0, 0)  in which the following two 

conditions hold: 

(i) There exists two paths which approaches and enter into (0, 0)  from a pair of opposite 
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directions as t   and there exists two paths which approach and enter into (0, 0)  from a 

different pair of opposite directions as t  . 

    (ii)   In each of the four domains, between any two of the four directions in (i), there are 

infinitely many paths which are arbitrarily closed to (0, 0)  but which do not approach to 

(0, 0)  either as t   or as t  . 

(c) Spiral Point 

The isolated critical point (0, 0)  of the system 

        

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





 

is called a spiral point if there exists a neighborhood of  (0, 0)  such that every path P  in this 

neighborhood has the following properties: 

(i) P  is defined for all 0 0ort t t t  , for some number 
0t . 

(ii) P  approaches to (0, 0)  as t   or as t  . 

(iii) P  approaches to (0, 0)  in a spiral like manner, winding around (0, 0)  an infinite number 

of times t   or as t  . 

(d) Node 

The isolated critical point (0, 0)  of the system 

        

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





 

is called a node point if there exists a neighborhood of  (0, 0)  such that every path P  in this 

neighborhood has the following properties: 

(i) P  is defined for all 0 0ort t t t  , for some number 0t . 

(ii) P  approaches to (0, 0)  as t   or as t  . 

(iii) P  enters into (0, 0)  as t   or as t  . 

(e) Stable 

Consider the system 

       

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





                                                                                                             (2.9)  
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Suppose (0, 0)  is an isolated critical point of the above system. Let C  be a path of the system 

(1.4) and  ( ), ( )x f t y g t   be a solution of (2.9), which define C  parametrically. Let 

   , ( ), ( )x y f t g t  be a point on C . Define 

             
2 2

D t f t g t          

where  D t  is the distance between the critical point (0, 0)  and     ,R f t g t , then the 

critical point (0, 0)  is called stable if for every 0 , there exists a 0  such that  

           0D t  , for some 0t  

and    0D t  , for all  tt0 . 

(f) Asymptotically Stable 

Consider the system 

       

( , )

( , )

dx
P x y

dt

dy
Q x y

dt





                                                                                                             (2.10) 

Suppose (0, 0)  is an isolated critical point of the above system. Let C  be a path of the system 

(2.7) and  ( ), ( )x f t y g t   be a solution of the system (2.10), which define C  parametrically. 

Let    , ( ), ( )x y f t g t  be a point on C . Define 

             
2 2

D t f t g t          

where  D t  is the distance between the critical point (0, 0)  and     ,R f t g t , then the 

critical point (0, 0)  is called asymptotically stable if it is stable and 

           0
lim

,0
lim







tg
t

tf
t

 

 

Characteristic Equation 

Consider the linear system 

         

dx
ax by

dt

dy
cx dy

dt

 

 

                                                                                                                 (2.11) 

where , , ,a b c d  are real constants. 

Clearly the origin (0, 0)  is critical point of the above system. We assume that 
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        0
a d

c b
  

and hence (0, 0)  is the only critical point of (2.11). By Euler method, the solution of (2.11) is 

found of the form 

        
t

t

x Ae

y B e





 



                                                                                                                      (2.12) 

where A  and B  are arbitrary constants. If (2.12) is a solution of (2.11), then we have 

            2 0a d ad bc                                                                                             (2.13) 

Equation (2.13) is called the characteristic equation of (2.11) and its roots are called 

characteristic roots or eigen values of equation (2.11). 

 

Important Notes: 

Nature of the roots Nature of the 

critical point 

Nature of the stability of critical point (0, 0)  

Real, unequal and  

of same sign 

Node Asymptotically stable if the roots are negative; 

unstable if the roots are positive 

Real, unequal and  

of opposite sign 

Saddle point Unstable 

Real and equal Node Asymptotically stable if the roots are negative; 

unstable if the roots are positive 

Complex conjugate but 

not purely imaginary 

Spiral point Asymptotically stable if the real part of the roots 

are is negative; unstable if the real part is positive 

Purely imaginary Centre Stable but not asymptotically stable 

 

Free Oscillating System 

If there are no external forces applied on a system, then the system is called free oscillating 

system. For a free oscillating system, the applied force is proportional to the restoring force. 

If  1 ( )f x  is the restoring force and F  is the applied force on the system, then 

          1( )F f x  

          1( )F k f x  

where k  is the constant of proportionality. 

       
2

12
( ) 0

d x
m k f x

dt
      F ma  
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2

12
( ) 0

d x k
f x

mdt
  , 

          
2

2
( ) 0

d x
f x

dt
                                                                                                              (2.14) 

Equation (2.14) is the governing equation for a free oscillating system. 

 

Force Oscillating System 

If some external forces are applied on system, then the system is called force oscillating 

system. 

Natural Frequency 

Without external force every system oscillates together with a frequency, which is called 

natural frequency. 

Duffing Oscillator  

The differential equation 

           03

2

2

 xx
dt

xd
 ,    0                                                                                   (2.15) 

is called the Duffing oscillator [6]. It is a model of a structural system which includes 

nonlinear restoring forces (for example springs). It is sometimes used as an approximation for 

the pendulum: 

          0sin
2

2

 


L

g

dt

d
                                                                                                       (2.16) 

Expanding  5
3

6
sin 


 O , and then setting x  , 

          2
3

2

2

6
 O

x
x

L

g

dt

xd









                                                                                        (2.17) 

Now we stretch time with ,t
L

g
z   

              2
3

2

2

6
 O

x
x

dz

xd
                                                                                           (2.18) 

which is (2.15) with 6/1  

In order to understand the dynamics of Duffing‟s equation (2.15), we begin by writing it as a 

first order system: 

             ,y
dt

dx
         3xx

dt

dy
                                                                                (2.19) 
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For a given initial condition (    0,0 yx ), equation (2.19) specifies a trajectory in the yx -  

phase plane, i.e. the motion of a point in time. The integral curve along which the point 

moves satisfies the differential equation 

            
y

xx

dt

dx
dt

dy

dx

dy
3

                                                                                            (2.20) 

Equation (2.20) may be easily integrated to give 

             constant
422

222


xxy

                                                                                   (2.21) 

Equation (2.21) corresponds to the physical principle of conservation of energy. In the case 

that   is positive, (2.21) represents a continuum of closed curves surrounding the origin, 

each of which represents a motion of equation (2.15) which is periodic in time. In the case 

that α is negative, all motions which start sufficiently close to the origin are periodic. 

