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Abstract 

 

 
 

 

Much effort has been concentrated on transportation problems (TP) with equality constraints. 

In real life, however, most problems have mixed constraints accommodating many 

applications that go beyond transportation related problems to include job scheduling, 

production inventory, production distribution, allocation problems, and investment analysis. A 

literature search revealed no systematic method for finding an optimal solution or addressing 

more-for-less situations in transportation problems with mixed constraint. Here we consider 

modified VAM method to solve TP with mixed constraints to find out more-for-less situations 

in transportation problems. Several numerical examples have been considered to justify the 

effectiveness of the method.   

 

On the other hand Linear Fraction Programming (LFP) (i.e. ratio objective that have 

numerator and denominator) have attracted the interest of many researches due to its 

application in many important fields such as production planning, financial and corporate 

planning, health care and hospital planning. Also various optimization problems in 

engineering and economics involve maximization (or minimization) of the ratio of physical or 

economical function, for instances cost/time, cost/volume, cost/benefit, profit/cost or other 

quantities measuring the efficiency of the system.  This study presents a new approach for 

solving a fractional linear programming problem in which the objective function is a linear 

fractional function, while the constraint functions are in the form of linear inequalities. The 

LFP problem is converted it into a regular linear programming (LP) problem by an efficient 

way. The proposed approach is able to reduce some significant limitations of the existing 

methods. To test the effectiveness and efficiency of the algorithm some hard instances are 

considered. The proposed approach is able to solve the problem efficiently whereas in some 

cases the existence approaches are failed to solve the problems. 
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CHAPTER I 

 

 

Introduction 

 

 

1.1  Background  

Linear fraction maximum problems (i.e. ratio objective that have numerator and 

denominator) have attracted considerable research and interest, since they are useful in 

production planning, financial and corporate planning, health care and hospital planning. 

Also various optimization problems in engineering and economics involve maximization 

(or minimization) of the ratio of physical or economical function, for instances cost/time, 

cost/volume, cost/benefit, profit/cost or other quantities measuring the efficiency of the 

system. Naturally there is a need for generalizing the simplex technique for linear 

programming to the ratio of linear functions or to the case of the ratio of quadratic 

functions in such a situation. All these problems are fragments of a general class of 

optimization problems, termed in the literature as Fractional Programming Problems (FPP) 

and are the subject of the field of operation Research. 

 

1.2  History of Operations Research 

As a formal discipline, operations research (OR) were initiated in England during World 

War II when a term of British scientists set out to make decisions regarding the best 

utilization of war  material. 

Immediately after the war, the success of military teams attracted the attention of 

industrial managers who were seeking solutions to their problems. Industrial operations 

reaches in U.K. and U.S.A. developed along different lines. In U.K., the critical economic 

situation required drastic increase in production efficiency and creation of new markets. 

Nationalization of a few key industries further increased the potential field for OR. 

Consequently OR soon spread from military to government, industrial, social and 

economic planning.  
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In U.S.A. the situation was different. Impressed by its dramatic success in U.K. defense 

operations research in U.S.A. was increased. Most of the war-experienced OR workers 

remained in military services. Industrial executives did not call for much help because 

they were returning to the peace-time situation and many of them believed that it was 

merely a new application of an old technique. The progress of industrial operations 

research in U.S.A. was due to advent of second industrial revolution, which resulted in 

automation- the replacement of man by machine as a source of control. This new 

revolution began around 1940s electric computer becomes commercially available. These 

electronic brains possessed tremendous computational speed and information storage. But 

for these digital computers, operations research with its complex computational problems 

could not have achieved its promising place in all kinds of operational environments. 

Today, the impact of operations research can be felt in many areas. This is shown by the 

ever increasing number of educational institutions offering this subject at degree level. The 

fast increasing number of management consulting firms speaks of the popularity of the 

subject. Of late, OR activities have spread to diverse fields such as hospitals, libraries, city 

planning, transportation systems, crime investigation, etc. Some of the Indian organization 

using OR techniques are: Indian Airlines, Railways, Defense Organizations, Fertilizer 

Corporation of India, Delhi Cloth Mills, Tata Iron & Steel Co., etc. So we can use OR in 

our organization for better solution. 

 

1.3  Mathematical Model 

Many application of science makes use of models. The term „model‟ is usually used for 

structure has been built purposely to exhibit features and characteristics of some other 

object. Generally only some of these features and characteristics will be retrained in the 

model depending upon the use to which it is to be put. More often in Operation Research 

we will be concerned with abstract models. These models will usually be mathematical in 

that algebraic symbolism will be used to mirror the internal relationships in that object 

(often an organization) being modeled. Our attention will mainly be confined to such 

mathematical models although the term „model‟ is sometimes used more widely to include 

purely descriptive models. 



3 

 

The essential feature of a mathematical model in Operation Research is that it involves a 

set of mathematical relationship (such as equations, inequalities, logical dependencies, etc) 

which corresponds to some down-to-earth relationships in a real world (such as 

technological relationships, physical laws, marketing constraints, etc). 

There are a number of motives for building such models: 

a) The actual exercise of building a model often reveals relationships, which were not 

apparent to many people. As a result a greater understanding is achieved of the 

object being modeled. 

b) Having built a model it is usually possibly to analysis it mathematically to help 

suggest courses of action, which might not otherwise be apparent. 

c) Experimentation is possible with a model whereas it is often not possible or 

desirable to experiment with the object being modeled. It would clearly be 

politically difficult as well as undesirable to experiment with unconventional 

economic measures in a country if there was a high probability of disastrous 

failure.  

It is important to realize that a model is really defined by the relationships which it 

incorporates. These relationships are to large extent, independent of data in the model. A 

model may be used on many different occasions with differing data, e.g. cost, 

technological coefficients, resource availability‟s, etc. We would usually still think of it as 

the same model even though some coefficients had changed. This distinction is not, of 

course, total radical changes in the data would usually be thought of as a changing the 

relationships and therefore the model. 

 

1.4  Mathematical Programming 

Mathematical programming is one of the most widely used techniques in Operations 

Research. In many cases its application has been so successful that its use has passed out 

of Operations Research departments to become an accepted routine planning tool. It is 

therefore rather surprising that comparatively little attention has been paid in the literature 

to the problems of formulating and building mathematical programming models even 

deciding when such model is applicable. 
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It should be pointed out immediately that mathematical programming is very different 

from Computer Programming. Mathematical programming is „Programming‟ in the sense 

of „planning‟. As such it need have nothing to do with Computers. The confusion over the 

use of world „programming‟ is widespread and unfortunate. Inevitably mathematical 

programming becomes involved with computing since practical problems almost always 

involves large quantities of data and arithmetic which can only reasonably be tackle by the 

calculating power of a computer. The correct relationship between Computers and 

Mathematical Programming should, however, be understood. 

The common feature which mathematical programming models have is they all involve 

Optimization. We want to maximize something. The quantity by which we want to 

maximize or minimize is known as an objective function. Unfortunately the realization 

that Mathematical Programming is concerned with optimizing an objective often leads 

people to summarily dismiss Mathematical programming as being inapplicable in practical 

situation where there is no clear objective or there are a multiplicity of objectives. In this 

thesis we confine our attention to a special sort of a Mathematical Programming Model, 

called a linear programming model and its related problems.    

 

1.5  Linear Fractional Programming  

The mathematical model of a linear programming problem (in its canonical form) is as 

follows:  

                         Maximize                                                                              (1.1) 

                         Subject to              Sx:    and                                         (1.2) 

where, A is an m×n matrix, nRc , nRb  , c
T
 denotes transpose of c, x be the solution 

vector and S is the domain of feasible solution space. 