However, in this case equation (2.19) has two additional equilibrium points besides the origin, 

namely, 0,/1  yx  . The integral curves which go through these points separate 

motions which are periodic from motions which grow unbounded, and are called separatrices. 

If we were to numerically integrate equation (2.15), we would see that the period of the 

periodic motions depended on which closed curve in the phase plane we were on. This effect 

is typical of nonlinear vibrations and is referred to as the dependence of period on amplitude.  

 

Van der Pol Oscillator  

The differential equation 

                0,01 2

2

2

 
dt

dx
xx

dt

xd
                                                                  (2.22) 

is called the van der Pol oscillator [6]. It is a model of a non-conservative system in which 

energy is added to and subtracted from the system in an autonomous fashion, resulting in a 

periodic motion called a limit cycle. Here we can see that the sign of the damping term, 

 
dt

dx
x21  changes, depending upon whether is x  larger or smaller than unity.  

Van der Pol‟s equation has been used as a model for stick-slip oscillations, aero-elastic flutter, 

and numerous biological oscillators, to name but a few of its applications. 
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Numerical integration of equation (2.22) shows that every initial condition (except 

0
dt

dx
x ) approaches a unique periodic motion. The nature of this limit cycle is dependent 

on the value of . For small values of    the motion is nearly sinusoidal, whereas for large 

values of   it is a relaxation oscillation, meaning that it tends to resemble a series of step 

functions, jumping between positive and negative values twice per cycle. If we write (2.22) as 

a first order system, 

                 yx
dt

dy
y

dt

dx 21,                                                                                  (2.23) 

we find that there is no exact closed form solution. Numerical integration shows that the 

limit-cycle is a closed curve enclosing the origin in the yx -  phase plane. From the fact that 

equation (2.23) are invariant under the transformation yyx  x,  we may conclude 

that the curve representing the limit cycle is point symmetric about the origin. 

 

Truly Nonlinear Functions 

If ( )f x  has no linear approximation in any neighborhood of 0x  , then ( )f x  is a Truly 

Nonlinear function. 

The following are several explicit examples of Truly Nonlinear functions 

       

1 1

3 3 3
1 2 3( ) , ( ) , ( )f x x f x x f x x x     

 

Truly Nonlinear Oscillators 

If ( )f x is a Truly Nonlinear function, then the second-order differential equations 

“ ( ) 0x f x  ”  is a Truly Nonlinear Oscillator. 

The following are particular examples of Truly Nonlinear Oscillators 

         3 0x x   

         
1

3 0x x   

         
1

3 0x x x    

         
1

0x
x

   

 

Nonlinear oscillations occurring in one degree of freedom systems have been studied 

intensely for almost two centuries [5, 8–9]. The general form that those equations take is 
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              xxfxx  , ,  10                                                                                     (2.24) 

where   is a small parameter. Harmonic Balance (HB) [52], Averaging Methods [52], 

Parameter Expansions [52] and Iteration [52] methods are based on expansions in terms of   

which are taken to be asymptotic series. Each particular perturbation method is distinguished 

by how this feature is accomplished. If from a priori considerations it can be determined that 

periodic solutions exist, then a major task, for each method, is to eliminate, called the secular 

terms. Secular terms are expressions in the solutions that are oscillatory, with increasing, time 

dependent amplitudes [8-10], i.e., for an odd-parity system 

         secular term:   tkt n 12cos ,                                                                                  (2.25) 

where  kn,  are integers, with 1n  and 1k . For all of the standard methods, procedures 

have evolved to resolve this issue. 

Inspection of equation (2.24) shows that each of the classical methods has at its foundation 

the explicit assumption that when 0  the resulting “core” equation is the linear harmonic 

oscillator differential equation, namely, 

              000  xx                                                                                                               (2.26) 

where the zero indicates 0 . This fact presents an immediate difficulty for Truly 

Nonlinear Oscillators, where equation (2.24) is replaced by, for example, 

                1,,  pxxfxx p                                                                                   (2.27) 

We observe that when 0 , this equation reduces to the nonlinear equation 

              000  pxx                                                                                                              (2.28) 

and this type of equation would, at the very least, greatly complicate any solution 

construction based on expansions in the parameter  . 

 

 

 

 

 

 

 

 

 

 



 15 

CHAPTER III 

 

 

  Literature Review 

 

 

The characteristics of nonlinear differential equations are peculiar. But mathematical 

formulations of physical and engineering problems often results in differential equations that 

are nonlinear. A nonlinear system of equations is a set of simultaneous equations in which the 

unknowns appear as variables of a polynomial of higher degree than one or in the argument 

of a function which is not a polynomial of degree one. On the other hand, in a nonlinear 

system of equations, the equations to be solved cannot be written as a linear combination of 

the unknown variables or functions that appear in it or others. If nonlinear known functions 

appear in the equations, it does not matter. Specially, a differential equation is regarded as 

linear if it gets linear in terms of the unknown function as well as its derivatives, even if 

nonlinear in terms of the  other variables appearing in it.  

As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated 

by linear equations. This works well up to some accuracy and some range for the input 

values, but some interesting phenomena such as chaos and singularities are hidden by 

linearization. It follows that some aspects of the behavior of a nonlinear system appear 

commonly to be chaotic, unpredictable or counterintuitive. Although such chaotic behavior 

may resemble random behavior, it is absolutely not random. In this position there are several 

analytical approaches to find approximate solutions to nonlinear problems, such as: 

Perturbation [32-38], Harmonic Balance (HB) [11-31], Homotophy Perturbation [39], 

Homotophy  [40-45], Energy Balance [46], Cubication [47- 48], Iteration [49-62] methods, 

etc. 

The perturbation method is the most widely utilized method in which the nonlinear term is 

small. The solution of a differential equation is expanded in a power series of a small 

parameter in the perturbation method. The method of Lindstedt-Poincare (LP) [2-3, 32], 

Krylov-Bogoliubov-Mtropolskii (KBM) [2-3], Multiple Scale method [4], Homotopy 

perturbation [39] and Homotopy [40-45] are most important among all perturbation methods. 
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The method of Lindstedt-Poincare [32, 52] is an introductory method to solved the following 

second order nonlinear differential equations 

              0),(
2

0  xxfxx   ,                                                                                         (3.1)    

where 0  is the unperturbed frequency and   is a small parameter.       

The fundamental idea in Lindstedt‟s technique is based on the observation that the 

nonlinearities alter the frequency of the system from the linear one 0  to )( . To account 

for this change in frequency, he introduces a new variable t    and expand    and x  in 

power of   as 

               ......)()()( 2

2

10   xxxx  ,                                                                  (3.2) 

               ......2

2

10   ,  

where ......,2,1,0, ii , are unknown constants to be determined. 

Substituting equation (3.2) into equation (3.1) and equating the coefficients of the various 

powers of , the following equations are obtained  

               000  xx  

               ),(2 00111 xxfxxx     

               
))(,(

),()2(),(2

10100

10002

2

1001122

xxxxf

xxxfxxxfxxx

x

x





 






                          (3.3) 

                 …           …                       … 

                 ),,...,;,,...,( 110110  nnnnn xxxxxxgxx  , 

where over dot represents the differentiation with respect to  . 

 Clearly equation (3.3) is a linear system and it is solved by the elementary techniques. 
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This method is used only for finding the periodic solution, but the method cannot discuss 

transient case. 

Further, Krylov and Bogoliubov [2] introduced a technique to discuss transients of the same 

equation. This method starts with the solution of the linear equation, assuming that, in the 

nonlinear case, the amplitude and phase in the solution of the linear equation are time 

dependent function rather than constants [32]. 

The solution of corresponding unperturbed equation (i.e., for 0 ) of equation (3.1) can be 

written as 

              tax 0cos                                                                                                       (3.4) 

where a and   are two arbitrary constants to be determined from the initial conditions 

  00 xx   and   00 yx  . Here a and   are called amplitude and phase. 

Now to determine an approximate solution of equation (3.1) for   small but different from 

zero, Krylov and Bogoliubov assumed that the solution is still given by equation (3.4) with 

varying a and   subject to the conditions 

              ta
dt

dx
00 ,sin                                                                         (3.5) 

Differentiating equation (3.4) with respect to time t  and using equation (3.5), we obtain 

              0sincos  


 a
dt

d

dt

da
                                                                                        (3.6) 

Again differentiating equation (3.5) with respect to time t , we obtain 

               


 cossincos 00

2

02

2

dt

d
a

dt

da
a

dt

xd
                                                   (3.7) 

Substituting equation (3.7) into equation (3.1) and using equation (3.4) and equation (3.5), we 

obtain 



 18 

               


 sin,coscossin 000 aafa
dt

d

dt

da
                                        (3.8) 

Solving equation (3.6) and equation (3.8) 
dt

da
 and 

dt

d
 yields 

              

 

 


























sin,coscos

sin,cossin

0

0

0

0

aaf
adt

d

aaf
dt

da

                                                            (3.9) 

Equation (3.4) together with equation (3.9) represents the first approximate solution of 

equation (3.1). Further, the technique was modified and justified by Bogoliubov and 

Mitropolskii [3] in 1961. They assumed a solution of the nonlinear differential equation (3.1) 

of the form 

                       1

1 ,,cos,  n

n

n Oaxaxatx                                      (3.10) 

where nkxk ,,2,1,   is a periodic function of   with period 2  , a  and   very with 

time t  according to 

                

     

     

















1

10

1

1

n

n

n

n

n

n

OaBaB
dt

d

OaAaA
dt

da






                                                   (3.11) 

where the function kx , kA  and kB  are chosen such that equation (3.10) and equation (3.11) 

satisfy the differential equation (3.1). Later this solution was used by Mitropolskii [63] to 

investigate similar system (i.e., equation (3.1)) in which the coefficient very slowly with time. 

Popov [64] extended this method to nonlinear strongly damped oscillatory systems. By 

Popov‟s [64] technique, Murty, et al. [65] extended the method to over damped nonlinear 

system. Murty [66] further presented a unified KBM method to obtain under and over-

damped solution of a second- order nonlinear differential equation. Shamsul and Sattar [67] 

extended Murty‟s [66] unified KBM method to solve a third-order nonlinear differential 

equation.  
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Harmonic Balance method is the most useful technique for finding the periodic solutions of 

nonlinear system. Which is patented by Mickens [8] and farther work has been done by Lim 

et al. [16], Wu et al. [18], Hu [21], Gottlieb [20] , Beléndez et al. [28] and so on for solving 

the strong nonlinear problems. If a periodic solution does not exist of an oscillator, it may be 

sought in the form of Fourier series, whose coefficients are determined by requiring the series 

to satisfy the equation of motion. However, in order to avoid solving an infinite system of 

algebraic equations, it is better to approximate the solution by a suitable finite sum of 

trigonometric function. This is the main task of harmonic balance method. Thus approximate 

solutions of an oscillator are obtained by harmonic balance method using a suitable truncated 

Fourier series.  

The method is capable to determining analytic approximate solution to the nonlinear 

oscillator valid even for the case where the nonlinear terms are not small i.e., no particular 

parameter need exist.  

The formulation of the method of harmonic balance focuses primarily by Mickens [11]. 

However, it should be indicated that various generalizations of the method of harmonic 

balance has been made by an intrinsic method of harmonic analysis by Huseyin & Lin [68]. 

Lately, combining the method of averaging and harmonic balance, Lim & Lai [54] presented 

analytic technique to obtain first approximate perturbation solution; their solutions gives 

desired results for some non-conservative systems when the damping force is very small. 

Another technique is developed by Yamgoue and Kofane [69] to determine approximate 

solutions of nonlinear problems with strong damping effect, more than two harmonic terms 

are involved in their solution.  

Mickens [52] has given the general procedure for calculating solutions by means of the 

method of direct Harmonic Balance as follows:  

He considered the equation for all Truly Nonlinear (TNL) oscillators as: 

         
( , , ) 0,F x x x   (3.12) 

where ( , , )F x x x  is of odd-parity, i.e. 

         
( , , ) ( , , ).F x x x F x x x      (3.13) 

A major consequence of this property is that the corresponding Fourier expansions of the 

periodic solutions only contain odd harmonics (Mickens [70]), i. e., 
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         1

( ) { cos[(2 1) ] sin[(2 1) ]}.k k

k

x t A k t B k t




       (3.14) 

The N -th order harmonic balance approximation to ( )x t  is the expression 

          1

( ) { cos[(2 1) ] sin[(2 1) ]},
N

N N

k kN N N

k

x t A k t B k t


       (3.15) 

where , ,N N

k k NA B   are approximations to , ,k kA B 
 
for 1, 2, 3,.......,k N . 