On the other hand a linear fractional programming (LFP) problem is one whose objective 

function is the ratio of a numerator and a denominator with certain linear constraints.  

Linear fractional programming (LFP) deals with that class of mathematical programming 

problems in which the relations among the variables are linear: the constraint relations 

must be in linear form and the objective function to be optimized must be a ratio of two 

linear functions. This field of LFP was first developed by Hungarian mathematician 
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Matros [Matros (1960), Matros(1996)]. The linear fractional programming problem arises 

when a ratio of linear function has to be maximized over a compact set X and can be 

written as follows [Bajalinov (2003)] 

Maximize         
     

     
                                                                                   (1.3) 

Subject to                                                                                        (1.4) 

where c, d and     ,  A is an (m + n) × n matrix,       , γ and β are scalars. We 

point out that the nonnegative conditions are included in the set of constraints and that 

        has to be satisfied over the compact set X. 

 

1.6   Goal of the Thesis  

In this thesis, our first goal is to implement modified VAM in TP with mixed constraints 

and justify the effectiveness of the method. Our main target is to develop a new technique 

for solving any type of LFP problem by converting it into a single linear programming 

(LP) problem because some cases of denominator and numerator and the negative value of

 , other method is failed to solve the linear fractional problems. The final goal of the 

study is to develop a FORTRAN based computer program for implementation of the new 

technique and analyzes the solution of the problem. 

 

1.7 Structure of the Thesis  

After Chapter I in which the introduction of the research works is presented, the literature 

review is discussed in Chapter II. Chapter III presents the review of the properties of 

Operation Research basically LP and TP. The algorithm of VAM and preliminaries of LFP 

is also discussed in this chapter. A modified VAM method is presented in Chapter IV. 

Some Numerical examples are elaborately presented in the chapter to test the validity the 

method.  A new Technique, for solving LPP especially LFP, is introduced in Chapter V. 

Moreover a FORTRAN based code is developed to implement the new technique for 

solving LFP. Moreover this chapter displays some numerical illustrations to verify the 

robustness as well as effectiveness of the proposed technique and the computer program. 

Finally concluding remarks and brief discussion about the research works are given in 

Chapter VI.  
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CHAPTER II 

 

 

Literature Review 

 

2.1 Introduction  

Operations research is a scientific method of providing executive departments with a 

quantitative basis for decisions regarding the operations under their control. It‟s 

encompasses a wide range of problem-solving techniques and methods applied in the 

pursuit of improved decision-making and efficiency, such as simulation, mathematical 

optimization, queuing theory and other stochastic-process models, Markov decision 

processes, econometric methods, data envelopment analysis, neural networks, expert 

systems, decision analysis, and the analytic hierarchy process. Nearly all of these 

techniques involve the construction of mathematical models that attempt to describe the 

system. Because of the computational and statistical nature of most of these fields, OR 

also has strong ties to computer science and analytics. Operational researchers faced with 

a new problem must determine which of these techniques are most appropriate given the 

nature of the system, the goals for improvement, and constraints on time and computing 

power. 

 

2.2  Literature Review of Transportation Problems 

The first linear programming formulation of a problem that is equivalent to the general 

linear programming problem was given by Kantorovich (1939), who also proposed a 

method for solving it. He developed it during World War II as a way to plan expenditures 

and returns so as to reduce costs to the army and increase losses incurred by the enemy. 

About the same time as Kantorovich, the Dutch-American economist Koopmans (1949) 

formulated classical economic problems as linear programs. Kantorovich and Koopmans 

later shared the Nobel Prize in economics. The Simplex method is the most popular 

method to solve the general linear programming problem. Dentzing (1947) formulated the 

general LPP and devised the simplex method for solving these LPP. Khachiyan (1979) 
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devised the ellipsoid method. More recent, Karmarkar (1984a-1984b) developed a new 

method to solved LPP. 

Hitchcock (1941) formulated transportation problems as linear programs and gave a 

solution very similar to the later Simplex method; Hitchcock had died in 1957 and the 

Nobel Prize is not awarded posthumously. The transportation problems one of the earliest 

and most useful applications of linear programming techniques has been the formulation 

and solution of the Transportation Problem (TP). The mathematical formulation of this 

problem gives us an LPP which in turn can be solved by the simplex method or by the 

revised simplex method or dual simplex method but the special structure of the coefficient 

matrix is such that more efficient methods can be used to solve these problems easily. The 

basic transportation problem was originally stated by Hitchcock (1941) and later discussed 

in detail by Kopman (1949).  

The More-for-less (MFL) paradox in a TP occurs when it is possible to ship more „total 

goods‟ for less (or equal) „total cost‟ while shipping the same amount or more from each 

origin and to each destination, keeping all shipping costs non-negative. The occurrence of 

MFL in distribution problems is observed in nature. The mixed constraints TP have 

extensively been studied by many researchers in the past years, for example [Arora and 

Khurana (2002), Lev and Intrator (1977), Lev (1972)]. Again Gupta et al. (1992) and 

Arsham (1992) obtained the more-for-less solution for the TPs with mixed constraints by 

relaxing the constraints and introducing new slack variables. While yielding the best more-

for-less solution, their method is very hard to understand since it introduces more variables 

and requires solving sets of complex equations. Later Adlakha et al. (2010), Adlakha et al.  

(2007), Adlakha et al. (2006) and Adlakha & Kowalski (2001) developed heuristic 

algorithm for solving TP with mixed constraints, which is based on the theory of shadow 

price. In the succeeding year, Pandian and Natarajan (2010a -2010d) also studied the 

approaches for solving TP with mixed constraints.  

 

2.3  Literature Review of Linear Fractional Programming 

Various optimization problems in engineering and economics involve maximization (or 

minimization) of the ratio of physical or economical function, for instances cost/time, 

cost/volume, cost/benefit, profit/cost or other quantities measuring the efficiency of the 
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system. Naturally there is a need for generalizing the simplex technique for linear 

programming to the ratio of linear functions or to the case of the ratio of quadratic 

functions in such a situation. All these problems are fragments of a general class of 

optimization problems, termed in the literature as Fractional programming problems. 

Linear fraction problems (i.e. ratio objective that have numerator and denominator) have 

attracted considerable research and interest, since they are useful in production planning, 

financial and corporate planning, health care and hospital planning. The field of LFP was 

developed by Hungarian mathematician Matros (1960). After that several methods are 

proposed to solve this problem. Charnes and Kooper (1962) have proposed their method 

depends on transforming this (LFP) to an equivalent linear program. On the other hand, 

the simplex type algorithm introduced by Swarup (1964) and Swarup et al. (2003). 

Another method is called updated objective function method derived from Bitran and 

Novas‟ (1973) is used to solve this linear fractional program by solving a sequence of 

linear programs only re-computing the local gradient of the objective function. Singh 

(1981) in his paper made a useful study about the optimality condition in fractional 

programming. Tantawy (2007) developed a technique with the dual solution. Hasan and 

Acharjee (2011) also develop a method for solving LFP by converting it into a single LP. 

But for the negative value of   their method fails. Tantawy (2008) developed another 

technique for solving LFP which can be used for sensitivity analysis. Effati and Pakdaman 

(2012) proposed a method for solving the interval-valued linear fractional programming 

problem. Pramanik et al. (2011) develop a method for solving multi-objective linear plus 

linear fractional programming problem based on Taylor Series approximation. 

Nowadays linear fractional criterion is frequently encountered in business and economics 

such as Min [debt-to-equity ratio], Max [return on investment], Min [Risk asset to capital], 

Max [Actual capital to required capital] etc. So, the importance of linear fractional 

programming (LFP) problems is evident.  