For the case of a conservative oscillator, equation (3.12) generally takes the form 

         ( , ) 0,x f x    (3.16)  

where   denotes the various parameters appearing in ( , )f x   and ( , ) ( , )f x f x    .The 

following initial conditions are selected  

         (0) , (0) 0x A x   (3.17) 

And this has the consequence that only the cosine terms are needed in the Fourier expansions, 

and therefore we have  

          1

( ) cos[(2 1) ]
N

N

kN N

k

x t A k t


    (3.18) 

Observe that ( )Nx t has ( 1)N   unknowns, the N  coefficients, 1 2( , ,....... )N N N

NA A A
 
and N , the 

angular frequency. These quantities may be calculated by carrying out the following steps: 

 

Step-1: Substitute equation (3.18) into equation (3.16), and expand the resulting form into an 

expression that has the following structure  

         1

cos[(2 1) ] 0,
N

k N

k

H k t HOH


     HOH= Higher Order Harmonic (3.19) 

where they kH  are functions of the coefficients, the angular frequency, and the parameters,      

i.e.,       1 2( , ,....... , , ).N N N

k k N NH H A A A    

Herein equation (3.19), we only retain as many harmonics in our expansion as initially occur 

in the assumed approximation to the periodic solution. 

 

Step-2: Set the functions kH to zero, i.e., 

           
0, 1, 2,......., .kH k N   (3.20) 

The action is justified since the cosine functions are linearly independent, as a result any 

linear sum of them that is equal to zero must have the property that the coefficient are all zero. 
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Step-3: Solve the N equations, in equation (3.20), for 2 3( , ,....... )N N N

NA A A and N , in terms of 

1

NA . 

Using the initial conditions, equation (3.17), we have for 1

NA  the relation 

            
1 1

2

(0) ( , ).
N

N N N

N k

k

x A A A A 


    (3.21) 

An important point is that equation (3.20) will have many distinct solutions and the “one” 

selected for a particular oscillator equation is that one for which we have known a priori 

restrictions on the behavior of the approximations to the coefficients. However, as the worked 

examples in the next section demonstrate, in general, no essential difficulties arise.  

 

For the case of non-conservative oscillators, where x  appears to an “odd power” the 

calculation of approximations to periodic solutions follows a procedure modified for the case 

of conservative oscillators presented above. Many of these equations take the form 

         1 2( , ) ( , , ) ,x f x g x x x    (3.22) 

where 

         1 1 2 2( , ) ( , ), ( , , ) ( , , ),f x f x g x x g x x           (3.23) 

and 1 2( , )  denote the parameters appearing in f and g . For this type of differential equation, 

a limit-cycle may exist and the initial conditions cannot, in general, be a priori specified. 

 

Harmonic balancing, for systems where limit-cycles [20] may exist, uses the following 

procedures: 

 

Step-1: The N -th order approximation to the periodic solution to be  

          
1

2

( ) cos( ) { cos[(2 1) ] sin[(2 1) ]},
N

N N
N

k kN N N N

k

x t A t A k t B k t


         (3.24) 

where the 2 N  unknowns 1 2, ,......, ;N N N

NA A A 2, ,......,N N

N NB B and N
 
are to be determined.  

Step-2: Substitute equation (3.24) into equation (3.22) and write the result as 

          1

{ cos[(2 1) ] sin[(2 1) ]} 0,
N

k N k N

k

H k t L k t HOH


        (3.25) 
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where the { }kH and { }kL , 1k   to N , are functions of the 2 N  unknowns which are 

mentioned above. 

 

Step-3: Next equate the 2 N  functions { }kH  and { }kL  to zero and solve them for 

the (2 1)N  amplitudes and the angular frequency. If a “valid” solution exists, then it 

corresponds to a limit-cycle. In general, the amplitudes and angular frequency will be 

expressed in terms of the parameters 1  and 2 . 

Mickens [52] has presented the following example: 

Let us consider the nonlinear oscillator given by 

           3 0, (0) , (0) 0x x x A x                                                                                     (3.26) 

This approximation takes the form 

              tAtx 11 cos                                                                                                       (3.27) 

Observe that this expression automatically satisfies the initial conditions. Substituting 

equation (3.27) into equation (3.26) gives  t1  

                0coscos
32

1   AA , 

           03cos
4

1
cos

4

3
cos 32

1 
























  AA  

           0cos
4

3 22

1 















 HOHAA   

Setting the coefficient of cos  to zero gives the first approximation to the angular frequency 

              AA

2/1

1
4

3








                                                                                                      (3.28) 

and        



















 AtAtx

2/1

1
4

3
cos                                                                                          (3.29) 

The solution for the second approximation takes the form  t2  

                3coscos 212 AAtx                                                                                       (3.30) 

with          3cos9cos 21

2

22 AAtx                                                                           (3.31) 

Substituting equation (3.30) and equation (3.31) into equation (3.26), we obtain 

                 03cos,,cos,, 22122211  HOHAAHAAH  , 

where   

































 2

221

2

1

2

211
2

3

4

3

4

3
AAAAAH                                                          (3.32) 
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and       3

22

2

1

3

1

2

222
4

3

2

3

4

1
9 AAAAAH 


























                                                        (3.33) 

Setting 1H  to zero, and defining z  as 

               
1

2

A

A
z                                                                                                                    (3.34) 

We obtain,  

                 2/12

1

2/12

1

2/1

2 2121
4

3
zzzzA 








                                                 (3.35) 

where 1  is that of equation (3.28). Inspection of equation (3.35) shows that the second 

approximation for the angular frequency is a modification of the first approximation result. 

If this value for 2  is substituted into equation (3.33) and this expression is set to zero, and if 

the definition of z  is used, then the following cubic equation must be satisfied by z  

           01212751 23  zzz  

There are three roots, but the one of interest should be real and have a small magnitude, i. e., 

                1z  

The root is        ....044818.01 z , 

And implies that the amplitude, 2A , of the higher harmonic, i. e., the 3cos , is less than 5% 

of the amplitude of the fundamental mode, cos . 

Therefore, the second harmonic balance approximation for equation (3.26) is 

               .3coscos 112  zAtx   

For the initial condition,   Ax 02 , we obtain 

            11 1 zAA    or   A
z

A
A 9571.0

1 1

1 


  

Using the value of 1A  and 1z  into equation (3.35), we obtain 

            
 

 A
z

zz
AA 8489.0

1

21

4

3

1

2/12

11

2/1

2 

























  

Hence, the second order harmonic balance approximation for the periodic solution of 

equation (3.26) is 

                 tzt
z

A
tx 212

1

2 3coscos
1











  

where 1z  and 2  are given above equation. 
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Recently some authors used iterative technique [49-62] for calculating approximations to the 

periodic solutions and corresponding frequencies of TNL oscillator differential equations for 

small and as well as large amplitude of oscillation. The method was originated by Mickens in 

1987. In the paper, he provided a general basis for iteration methods as they are currently 

used in the calculation of approximations to the periodic solutions of various nonlinear 

oscillatory differential equations successfully. 

The general methodology of iteration procedure by Mickens [52] is presented in Chapter IV.  

Mickens [52] has presented the following example by iteration procedure: 

Let us consider the oscillator 

         01  xx                                                                                                                (3.36) 

 This oscillator can be written as 

             01xx   

                xxx
2                                                                                                               (3.37) 

Adding x2  on both sides of equation (3.37), we obtain 

                xxxxx
222                                                                                             (3.38) 

The iteration scheme for equation (3.38) as follows  

              kkkkkkk xxxxx
22

1

2

1
                                                                                  (3.39) 

The initial condition is 

              cos0 Atx                                                                                                           (3.40) 

where   t0  

For 0k  and substituting equation (3.40) into equation (3.37), we obtain 

      coscoscos
22

0

2

01

2

01 AAAxx   

                 3cos
4

cos
4

3
1

4

0

32

0

2

2

0 











 








 


A
A

A
                                                       (3.41) 

The elimination of secular terms from equation (3.41), we obtain 

              0
4

3
1

2

0

2





A

 

               
2

2

0

1

3

4

A
A 








                                                                                                    (3.42) 
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Therefore,  tx1  satisfies the equation 

              3cos
4

4

0

3

1

2

01 











 


A
xx                                                                                (3.43) 

The complementary solution,  1

cx t is 

               1 coscx t C  . 

The particular solution, )(
)(

1 tx
p

 is 

               3cos
24

3cos
32

)(
4

0

3
)(

1 




















 


AA
tx

p
 

Therefore, the full solution is  

                3cos
24

cos1 









A
Ctx                                                                                   (3.44) 

Using   Ax 01 , then AC
24

23
   

and       
























  3cos

24

1
cos

24

23
1 Atx                                                                          (3.45) 

If the calculation is stopped at this point, then 

                

























 ttAtx 001 3cos

24

1
cos

24

23
 

             
AA

A
1547.1

3

2
0   

Note that [23] 

            
AA

Aexact

2533141.1

2

2



 

and     
   

 
9.71000 





A

AA

exact

exact % error 

Proceeding to the second level of iteration,  tx2  must satisfy the equation 

             1

2

11

2

12

2

12 xxxxx                                                                                          (3.46) 
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where       

























 ttAtx 111 3cos

24

1
cos

24

23
 

Let t1  and substitute this  tx1  into the right hand side of equation (3.46), we obtain 

              HOHAgAxx 
















  cos,

4

3 2

1

22

12

2

12
 , 

where     3223 2766
4

19
,  








g , 

 and      
24

23
 ,   

24

1
  

The absence of secular terms gives 

            
 




























,

1

3

4
2

2

1
gA

 

             
A

A
0175.1

1   

with      
   

 
1.181001 





A

AA

exact

exact % error 

The existence of such a large percentage error suggests that we should try an alternative 

iteration scheme and determine if a better result can be found. 

Further a generalization of this work was then given by Lim and Wu [53]. Their procedure is 

as follows: 

They assumed the equation in the form  

              0)(  xfx , Ax )0( , 0)0( x ,                                                                       (3.47) 

where A  is given positive constant and )(xf satisfies the condition 

              )()( xfxf  .          (3.48) 

Adding x2  on both sides of equation (3.47), we obtain  

   )()( -xx 22 xgxfx   ,                                    (3.49) 

where  is priory unknown frequency of the periodic solution )(tx  being sought. 



 27 

They proposed the iteration scheme of equation (3.49)  

                );)(()( 1111

2

1   kkkkkk xxxgxgxx  k = 0, 1, 2,...,                                  (3.50) 

where 
x

g
g x




  and the inputs of starting functions are  

                 )cos()()( 01 tAtxtx  .                                                         (3.51) 

With the initial conditions  

                 ...,...3,2,1,0)0(,)0(  kxAx kk
                                                              (3.52) 

Then substituting equation (3.51) into equation (3.50) and expanding the right hand side of 

equation (3.50) into the Fourier series yields 

                  
],)12cos[(),(

cos),()]()()][([)]([

2

12

1111

tnAa

tAatxtxtxgtxg

N

n

n

ktkxk
















                       (3.53)   

where the coefficients ),(12 Aa n  are known functions of A  and  , and the integer N  

depends upon the function )(xg  of the right hand side of equation (3.49) , On view of 

equation (3.53), the solution of equation is taken to be 

                   




 



N

n

n

k tn
n

Aa
tBtx

2
22

12

1 ])12cos[(
]1)12[(

),(
cos)( 




 ,                                (3.54) 

where B  is, tentatively, an arbitrary constant. In equation (3.54), the particular solution is 

chosen such that it contains no secular terms [32], which requires that the coefficient 

),(1 wAa  of right-side term tcos  in equation (3.53) satisfy  

                   0),(1 wAa  .                                                                      (3.55) 

Equation (3.55) allows the determination of the frequency as a function A .  

Next, the unknown constant B will be computed by imposing the initial conditions in 

equation (3.52). Finally, putting these steps together gives the solution )(1 txk .  

In 2005, this process was extended by Mickens. He consider the equation as 

                  0),,(  xxxfx  , Ax )0( , 0)0( x ,                                                             (3.56) 

where over dots denote differentiation with respect to time, t .  
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We choose the natural frequency   of this system. Then adding x2  on both sides of 

equation (3.56), we obtain  

     ),,(),,( -xx 22 xxxGxxxfx   .                                                      (3.57) 

Now, formulate the iteration scheme as 

  
))(,,())(,,(

))(,,();,,(

11111111

11111111

2

1









kkkkkxkkkkkx

kkkkkxkkkkkk

xxxxxGxxxxxG

xxxxxGxxxGxx







                      (3.58) 

where    
x

G
Gx




  , 

x

G
Gx 





 , 

x

G
Gx 





 .                                                         (3.59) 

And 1kx  satisfies the conditions  

    .0)0(,)0( 11   kk xAx                                                                                        (3.60) 

The starting function are taken to be [50] 

                )cos()()( 001 tAtxtx                                                                                   (3.61) 

The right hand side of equation (3.58) is essentially the first term in a Taylor series expansion 

of the function ),,( kkk xxxG   at the point ),,( 111  kkk xxx   [71]. To illustrate this point, note 

that  

                )( 11   kkkk xxxx ,                                                                                       (3.62) 

and for some function )(xG , we have 

                ...)()()]([)( 1111   kkxkkkkk xxGxGxxxGxG  .                           (3.63) 

An alternative, but very insightful, modification of above scheme was proposed by Hu [56]. 