 

2.4. Limitations of Existing Methods  

For many of us, modern-day linear programming (LP) started with the work of Dantzig 

(1947). However, it must be said that many other scientists have also made seminal 

contributions to the subject, and some would argue that the origins of LP predate 
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Dantzig‟s contribution. After Dantzing other scientist try to develop LP in different way, 

some of this algorithm are very easy to understand and some are very difficult. Also for 

requirement we have to add new parameter. In TP, the More-for-less (MFL) paradox 

occurs when it is possible to ship more „total goods‟ for less (or equal) „total cost‟ while 

shipping the same amount or more from each origin and to each destination, keeping all 

shipping costs non-negative. There are several methods available in the literature dealing 

with TP & LFP problems. But each method has some limitations as well as limited fields 

of application.  Our intent is to develop new technique or modified technique for solving 

any type of TP & LFP problem and try to develop a computer technique for those 

methods. Finally by comparing the proposed methods with existing methods by 

considering some instance problems we can say that our technique is very effective to 

solve LFP. 
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CHAPTER 3 

 

 

Preliminaries  

 

3.1 Introduction  

Transportation Problem (TP) is a special branch of Linear programming which is an 

important part of Operations Research. Operations Research (OR) is a scientific method of 

providing executive departments with a quantitative basis for decisions regarding the 

operations under their control. It‟s encompasses a wide range of problem-solving 

techniques and methods applied in the pursuit of improved decision-making and 

efficiency, such as simulation, mathematical optimization, queuing theory and other 

stochastic-process models, Markov decision processes, econometric methods, data 

envelopment analysis, neural networks, expert systems, decision analysis, and the analytic 

hierarchy process. Nearly all of these techniques involve the construction of mathematical 

models that attempt to describe the system. Because of the computational and statistical 

nature of most of these fields, OR also has strong bond to computer science and analytics. 

Operational researchers faced with a new problem must determine which of these 

techniques are most appropriate given the nature of the system, the goals for improvement, 

and constraints on time and computing power. 

Therefore, below we will present some preliminaries as well as necessary definitions and 

properties of Linear programming mainly relevant to TP. 

 

3.2  Mathematical Model 

Mathematical Programming (MP) problem or Mathematical Program deals with the 

optimization (maximization or minimization) of a function of several variables subject to a 

set of constraints (inequalities or equalities) imposed on the values of variables. A general 

mathematical programming problem can be stated as follows: 

                       Maximize                                                                                             (3.1) 
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                      Subject to                                     ,                 (3.2) 

where,                    is the vector of unknown decision variables;      and 

 
 
               ,, are real valued functions of  m real variables                . 

Here the function F  is called objective function and  condition (3.2) is referred to it  

constraints. 

Linear programming problem: If both the objective function  F(x) and the constraint set 

(3.2) are linear, then MP is called a Linear Programming (LP) problem or a linear 

program. Among the mathematical programs the linear programming problem is a well-

known optimization technique. Linear programming is a mathematical technique applied 

for identifying optimal maximum or minimum values of a problem subject to certain linear 

constraints. The mathematical model of a linear programming problem (in its canonical 

form) is as follows:  

                      Maximize       TZ  c x                                                                               (3.3) 

                      Subject to                 Sx:    and     
                                    (3.4)                   

where, A is an m×n matrix, 
nc R , 

nb R  and
T

c
 
denotes transpose of c.  

The above equations can be rewritten in algebraic form as follows: 

Maximize (or Minimize)          
 
                                                   (3.5)       

Subject to            
 
                                                        (3.6)  

It is noted that one and only one of the signs         is hold for each i in the constraint set 

(3.6). 

We have stated here the MP as maximization one. This has been done without any loss of 

generality, since a minimization problem can always be converted into a maximization 

problem using the identity     

                                                                                          

i.e. the minimization  of F(x)  is equivalent to the maximization of - F(x)  . 

The set S is normally taken as a connected subset of R
n
. Here the set S is taken as the 

entire space R
n
. The set                                is known to as the 

feasible region, feasible set or constraint set of the program MP and any point     is a 

feasible solution or feasible point of the program MP which satisfies all the constraints of 
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MP. If the constraint set X is empty        then there is no feasible solution; in this 

case the program MP is inconsistent. A feasible point      is known as a global 

optimal solution to the program MP if 

                                   ⍱                                                                              (3.7) 

A point 0
x  is said to be a strictly global maximum point of      over X if the strict 

inequality    in (3.5) holds for all     such that     . A point       is a local or 

relative maximum point of F(x) over X if there exists some 0  such that  

                              ⍱         
                                                                (3.8) 

 Where     
   is the neighborhood of    having radius 0 . Similarly, global minimum 

and local minimum can define by changing the sense of inequality. 

The MP can be broadly classified into two categories: (a) unconstrained optimization 

problem and (b) constrained optimization problem. If the constraint set X is the whole 

space R
n
, program MP is then known as an unconstrained optimization problem, in this 

case, we are interested in finding a point of R
n
  at which the objective function has an 

optimum value.  On the contrary, if X is a proper subset of R
n
, then MP is known as 

constrained optimization problem. In this case, we are interested in finding a point on X   

at which the objective function has an optimum value. 

Non-linear programming problem: If at least one of the objective function and the 

constraint set are not linear then MP is called a Non-Linear Programming (NLP) 

problem or a non-linear program. Several algorithms have been developed to solve certain 

NLP. 

Standard Linear Programming:  

                       Maximize                                                                                      (3.9)                                                                  

                      Subject to                                                                                      (3.10)      

                                                                                                     (3.11) 

A  LP problem of the above form is known as a LP in standard form. The characteristics 

of this form are:  
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i) All the constraints are expressed in the form of equations, except for the non-negative 

restrictions condition (3.10).  

ii) The right hand side of each constraint equation is non-negative. 

In linear programming, the matrix         is the coefficient matrix of order  m n ,  the 

quality constraints,                   
   is the vector of right hand side constants, the 

component of c are the profit factors,                    is the vector of variables, 

called the decision variables and condition (3.10) are the non-negativity constraints. The 

column vectors of the matrix A are referred to as activity vectors. Now we recall the 

following definition for standard linear program.  

Feasible Solution:  

                    is a feasible solution of the standard linear programming if it 

satisfies conditions (3.9) and (3.10).  

Basic Solution:  

A basic solution to the eq. (3.9) is a solution obtained by setting (n-m) variables equal to 

zero and solving for the remaining m variables, provided the determinant of the 

coefficients of these m variables are non-zero. The m variables are called basic variables.  

Basic Feasible Solution: 

A basic feasible solution is a basic solution, which also satisfies (3.10) that is, all basic 

variables are non-negative. 

Degenerate Solution: 

A basic feasible solution to (3.9) is called degenerate if one or more the basic variables are 

zero.  

Non- degenerate Basic Feasible Solution: 

A non-degenerate basic feasible solution is a basic feasible solution with exactly m 

positive xi, that is, all basic variables arc positive. 

Optimal Solution: 

A basic feasible solution is said to be optimal solution if it maximize the objective 

function (3.9) while satisfying condition (3.10) and (3.11) provided the maximum value 

exists. 
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Reduction to Standard Form:  

Every general linear program can be reduced to an equivalent standard linear program as 

explained below. 

(i) Conversion of right hand side constraint to non-negative. If a right hand side constant 

of a constraint is negative, it can be made non-negativity by multiplying both sides of the 

constraints by –1(if necessary). 

(ii) Conversion of inequality constraint to equality. 