He used the following equation in place of equation (3.62) 

                   )(0 okk xxxx                                                                                             (3.64) 

Then, equation (3.63) is changed to  

                   ...,)()()]([)( 0000  xxGxGxxxGxG kxkk                                     (3.65) 

and the corresponding modification to equation (3.58) is  

                    
))(,,())(,,(

))(,,();,,(

00000000

00000001

2

1

xxxxxGxxxxxG

xxxxxGxxxGxx

kxkx

kxkkk





 

                                  (3.66) 
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This scheme is computationally easier to work with, for 2k , than the one given in equation 

(3.58). The essential idea is that if )(0 tx is a good approximation, then the expansion should 

take place at 0xx  . Also, as pointed out by Hu [55], the )(0 tx  in )( ok xx   is not the same 

for all k . In particular, )(0 tx  in )( 1 oxx   is the function )cos( 1tA  , while the )(0 tx  in 

)( 2 oxx   is the function )cos( 2tA    . 

Further, Mickens [52] used the iterative technique to calculate a higher-order approximation 

to the periodic solutions of a conservative oscillator for which the elastic force term is 

proportional to 3

1

x  . Hu [72] applied the modified iteration technique of Mickens [52] to find 

approximate of nonlinear oscillators with fractional powers and quadratic nonlinear oscillator 

respectively. Recently, Haque [60, 62] has applied Mickens iteration and modified iteration 

method to determine approximate periodic solutions of a class of nonlinear jerk equations.   
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CHAPTER IV 

 

 

Approximate Analytic Solutions of the Inverse Cubic Truly Nonlinear Oscillator by 

Iterative Method 

 

4.1 Introduction 

In this Chapter, we have developed a modified iteration technique for the determination of 

approximate solution as well as frequency of the Inverse Cubic Truly Nonlinear Oscillator. A 

particular example governing such a problem is considered and the solution of the problem is 

obtained using the presented method. 

 

4.2 The method 

Assume that the nonlinear oscillator 

0),( xxF  ,  (0) , (0) 0,x A x               (4.1) 

and further assume that it can be rewritten to the form 

,0),(  xxfx 
             (4.2) 

where over dots denote differentiation with respect to time ,  t . 

We choose the natural frequency   of this system. Then adding x2  to both sides of 

equation (4.2), we obtain 

),(),( -xx 22 xxGxxfx   .            (4.3) 

Now, we formulate the iteration scheme as 

);,(1

2

1 kkkkk xxGxx     0,1,2,3,.............,k              (4.4) 

together with initial condition 

).cos()( 00 tAtx              (4.5) 

Hence 1kx  satisfies the initial conditions 

1 1(0) , (0) 0.k kx A x             (4.6) 

At each stage of the iteration, k  is determined by the requirement that secular terms [32] 

should not occur in the full solution of   )(1 txk . 

The above procedure gives the sequence of solutions: ),(),(),( 210 txtxtx . 
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The method can be proceed to any order of approximation; but due to growing algebraic 

complexity the solution is confined to a lower order usually the second [49]. 

At this point, the following observations should be noted: 

(a) The solution for 1( )kx t  depends on having the solutions for k  less than ( 1)k  .  

(b) The linear differential equation for 1( )kx t allows the determination of k  by the 

requirement that secular terms be absent. Therefore, the angular frequency, “  ” 

appearing on the right-hand side of equation (4.4) in the function ( )kx t , is k . 

 

4.3 An Example 

Let us consider the Oscillator 

1/3 0x x  , 

1/3x x  .          (4.7) 

4.4 Solution Procedure 

Adding x2  on both sides of equation (4.7), we get 

2 2 1/3 x x- x x   .                                                                                               (4.8) 

According to equation (4.4), the iteration scheme of equation (4.8) is  

2 2 1/3

1 1k k k k k kx x x x

                                                                                            (4.9) 

The initial condition is 

            0 ( )x t Acos ,                                                                                                         (4.10) 

where  0 t    

The first approximation )(1 tx  and the frequency 0  will be obtained by putting 0k  

in equation (4.9) and using equation (4.10), we obtain 

2 2 1/3

1 0 1 0 cos ( cos )x x A A                                                                             (4.11) 

Now expanding 3/1)(cos   in a truncated Fourier series then Eq. (4.11) reduces to  
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



2 2

1 0 1 0 1/3

1
cos 1.42635 cos 0.713174 cos3

0.50941 cos5 0.407528 cos7 0.344831 cos9

0.301728 cos11 ,

x x A
A

  

  



    

  



 

               

2 2

1 0 1 0 1/3 1/3

1/3 1/3

1/3 1/3

1.42635 0.713174
( )cos cos3

0.50941 0.407528
cos5 cos7

0.344831 0.301728
cos9 cos11 .

x x A
A A

A A

A A

 

 

 

     

 

 

                                        (4.12) 

Secular terms can be eliminated if the coefficient of cos  is set to be zero 

            i.e. 2

0 1/3

1.42635
0A

A
   , 

               2

0 4/3

1.42635
,

A
   

            0 2/3

1.1942989575

A
   . 

This is the first approximate frequency of the oscillator (4.7). 

Note that   2/3

1.154700538
exact A

A
  .                                                                                  (4.13) 

And 0 1.154700538 1.1942989575
100 100 3.43

1.154700538

exact

exact

  
   


%  error.  

After reducing the secular term from the equation (4.12), we obtain 

          




2

1 0 1 1/3

1
0.713174 cos3 0.50941 cos5 0.407528 cos7

0.344831 cos9 0.301728 cos11 .

x x
A

  

 

   

 

                 (4.14) 

The complementary solution,  1

cx t is 

             1 coscx t C  . 