 

Slack Variable: 

For an inequality constraint of the form 

                                                      
                                                  (3.12) 

by adding a non-negative variable xn+1  on the left of the inequality (3.12) we have 

eq.(3.13).                                   

                                               
                                      (3.13)                                

Here the non-negative variable xn+1 is called slack variable. 

 

 Surplus Variable:  

 Again for an inequality constraint of the form 

                                                      
                                                  (3.14) 

 By subtracting a non-negative variables xn+1   xn+1  on the left of the inequality (3.14) we 

have eq. (3.15). 

                                                           
                                 (3.15) 

Here the non-negative variable xn+1 is called the  surplus variable . 

 

Making All Variables Non-Negative: 

All variables in the equivalent linear program can be made non-negative as follows:  

(a) If     , then put         
clearly       . 

(b) If    is unrestricted in sign (i.e. a free variables), then put      
       

where        
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3.3 Some Important Theorems related to LP 

Now we will state below some important theorems related to the LP problems (3.1. – 3.5 ) 

without any proof [Taha (1997)]. 

Theorem 3.1:   The constraint set F is convex.  

Theorem 3.2:   The set optimal solution to the linear program (LP) is convex. 

Theorem 3.3: (Fundamental theorem) Let the constraint sets F be non-empty, closed and 

bounded, then, an optimal solution to the LP exists and it is attained at a vertex of F.  

Theorem 3.4: If standard linear program with the constraints Ax = b and x > 0, where A 

is an m  n matrix of rank m, has a feasible solution, then it also has a basic feasible 

solution.  

Theorem 3.5: Let F be a convex polyhedron consisting of all vectors x  R
n
 satisfying the 

system          where A is an m  n matrix of rank m. Then, x is an extreme point 

of F if and only if x is a basic feasible solution to the system. 

The above theorem ensures that every basic feasible solution to a (LP) is an extreme point 

of the convex set of feasible solutions to the problem and that every extreme point is a 

basic feasible solution corresponding to one and only one extreme point of the convex set 

of feasible solution and vice versa. 

 

3.4 Formulation of General Transportation Problem 

One of the most important and successful application of quantities analysis to solving 

business problems has been in the physical distribution of products, commonly referred to 

as Transportation Problems (TPs). Basically, the purpose is to minimize the cost of 

shipping goods from one location to another so that the needs of each arrival area are met 

and every shipping location operates within its capacity. The TP finds application in 

industry, planning, communication network, scheduling, transportation and allotment etc. 

A homogeneous product, available at a finite number of origins, is to be transported to a 

finite number of destinations. The total amount available at each of these origins is known 

and also the total quantity required at each of the destination is known. The unit 

transportation cost from each origin to each destination is given. The question here is to 

determine the amount of the products to be transported from these origins to be 
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destinations so, as to minimize the total transportation cost. A schematic view of 

Transportation problem is shown Figure 3.1. It aims to find the best way to fulfill the 

demand of n demand points using the capacities of m supply points. If  total  supply  

equals  total  demand  then  the  problem  is  said  to  be  a  balanced transportation 

problem otherwise the problem be imbalanced [Taha (1997)  

 

        

 

For formulation of mathematical model of TP,  let   be the number or origin and   be the 

number of destinations and  the cost of transporting one unit of the commodity from origin 

  to to destination   is      Let    be the quantity of the commodity available at origin   and 

   be the quantity required at destination  j. Therefore obviously thus      for   and 

     for each  . Also let      be the quantity transported from origin   to destination  . 

Then the general formulation of the transportation problem is as follows:  

             Minimize              
 
      

 
                      (Total transportation cost)      (3.16) 

              Subject to          
 
                      (supplies at origin)                 (3.17) 

                                         
 
                       (demands at destination)        (3.18)    

                                                                              (quantities)                             (3.19) 

Figure 3.1 Network model of the transportation problem 
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Equation (3.16) indicates that the above LP has     variable, Eqs. (3.17) have n constraint 

and Eqs. (3.18) have m constraints. That is the above LP has m+n constraint excluding the 

non-negativity constraints (3.19). With a special structure the above TP can be represented 

as matrix notation: 

                Minimize                                                                                                (3.20) 

                Subject to                                                                                              (3.21)           

                                                                                                                                (3.22) 

 Where C be  mn order row matrix, x be mn order column vector. Moreover b be m+n 

order column matrix and A be a matrix of order          .    

To see the special structure of the coefficient matrix C  and A here we take a special case 

for     and    . Then vector                            
  (i.e mn =6 variables) 

The vector                   
  (i.e. 2+3 components) and 

                            (i.e. 6 components). The exact form of   is 

                              

 
 
 
 
 
   
   
   

   
   
   

   
   

   
    

 
 
 
 

 

which is of order    . Note that, each column of the matrix   contains   exactly in two 

places as m = 2. 

 

3.5  Feasible Canonical Form 

Consider the constraints (3.21) i.e.  = Ax b , are consistent and rank  of A       . Let 

B  be any non-singular m m  sub-matrix made up of the columns of A  and R  is the 

remainder portion of A . Further, suppose that BX  is the vector of variables associated 

with columns of B. Then eq. (3.20) can be written as 

           

  B

NB

 
 

 

x
B,R b

x
 

   or      B NB Bx Rx b   

    or                                                                                            (3.23) 
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               or                                                                                             (3.25) 

where the (n-m) variables     can be assigned arbitrary values. The form (3.24) of 

constraint is called the canonical form in the variables   . The particular solution of (3.23) 

given by
 

             
,B 

-1
x B b                                      (3.26) 

Which is called the basic solution to the system Ax = b with respect to the basic matrix B

. The variables NBx  are known as the non-basic variables and the variables Bx  are said to 

be the basic variables.  The basic solution given by (3.26) is feasible if   0B x . 

Transportation  problems  can  be  solved  by  using  general  simplex  based  integer 

programming  methods,  however  it  involves  time-consuming  computations.  There are 

specialized algorithms for transportation problem that are much more efficient than the 

simplex algorithm. The basic steps to solve transportation problem are:  

Step 1. Find   the initial feasible solution,  

Step 2. Find optimal solution using the initial feasible solution. 

 

3.6  Relative Profit Factors 

Suppose that there exists a feasible solution to the constraint (3.21). The coefficients of the 

variables in the objective function Z (correspond to basic initial feasible solution) are 

called relative profit factors. In order to find relative profit factors corresponding to basis 

matrix B, we partition the profit vector c as  ,T T T

B NBc c c , where 
Bc and NBc  are the 

profit vectors corresponding to the variables              respctively. 

Then the objective function becomes 

                       

i.e.          
       

                         (3.27) 

or                            
        

            
       (from eq. 3.23)   
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 where,    ( , )T

B NBc c c  =  ( c B, c NB)
T
 

    c B  = 0. 

                     c NB
T
 =   B

T
 B

-1
 R- cNB

T
 

                          
      z     

Here c  is the vector of relative profit factors corresponding to, the basis matrix B and 

z  is the value of the objective function at the basic solution given by (3.27). It is 

bbserved that the components of c corresponding to the basic variables are zero, 

which ought to be as is evident from the definition of c . 

 

3.7 Formulation of TP for finding Initial Basic Feasible Solution (IBFS) 

A general Transportation Problem (TP), which is off course a special type of LPP, can be 

formulated as follows: 

 

  

 

                                                                                                       

In the table Oi denotes ith origin (production unit) where i=1, 2, . . . , m) and Dj indicates 

jth destination (storehouse/show room) where j=1, 2, . . ., n . In the last column ai indicates 

that origin Oi has ability to product ai units. On the other hand in the last row   bi indicates 

that the destination Dj has ability to store  bi units. This table has    cells. In each cell Cij 

Table 3.1 Pictorial view of a Transportation Problem (TP)  
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means cost to carry unit item from origin Oi  to destination Dj. In general it is considered 

that the TP is balanced and there exist a finite minimal solution in each such balance TP. 

This table has    cells. 

 

3.8  Definition of Loop 

In a transportation table, an ordered set of four or more cells is said to form a loop if 

(1) Any two adjacent cells in the ordered set lie either lie in the same column. 

(2)  Any three or more adjacent cells in the ordered set do not lie in the same row or 

the same column. 

The first cell of the set is considered to follow the last in the set. It may be noted here that 

the vectors associated with the cells of a loop are linearly dependent. 

 

3.9 Some Important Theorems Related to TP 

Theorem 3.6: A necessary and sufficient condition for the existence of a feasible solution 

to the transportation problem is balanced. i.e.  

               
 
        

 
    

Theorem 3.7: A finite minimum feasible solution always exists. 

Now we will discuss some methods to find one initial basic feasible solution for a 

balanced transportation problem: 

(1) The North-West Corner rule 

(2) The Matrix-Minima method 

(3) The Row-Minima method 

(4) The Column-Minima method 

(5) The Vogel‟s approximation method. 

Note that if a problem is not balanced we can first balance it by taking fictitious origin or 

destination as required and then use the methods.  
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3.10  Vogel's Approximation Method: 

Vogel's Approximation Method (VAM) method is a well-known method for solving linear 

Transportation problems where all constraints are of equal (=) sign i.e. all constraints are 

equation rather than mixed constraints. The main steps of the method are given briefly 

below:  

Note that this method also takes costs into account in allocation. Five steps are involved in 

applying this heuristic:  

Step 1: Determine the difference between the lowest two cells in all rows and columns, 

including dummies.  

Step 2: Identify the row or column with the largest difference. Ties may be broken 

arbitrarily.  

Step 3: Allocate as much as possible to the lowest-cost cell in the row or column with the 

highest difference. If two or more differences are equal, allocate as much as possible to the 

lowest-cost cell in these rows or columns.  

Step 4: Stop the process if all row and column requirements are met. If not, go to the next 

step.  

Step 5: Recalculate the differences between the two lowest cells remaining in all rows and 

columns. Any row and column with zero supply or demand should not be used in 

calculating further differences. Then go to Step 2.  

The Vogel's approximation method (VAM) usually produces an optimal or near- optimal 

starting solution. One study found that VAM yields an optimum solution in 80 percent of 

the sample problems tested. 

Here we introduced a problem of transportation problem. We will try to solve the problem 

by VAM method for finding an optimal solution.   
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3.10.1 Example 

 

Solution: 
 

 

 

Therefore,  

The total transportation cost is                            

                                                        

 

                            Table-3.1 

       D        

      1      

             

            

                  

                            Table-3.2 

       D        

      1          
       (15)             

                   
         

    
   

    
   

    
  

    
39/39 

                            Table-3.3 

       D        

      1          
       (15)          
                    

         
    

   

    
     

        

 

                            Table-3.4 

       D        

        (10) 1            
          (15)                
              

           
    

   

         

     

    
 



23 

 

3.11 Linear Fractional Program (LFP)  

Recently various optimization problems, involving the optimization of the ratio of 

functions, e.g. time/cost, volume/cost, profit/cost, loss/cost or other quantities measuring 

the efficiency of the system have been the subject of wide interest in non-linear 

programming problem. Such problems are known as LFP.  

If the objective function of a mathematical programming problem is the ratio of two linear 

functions and the constraints are linear, it is called a linear fractional programming 

problem (LFPP). Likewise LP, a standard LFPP can be expressed as follows:  

                       

( )
T

T
Maximize F x










c x

d x
                                                                   (3.28)  

             
 : , 0n

Subject to

X   x x R Ax = b x
       (3.29) 

Where x, c, d  R
n
; b R

m
;  ,   R;    is an    matrix and  superscript T denotes 

transpose. 

For simplicity of notation, throughout this chapter and hence forth, we can omit the 

transpose sign T over vectors. In an inner product of two vectors, one can assume that the 

left hand side vectors are a row vector and right side vector be a column vector. 

Fractional objectives occur in areas of marine transportation. Instead of maximizing profit 

from a given unit voyage a more relevant measure is profit divided by the duration of the 

unit voyage. In water resources, we may wish to minimize water temperature elevation in a 

river due to the cooling of power generation plants in the basin. The objective would 

then be to minimize the B.T.U.'s (British Thermal Units) to be dissipated divided by the 

volume of the flow. In health care we may have cost-to-bed, nurse-to-doctor and doctor-to-

patient ratio. In University planning, we may have student-teacher ratio, tenured-to-

untenured faculty ratio and so forth. 

Linear fractional criteria are frequently encountered in finance as illustrated by the 

following situation. 
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Corporate Planning: 

Min   debt –to-equity ratio 

Max return on investment 

Max output per employee 

Min actual cost –to-standard cost 

Bank Balance Sheet Management: 

Min risk assets –to-capital 

Max actual capital –to-required capital 

Min foreign loans –to-total loans 

Min residential mortgages –to-total mortgages  

Linear fractional objective also occur in other areas of science, engineering and social 

sciences. 
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CHAPTER IV 

 

 

Transportation Problem with Mixed Constraints 

 

 

4.1 Introduction: 

One of the most important and successful applications of quantities analysis to solving 

business problems has been in the physical distribution of products, commonly referred to 

as transportation problems (TP). Basically, the purpose is to minimize the cost of shipping 

goods from one location to another so that the needs of each arrival area are met and every 

shipping location operates within its capacity. The TP finds application in industry, 

planning, communication network, scheduling, transportation and allotment etc. In real 

life, however, most of the problems have mixed constraints but we used TPs for optimal 

solutions with equality constraints. The TPs with mixed constraints are not addressed in 

the literature because of the rigorous required to solve these problems optimally. A 

literature search reveals no systematic method available to find an optimal solution for TPs 

with mixed constraints. 

 

4.2  Formulation of Transportation Problem with Mixed Constraints 

 

                   

                               

                              

              

                              

                                              

Let   be the number of sources and   be the number of destinations. Suppose that the cost 

of transporting one unit of the commodity from source   to the destination   is      Let    be 

the quantity of the commodity available at source   and    be the quantity required at 

Table 4.1: The schematic view of the transportation problem with mixed 

constraints 
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destination  . Thus      and      for all i and  . Then the general formulation of the 

transportation problem with mixed constraints, as described by Pandian and Natarajan 

(2010), is given in the Table 4.1. 

If      is the quantity transported from source   to destination    then the transportation 

problem is written with the help of Adlakha et al. (2010) and Pandian and Natarajan 

(2010) as 

                                      
 
   

 
                                              

                  
1

 / / , 1,2, i i

j

n

jSubject to x a i m


      

                                          
1

/ / 1,2,  ,
m

ij j

i

x b j n


      

                                                

The above formulation represents a Linear Programming Problem (LPP) with nm  

variables and     constraints. If the LPP is small, we can solve the problem by using 

any simplex method, but in practical life LPP can be very large, which is difficult to solve 

by analytically. This type of problem can be solved very easily by using computer 

programming.  

Remark 1: If all constraints are of equal (=) sign, then the problem becomes the 

transportation problem with equality constraints. 