The particular solution, )(
)(

1 tx
p

 is 
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 1 1/3 2 2 2 2 2 2

0 0 0

2 2 2 2

0 0

1 0.713174 0.50941 0.407528
cos3 cos5 cos7

0.344831 0.301728
cos9 cos11 ,

px t
A D D D

D D

  

 


  

   


  

   

 

           

1/3 2 2 2 2 2 2

0 0 0 0 0 0

2 2 2 2

0 0 0 0

1 0.713174 0.50941 0.407528
cos3 cos5 cos7

9 25 49

0.344831 0.301728
cos9 cos11 ,

81 121

A
  

 


  

        


  
      

 

           

1/3 2 2 2

0 0 0

2 2

0 0

1 0.713174 0.50941 0.407528
cos3 cos5 cos7

8 24 48

0.344831 0.301728
cos9 cos11 ,

80 120

A
  

 


   

  


  

  

 

           

4/3

1/3

0.713174 0.50941 0.407528
cos3 cos5 cos7

11.4108 34.2324 68.4648

0.344831 0.301728
cos9 cos11 ,

114.108 171.162

A

A
  

 


   




  



 

           




0.0625cos3 0.014881cos5 0.005952cos7

0.003021cos9 0.001762cos11

A   

 

   

 
. 

Therefore, the complete solution is 

        




1( ) cos 0.0625cos3 0.014881cos5 0.005952cos7

0.003021cos9 0.001762cos11 .

x t C A   

 

    

 
                   (4.15) 

Using Ax )0(1  into Eq. (4.15), we have 

          1(0) 0.0625 0.014881 0.005952 0.003021 0.001762x C A       , 

          0.052312A C A   , 

           1.052312C A . 
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Therefore, 

         




1( ) 1.052312cos 0.0625cos3 0.014881cos5

0.005952cos7 0.003021cos9 0.001762cos11 .

x t A   

  

  

  
                         (4.16) 

This is the first approximate solution of the oscillator. 

Proceeding to the second level of iteration putting 1k  and t1  then )(2 tx satisfies the 

equation 

2 2 1/3

2 1 2 1 1 1( )x x x x    ,                                                                                    (4.17)  

Substituting equation (4.16) into equation (4.17), we obtain 









2 2

2 1 2 1

1/3

1/3

1.052312cos 0.0625cos3 0.014881cos5

0.005952cos7 0.003021cos9 0.001762cos11

1
1.052312cos 0.0625cos3 0.014881cos5

0.005952cos7 0.003021cos9 0.001762cos11 .

x x A

A

  

  

  

  


    

  

  

  

       (4.18) 

Now expanding second term on right hand side of equation (4.17) in a truncated Fourier 

series, we obtain  

             









2 2

2 1 2 1

1/3

1.052312cos 0.0625cos3 0.014881cos5

0.005992cos7 0.003021cos9 0.001762cos11

1
1.38767cos 0.644734cos3 0.454911cos5

0.362239cos7 0.306038cos9 0.267895cos11 ,

x x A

A

  

  

  

  

    

  

  

  

                          









2 2 2

2 1 2 1 11/3

1/3

1.38767
1.052312 cos 0.0625cos3 0.014881cos5

0.005992cos7 0.003021cos9 0.001762cos11

1
0.644734cos3 0.454911cos5 0.362239cos7

0.306038cos9 0.267895cos11 .

x x A A
A

A

  

  

  

 

 
        

 

  

   

 

(4.19) 
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Secular terms can be eliminated if the coefficient of cos  is set to be zero 

           2

1 1/3

1.38767
1.052312 0A

A
   , 

                   2

1 4/3

1.38767

1.05231A
  , 

                               
4/3

1.31869

A
 . 

                          1 2/3

1.14834

A
  .                                                                                           (4.20) 

This is the second approximate frequency of the oscillator (4.7). 

And 1 1.154700538 1.148340892
100 100 0.551

1.154700538

exact

exact

  
   


%  error.  

After reducing the secular term from the equation (4.19), we obtain 



 



2 2

2 1 2 1

1/3

0.0625cos3 0.014881cos5 0.005992cos7

1
0.003021cos9 0.001762cos11 0.644734cos3

0.454911cos5 0.362239cos7 0.306038cos9 0.267895cos11 ,

x x A

A

  

  

   

     

   

   





4/3

1/3 1/3 1/3

1/3 1/3

1.31869
0.0625cos3 0.014881cos5 0.005992cos7 0.003021cos9

0.644734 0.454911 0.362239
0.001762cos11 cos3 cos5 cos7

0.306038 0.267895
cos9 cos11 ,

A

A

A A A

A A

   

   

 

    

   

 

1/3 1/3

1/3 1/3

1/3

1 1.31869 1 6.59345
0.644734 cos3 0.454911 cos5

16 336

1 1.31869 1 14.50559
0.362239 cos7 0.306038 cos9

168 3640

1 14.50559
0.267895 cos11 ,

6240

A A

A A

A

 

 



   
      

   

   
      

   

 
  

 
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



1/3

1
0.562315cos3 0.435288cos5 0.3543897cos7

0.302053cos9 0.2655704cos11 .

A
  

 

  

 

                            (4.21) 

 The complementary solution,  2

cx t is 

                2 1 coscx t C   

The particular solution, )(
)(

2 tx
p

 is  

( )

2 1/3 2 2 2 2 2 2

1 1 1

2 2 2 2

1 1

1 0.562315 0.435288 0.3543897
( ) cos3 cos5 cos7

0.302053 0.2655704
cos9 cos11 ,

px t
A D D D

D D

  

 


  

   


  

   

 

1/3 2 2 2 2 2 2

1 1 1 1 1 1

2 2 2 2

1 1 1 1

1 0.562315 0.435288 0.3543897
cos3 cos5 cos7

9 25 49

0.302053 0.2655704
cos9 cos11 ,

81 121

A
  

 


  

        


  
      

 

1/3 2 2 2

1 1 1

2 2

1 1

1 0.562315 0.435288 0.3543897
cos3 cos5 cos7

8 24 48

0.302053 0.2655704
cos9 cos11 ,

80 120

A
  

 


   

  


  

  

 

4/3 4/3

1/3

4/3 4/3

4/3

1 0.562315 0.435288
cos3 cos5

8 1.31869 24 1.31869

0.3543897 0.302053
cos7 cos9

48 1.31869 80 1.31869

0.2655704
cos11 ,

120 1.31869

A A

A

A A

A

 

 




  



 


 



 





4/3

1/3
0.0533024cos3 0.01320365cos5 0.00559835cos7

0.0028631919cos9 0.0016782463cos11 ,

A

A
  

 

   

 

 





0.0533024cos3 0.01320365cos5 0.00559835cos7

0.0028631919cos9 0.0016782463cos11 .