 

4.3 Modified Vogel Approximation Method 

Here we introduce a modified algorithm based on VAM method which is first developed 

by Mondal et al. (2012) for finding an optimal solution to a transportation problem with 

mixed constraints. Because we cannot solved mixed constraints problem by using VAM 

method. Below we introduce the Modified Vogel Approximation Method (MVAM) 

method for solving TPs with mixed constraints in More-For-Less (MEL) paradoxical 

situation. The main steps of the proposed algorithm are given bellow: 
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Step 1: For each row and column of the transportation table, find the difference between 

the two lowest unit shipping costs. These numbers represent the difference between the 

distribution cost on the best route in the row or column and the second best route in the 

row or column. 

Step 2: Identify the row or column with the greatest opportunity cost or difference. 

Step 3: Assign possible units to the lowest cost square in the row or column selected 

which satisfy the inequalities.  

We can follow the following chart to assign the supply and demand unit. 

Chart 

                      Transport Unit 

                                       

                           

                        

                        

                 

 

Step 4: Eliminate any row or column that has just been completely satisfied by the 

assignment just made. 

Step 5: Recomputed the cost difference for the transportation table. 

Step 6: Return to step 2 and repeat the steps until an initial feasible solution has been 

obtained.      

 

Here we introduced some instances of transportation problems with mixed constraints. We 

will try to solve the problem by the modified VAM method to examine  the efficiency of 

the method.    
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4.4 Numerical Examples 

Example 4.1: 

 

We have solved the above problem by using MVAM method which is given below in 

Tables 4.3-4.5:  
 

                         Table 4.3 

              

       11        
                 
                                         

           

    
    
    

            
    

 

In Table 4.3, first we calculate the difference between the two lowest unit shipping costs 

in each row and column and find that row 3 has the largest difference as shown in the 

table by   mark. We find that 9 is the lowest cost square in row 3. Now we try to assign 

possible in     . Since (demand, supply):      , so according to the chart the assignment 

unit is   . Now we recomputed the cost difference in the same way and proceed in the 

next step until we get the feasible solution. 

                        Table 4.4 

              

                         

                 

                           

              

     

    
    

       

    
 

In Table 4.4, we find that 9 is the lowest cost square in column 1. Now we assign possible 

units in     . We see that the demand and supply are both  sign, so using the chart we 

get our assignment unit as   .  

                            Table-4.2 

              

       11     
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Combining all of the work in table 4.5 and have 

Table 4.5 

              

                        

                                

                           

              

    
    

    
    
    

       

    
    

 

Therefore, the solution of the given problem is                            ,  

      and all other       . Total supply = 245 and the total transportation cost 

as     .  

 

Example 4.2: The Best way Group owns factories in five towns that distribute to five 

warehouses. Factory availabilities, projected demands and unit shipping costs are 

summarized in the table below: 

Table-4.6 

           

 

        

             

                

      3         

                

                

                

      

       

                     

 

Now we solve the above problem by MVAM method by hand calculation. Hand 

calculation solution is shown in Tables 2.7-2.10. 
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Table-4.7 

           

 

        

             

                       

      3            

               [1] 

                   

               [1] 

      

       

    

    

    

    

    

     

    

    

    

    

 

 

Table-4.8 

           

 

        

             

                    

          3            

               [1] 

                   

               [1] 

      

       

    

    

    

    

    

 

    

    

    

    

 

 

Table-4.9 

           

 

        

             

                    

          3         

         (30)         [1] 

                   

               [1] 
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Table-4.10 

           

 

        

             

                    

          3         

         (30)             [1] 

                       

                   [1] 

      

       

    

    

    

 

    

 

    

 

    

    

 

The solution of the given transportation problem with mixed constraints is:  

                                           and all others        

The minimum transportation cost as     unit.  It is observed that the modified VAM 

[Mondol 2012] approach efficiently find the IBFS in the case of mixed constraint TP 

problems. 
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CHAPTER V  

 

 

A New Technique for Solving Linear Fractional Programming Problem 

 

 

5.1 Introduction 

Though there are much researches have been carried out in the field of linear 

programming, but there are few research works are available in the field of linear 

fractional problem. Moreover existing methods have many draw backs. In this chapter, we 

will discuss a new method for solving linear fractional programming (LFP) problems to 

overcome some drawbacks. We will also develop computer program for this method. 

 

5.2 Mathematical form of LP and LFP  

The mathematical form of an LP is as follows:  

               Maximize (Minimize) 1 1 2 2 3 3( ) ............... n nF c x c x c x c x    x
 

                                                    ( )    1,2,3,..........,i iF c x i n x                                  (5.1) 

               Subject to                     
ji i jA x b                                                                    (5.2) 

                                                         0ix                                                                       (5.3)  

                                                         0jb                                                                        (5.4) 

The mathematical form of an LFP is as follows:  

               Maximize    1 1 2 2 3 3

1 1 2 2 3 3

...............
( )

...............

n n i i

n n i i

c x c x c x c x c x
F

d x d x d x d x d x

 

 

     
 

     
x   

               Subject to                  
ji i jA x b      

                                                         0ix   

                                                         0jb 
 

Where, 1,2,3...... , 1,2,3......i n j m  ,
 
A is a m×n matrix, mb Ri  ; x ,c , Rn

i i id  ; , R    
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5.3 Conversion from LFP to LP 

We can convert the LFP into a LP in the following way (where 0  , 0c   and 0d ) 

 

Case I : 0   
Conversion of objective function 

   ( ) i i

i i

c
Maximize

x

d x
F









x                                                                                

                        i i i

i i

c d x

d x

  

  

  
   

  
 

 
  ' ; ; 'i i i

i i

i i

c d x
Let c y

d x

  


  


  

  

Now we get 

                   
  ' 'i iG c y   y  

 

Conversion of the constraint  

   Subject to ji i jA x b  

 ;where 
1 1

i i
ji j i

i i i i

y y
A b x

y d y d

 
   

 
 

      ji j i i jA b d y b  

   A ji ji j iLet A b d  
 

           A ji i jy b   

So the new LP is:   

Maximize   ' 'i iG c y  y  

Subject to  A ji i jy b  ,  0iy   

Calculation of unknown variable: 

We will get the value of iy  after solving the converted LP.

    

 

 Calculate   
1

i
i

i i

y
x

y d




  

Putting the values of ix  in the objective function ( ) i i

i i

c x

d
F

x









x  . 

Then, we will get the optimal solution.                    

 

 

Case II:  0   , 0   

Conversion of objective function  

The objective function, ( ) i i

i i

c x
F

d x









x

  

                

 

 
( ) 1

( ) 1

i i i

i i i

c d xF

F c d x

 

 

  
 

   

x

x
 

Now we get converted variable which are

 

                

     , d

     and 

( ) 1
          and '( )

( ) 1

i i i i i ic c d c d

F
F

F

     

   

   






x
x

x

 

Now we get  

                 '( ) i i

i i

c x
F

d x









x     

And     Subject to ji i jA x b
 

Which is looks like the case-I. Now we can 

convert it into LP by the case-I procedure.                                                    

Then we get the LP problem as follow: 

         Maximize   ' 'i iG c y  y  

          Subject to  A ji i jy b  ,  0iy 
 

Where,

 ' ; ; 'i i i
i i

i i

c d x
c y

d x

  


  


  


 

            
and   A ji ji j iA b d    



34 

 

Calculation of unknown variable: 

We will get the value of iy  after solving the converted LP.

    

 

Calculate   
1

i
i

i i

y
x

y d




  

Putting the values of 
ix  in the objective function  ( ) i i

i i

c x
F

d x









x . 

                                                                                 

Then, we will get the optimal solution.                    

 

Case III:  0   ,  0   
 Conversion of objective function  

The objective function, 

                         

( ) i i

i i

c x
F

d x









x

 

                                  

i i

i i

c x

d x





 

   

 

   And     Subject to ji i jA x b
 

 

 

Same as above procedure, we have 
Then we get the LP problem as follow: 

         Maximize   ' 'i iG c y  y  

          Subject to  A' ji i jy b ,  0iy 
 

Where,

 ' ; ; 'i i i
i i

i i

c d x
c y

d x

  


  


  


 

            
and   A ji ji j iA b d  

 

Calculation of unknown variable: 

We will get the value of iy  after solving the converted LP.

    

 

 Calculate   
1

i
i

i i

y
x

y d




  

Putting the values of ix  in the objective function ( ) i i

i i

c x
F

d x









x  . 

Then, we will get the optimal solution.                   

  

5.4 Proposed Algorithm 

Here we have presented an algorithm to implement the program to solve FLP. 

Step 1: READ numerator        & Denominator        and all constraints          

Step 2: IF   β > 0, Then 

                Calculate i. ' ; ' ;i i
i

c d
c

  


 


  A ji ji j iA b d                                      

                                ii.   ' 'i iG c y  y  

                                iii. A ji i jy b  ,  If 0iy         Go to Step 5  

Step 3: ELSE IF β < 0 & α > 0 then  
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        Calculate  i. ;  d ;  ;i i i i i ic c d c d              . 

                        ii.  ' ; '  and Ai i
i ji ji j i

c d
c A b d

  
 

 


                                          

                        iii.
 

 ' ' 'i iG c y  y
 

                        iv. A ji i jy b  ,  If 0iy         Go to Step 5 
 

Step 4: ELSE IF β < 0 & α < 0 then  

             Calculate i.    ;  d ;  ;i i i ic c d                          

                             ii.   ' ; '  and   Ai i
i ji ji j i

c d
c A b d

  
 

 


                  

                             iii.
 

  ' 'i iG c y  y
 

                             iv. A ji i jy b ,  If 0iy         Go to Step 5 
 

Step 5: Solving this LP by using any Simplex Method. 

Step 6: IF  β > 0, Then 

             Calculate i.   
1

i
i

i i

y
x

y d





 

                             ii. ( ) i i

i i

c x

d
F

x









x  

            ELSE IF β < 0 & α > 0 then 

             Calculate i.   
'

1 '

i
i

i i

y
x

y d





 

                             ii. '( ) i i

i i

c x
F

d x









x

 

                             iii) 
'( ) 1

( )
'( ) 1

F x
F

F x





x

 

            ELSE IF β < 0 & α < 0 then 

             Calculate i.   
1

i
i

i i

y
x

y d





 

                             ii. ( ) i i

i i

c x
F

d x









x  

           Then we get the optimal solution. 

 Step-7: END 
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5.5 Numerical illustrations 

Here we have illustrated some numerical examples to justify the effectiveness ond 

efficience of the proposed method. 

 

Example 5.1: 

Let us consider a company those manufactures two products P1 and P2. By assumption, the 

costs arising and the capital demands required are with proportional to the individual 

activities, furthermore, regardless of the production program to be determined, there are 

fixed charges amounting to Tk. 200 and a fixed capital demand amounting to Tk. 400. 

Furthermore the data for the production are fixed as follows: 

Capacity available  
 

Demand 

(per unit of product) 

   P1

1 

P2 

Raw material (units of quantity): 200  -1  1 

Machines (hours): 800  1  3 

Owned capital (Tk.): 1400  4  2 

Profit per unit Tk. :   3  2 

 

Formulation 

Let us consider that 1x  units of product P1, and 2x  units of product P2 are to be 

produced. 

      Profit from product Pl is Tk. 3 1x       

       Profit from product P2 is Tk. 2 2x . 

        Fixed profit Tk. 200. 

         Therefore, total profit is Tk. (3 1x  + 2 2x  + 200). 

        Capital needed for Pl is Tk. 4 1x . 

         Capital needed for P2 is Tk. 2 2x .    

         Fixed capital demand Tk. 400    

         Therefore total capital needed is Tk. (4 1x  + 2 2x  + 400). 
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Availability of raw materials is 200 units. 

Hence constraint for raw material is:    1x  + 2x  < 200. 

Similarly the constraint for machine is:  1x  + 3 2x  < 800. 

The constraint for capital investment is: 4 1x  + 2 2x  + 400 < 1400. 

                                                             or 2 1x  + 2x  < 500. 

(Due to the fixed capital demand, there is Tk. 500 left for the variable capital 

demand).  Moreover the company either produces some units of Pl and P2 or not. So 

0,0 21  xx  

Therefore, profitability = 1 2

1 2

3 2 200

4 2 400

x xprofit

capital x x

 


 
 

Hence the linear fractional program is 

            Maximize   F(x)= 1 2

1 2

3 2 200

4 2 400

x x

x x

 

 
 

                                   Subject to   

                                                            
0

100024

8003

200

2,1

21

21

21









xx

xx

xx

xx

 

Solution: 

Here we have,                      

                                            

                    

                     

                   

Now  

  
  

       

 
 

 
           

   
 

   

  
  

       

 
 

 
           

   
 

   

   
 

 
 

 
   

   
 

 

 
 

 

So, we have the new objective function 
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For the constraint, 

11 11 1 1A

     1 400 200 4

     400

A b d  

    



 

12 12 1 2A

     1 400 200 2

     800

A b d  

   



 

21 21 2 1A

     1 400 800 400

     320400

A b d  

   



 

 

22A 2800 

 

 

31A 2800 

 

 

32A 1400 

  

Now we get  11 1 12 2 1 1 2 1 2A A   or 400 800 200 or 2 1y y b y y y y         

                                                     1 2801 7 2y y    

                                                     1 228 14 5y y    

Converting the LP in standard form we have,  

                                          
 

 
 

                 Subject to      1 22 1y y   

                             1 2801 7 2y y    

                             1 228 14 5y y    

                                    1 2, 0y y   

Now we get the following table: 

Table 5.1  

 

C  

JC  1 1 0  0  0   

b  

Basis 
1y  2y  1s  2s  3s  

0  
1s  1 2 1 0  0  1 

0  
2s  801* 7 0  1 0  2 

0  
3s  28 14 0  0  1 5 

J J Jc E c   
1  1  0  0  0  0 0.5  
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Table 5.2 

 

C  

JC  1 1 0  0  0   

b  Basis 
1y  2y  1s  2s  3s  

0  
1s  0 1.99 1 0.0012  0  0.9975 

1 
1y  1 0.0087* 0  0.0012  0  0.0025 

0  
3s  0 13.7553 0  0.0350  1 4.9301 

J J Jc E c   
0 0.99  0  0  0  0 0.5  

 

Table 5.3 

 

C  

JC  1 1 0  0  0   

b  
Basis 

1y  2y  1s  2s  3s  

0  
1s  227.86  0 1 0.29  0  0.43 

1 
2y  114.43  1 0  0.14  0  0.29 

0  
3s  1574  0 0  2  1 1 

J J Jc E c   
113.43 0  0  0.14  0  0.29 0.5  

 

So we have 1 0y   , 2 0.29y   

Now   1
1

1 1

0 400
0

1 1 4 0

y
x

d y

 
  

  

 
           2

2

2 2

0.29 400
276.19

1 1 4 0.29

y
x

d y

 
  

  
 

Putting this value in the original objective function, we have  

                      Max 1 2

1 2

3 2 200
( )

4 2 400

x x
Z

x x

 


   

                       

3 0 2 276.19 200
 ( ) 0.7899

4 0 2 276.19 400
Max Z

   
 

     

We solve the above problem by computer program. 