A   

 

   

 
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Therefore, the complete solution is 

  



2 1 cos 0.0533024cos3 0.01320365cos5 0.00559835cos7

0.0028631919cos9 0.0016782463cos11 .

x t C A   

 

    

 
          (4.22) 

Using 2 (0)x A  into equation (4.20), we obtain 

           
  



2 10 0.0533024 0.01320365 0.00559835

0.0028631919 0.0016782463 ,

x C A    

 
 

            1 0.044512159A C A  , 

             1 1.04451216C A . 

Therefore, 

  



2 1.0445122cos 0.0533024cos3 0.01320365cos5

0.00559835cos7 0.0028631919cos9

0.0016782463cos11 .

x t A   

 



  

 



                                   (4.23) 

This is the second approximate solution of the oscillator. 

Proceeding to the third level of iteration 2k  and t2  then )(3 tx  satisfies the equation 

              2 2 1/3

3 2 3 2 2 2( )x x x x     ,                                                                                   (4.24) 

Substituting equation (4.23) into equation (4.24), we obtain 

   





2 2

3 2 3 2 1.0445122cos 0.0533024cos3 0.01320365cos5

0.00559835cos7 0.0028631919cos9 0.0016782463cos11
1

(1.0445122cos 0.0533024cos3 0.01320365cos5
1 / 3

0.00559835cos7 0.0028631919cos9 0.

x x A

A

  

  

  

 

    

  

  

   1 / 30016782463cos11 ) . 

(4.25) 

Now expanding the term on right hand side of equation (4.25) in a truncated Fourier series, 

we obtain  
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



2 2

3 2 3 2

1/3

1.0445122cos 0.0533024cos3 0.01320365cos5

0.00559835cos7 0.0028631919cos9 0.0016782463cos11

1
(1.39292cos 0.65307cos3 0.460341cos5

0.366474cos7 0.309581cos9 0.270977cos11

x x A

A

  

  

  

  

    

  

  

   ) ,

 





2 2 2

3 2 3 2 21/3

1/3

1.39292
1.0445122 cos 0.0533024cos3

0.01320365cos5 0.00559835cos7 0.0028631919cos9

1
0.0016782463cos11 ( 0.65307cos3 0.460341cos5

0.366474cos7 0.309581cos9 0.

x x A A
A

A

 

  

  

 

 
      



  

   

   270977cos11 ) .

 

Now secular terms can be eliminated if the coefficient of cos  is set to be zero 

                 2

2 1/3

1.39292
1.0445122 0A

A
   . 

                           2

2 4/3

1.39292

1.0445122A
  , 

                                 
4/3

1.3335613

A
 . 

                           2 2/3

1.154799

A
  . 

This is the third approximate frequency of the oscillator (4.7). 

And 2 1.154700538 1.154799
100 100 0.00852

1.154700538

exact

exact

  
   


%  error.  
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4.5 Results and discussions 

An iterative method is presented to obtain approximate solution of inverse cubic nonlinear 

oscillator. In order to test the accuracy of the modified approach of iteration method, we 

compare our results with the other existing results from different methods. To show the 

accuracy, we have calculated the percentage errors by the definitions  

                 
   

 
100

e i

e

A A

A

 



,   where 0,1,2i          

We have used a modified iteration method to obtain approximate solutions of the above 

oscillator. It has been shown that, in most of the cases our solutions give significant results 

than other existing results. 

Herein we have calculated the first, second and third approximate frequencies which are 

denoted by 0 , 1 , and  2  respectively . All the results are given in the following table, to 

compare the approximate frequencies. We have also given the existing results determined by 

Mickens iteration method [52]   and Mickens HB method [52]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 40 

4.6 Table 

Comparison of the approximate frequencies with exact frequency e (Mickens [52]) of 

.03/1  xx  

Exact Frequency 

e  
2/3

1.154700

A
 

Amplitude 

A  

First Approximate 

Frequency 

0  

Er(%) 

Second Approximate 

Frequency 

1  

Er(%) 

Third Approximate 

Frequency 

2  

Er(%) 

Adopted Method 

3
2

19429.1

A
 

3.43 

2/3

1.14834

A
 

0.55 

2/3

1.154799

A
 

0.0085 

Mickens HB 

method [52] 
2/3

1.31329

A
 

13.7 

2/3

1.18824

A
 

2.9 

 

_ 

Mickens iteration 

method [52] 
2/3

1.08148

A
 

6.3 

2/3

1.07634

A
 

6.78 

2/3

0.988591

A
 

14.38 

 

From the table, it is seen that the third-order approximate frequency obtained by adopted 

method is almost same with exact frequency. It is found that, in each of the cases our solution 

gives significantly better result than other existing results. The compensation of this method 

consists of its simplicity, computational efficiency and convergence. It is also observed that 

the Mickens‟ iteration technique is convergent for this oscillator. 
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CHAPTER V 

 

 

Convergence and Consistency Analysis 

 

 

The basic idea of iteration methods is to construct a sequence of solutions kx  (as well as 

frequencies k ) that have the property of convergence 

  ke x
k

x



lim

   or,  ke
k





lim

 

Here ex  is the exact solution of the given nonlinear oscillator.  

In our technique, it has been shown that the solution gives the less error in each iterative step 

compared to the previous iterative step and finally  154700.1154799.12 e , 

where   is a small positive number and A  is chosen to be unity. From this, it is clear that the 

adopted method is convergent. 

An iterative method of the form represented by equation (4.4) with initial guesses given in 

equation (4.5) and equation (4.6) is said to be consistent if  

           0
lim




ek xx
k

   or,    0
lim




ek
k

. 

In this thesis, we observe that  

 0
lim




ek
k

  as 02  e . 

Thus the consistency of the method is achieved. 
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CHAPTER VI 

 

 

                                                                 Conclusions 

 

 

In this thesis, we used a simple but effective modification of the iteration method to handle 

strongly nonlinear oscillators. With the method, the analytical approximate solutions and the 

corresponding frequency, valid for small as well as large amplitudes of oscillation, can be 

obtained. An example is given to illustrate the effectiveness and convenience of this method. 

The approximate frequencies obtained by the method shows a good agreement with the exact 

frequency. The percentage of error between exact frequency and third approximate frequency 

of the adopted method is almost equal. The results anticipated were compared with the other 

methods. The obtained results show that the modification of the iteration method is more 

accurate than other methods and this method is convergent and consistent. The performance 

of this method is reliable, simple and gives many new solutions. Moreover the present work 

can be used as paradigms for many others application in searching for periodic solution of 

nonlinear oscillations and so can be found widely applicable in engineering and science. 
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