Output:           Minimum of Objective Function =   0.789999 

                                                        X 1 =   0.000000  

                                                        X 2 =   276.190476 
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Example 5.2: (Negative value of  ) 

                  Maximize     
1 2

1 2

4 6 2

2 1

x x
Z

x x

 


 
 

                  Subject to     1 24 8x x   

                                       
1 2

1 2

2 4

, 0

x x

x x

 


 

Solution (Using Bitran & Novaes method):   

Here                        

Now         
  

 
       

               
 

 
  

 

 
   

 

                  Maximize    
 

 
   

 

 
   

                  Subject to     1 24 8x x   

                                       
1 2

1 2

2 4

, 0

x x

x x

 


 

Converting the LP in standard form we have,  

                              Maximize        
 

 
   

 

 
   

                  Subject to     1 2 14 8x x s    

                                       1 2 22 4x x s  

 
                                       1 2 1 2, , , 0x x s s 

 

Now we get the following table: 

Table 5.4  

 

C  

JC  0.8  0.4  0  0   

b  

Basis 
1x  2x  

1s  2s  

0  
1s  1 4 1 0  8 

0  
2s  1 2 0  1 4 

J J Jc E c   
0.8  0.4  0  0   
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Table 5.5 

 

C  

JC  0.8  0.4  0  0   

b  

Basis 
1x  2x  

1s  2s  

0  
1s  0 2 1 1  4 

0.8  
1x  1 2 0  1 4 

J J Jc E c   
0.8  2 0  0.8   

So we have 1 4x   , 2 0x   

Putting this value in the original objective function, we have 

                Maximize     
4 4 6 0 2 20

4 2 0 1 3
Z

   
 

  
 

Again we have another new linear objective function  L  as follows: 

               Minimize        1

2

20
[ 4,6 1,2 ]

3

x
L

x

 
    

 
 

                                      
1 2

8 22

3 3
x x     

                  Subject to     1 2 14 8x x s    

                                       1 2 22 4x x s  

 
                                       1 2 1 2, , , 0x x s s 

 

Now we get the following table:             Table 5.6  

 

C  

JC  2.67  7.33  0  0   

b  

Basis 
1x  2x  

1s  2s  

0  
1s  1 4 1 0  8 

0  
2s  1 2 0  1 4 

J J Jc E c   
2.67  7.33  0  0   

Here all 
J

c is positive in the above table. So we cannot find solution by this method.  
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Solution (Using proposed method): 

                  Maximize     
1 2

1 2

4 6 2

2 1

x x
Z

x x

 


 
 

                  Subject to     1 24 8x x   

                                       
1 2

1 2

2 4

, 0

x x

x x

 


 

 

                  Maximize     
1 2

1 2

4 6 2

2 1

x x
Z

x x

 


 
 

                  Maximize   
* 1 2

1 2

(4 1) (6 2) (2 1)1

1 (4 1) (6 2) (2 1)

x xZ
Z

Z x x

    
 

     
 

                                                    1 2

1 2

5 8 1

3 4 3

x x

x x

 


 
 

                   Subject to     1 24 8x x   

                                         
1 2

1 2

2 4

, 0

x x

x x

 


 

Here we have,                    

                                          

                 

                  

Where 11 12 1,  and A A b  is related to the first constraint and 21 22 2,  and A A b  is related to the 

second constraint. Now we get, 

' 1 1
1

5 3 3 1
     =

3

    4

c d
c

 






  



 

' 2 2
2

8 3 4 1
     =

3

    6.67

c d
c

 






  



 

'

1
  

3

  0.333











 

 

So, we have the new objective function 

            Maximize   ' '

1 1 2 2 'g y c y c y      

11 11 1 1A

     1 3 8 3

     27

A b d  

   



 

12 12 1 2A

     4 3 8 4

     44

A b d  

   


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                                      1 24 6.67 0.333y y    

For the constraint, 

            Now we get  1 227 44 8y y    

                             1 215 22 4y y    

Converting the LP in standard form we have,  

                Maximize  1 2( ) 4 6.67 0.333g y y y    

                 Subject to 1 227 44 8y y   

                              1 215 22 4y y    

                                  1 2 1 2 3, , , , 0y y s s s   

Now we get the following table: 

Table 5.7 

 

C  
JC  4  6.67  0  0         

        b  

 
Basis 

1y  2y  1s  2s  

0  
1s  27  44* 1 0  8  

0  
2s  15  22  0  1 4  

J J Jc E c   
4  6.67  0  0  0 0.33  

 

Table 5.8 

 

C  
JC  4  6.67  0  0         

        b  

 
Basis 

1y  2y  1s  2s  

6.67  
2x  0.6136  1 0.0227  0  0.1818  

0  
2s  1.5  0  0.5  1 0  

J J Jc E c   
0.093  0  0.1516  0  1.2127 0.33  

 

So we have 1 0y   , 2 0.1818y   

Now   1
1

1 1

0 3
0

1 1 3 0

y
x

d y

 
  

  

 

21 21 2 1A

     15

A b d  


 22 22 2 2A

     22

A b d  


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           2
2

2 2

0.1818 3
1.999

1 1 4 0.1818

y
x

d y

 
  

  
 

Putting this value in the original objective function, we have  

             Max  1 2

1 2

4 6 2

2 1

x x
Z

x x

 


   

                       

4 0 6 1.999 2
( ) 4.6676

1 0 2 1.999 1
Max Z

   
 

     

We solve the above problem by computer program. 

Output:  

          Minimum of Objective Function =   4.667556 

                                                        X 1 =   0.000000 

                                                        X 2 =   1.999266 

It is remarked that, this problem cannot be solved by any other method for the presence of 

negative value of  β. 

 

Example 5.3:  (Negative values of   ) 

 

       We consider the numerical example 

                     Maximize   1 2

1 2

5 2 7

4 2 4

x x
Z

x x

 


 
 

                      Subject to  1 24 3 12x x   

                                          

1 2

1 2

1 2

4 8

4 6

    , 0

x x

x x

x x

 

 



 

Solution (Using Bitran & Novaes method): 

                 Here                        

                 Now         
 

 
       

                               
 

 
  

 

 
   

                  Maximize    
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Converting the LP in standard form we have,  

                              Maximize        
 

 
   

 

 
   

                      Subject to  1 2 14 3 12x x s    

                                          
1 2 2

1 2 3

4 8

4 6

x x s

x x s

  

  
 

                                             1 2 1 2, , , 0x x s s 
 

Now we get the following table: 

Table 5.9  

 

C  

JC  0.02  0.40  0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
1s  4  3  1 0  0  12  

0  
2s  4  1 0  1 0  8  

0  
3s  4  1  0  0  1 6  

J J Jc E c   
0.20  0.40  0  0  0   

 

Table 5.10  

 

C  

JC  0.02  0.40  0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
1s  0  4  1 0  1  6  

0  
2s  0  2  0  1 1  2  

0.20  
1x  1 0.25  0  0  0.25  1.50  

J J Jc E c   
0  0.35  0  0  0.05   

 

So we have 
1

3
1.50 or 

2
x   , 2 0x   

Putting this value in the original objective function, we have 

                Maximize     

3
5 2 0 7

12
3 4

4 2 0 4
2

Z

   

 

   
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Again we have another new linear objective function  L  as follows: 

               Minimize        1

2

1
[ 5,2 4,2 ]

4

x
L

x

 
    

 
 

                                      
1 2

3
4

2
x x    

                      Subject to  1 2 14 3 12x x s    

                                          
1 2 2

1 2 3

4 8

4 6

x x s

x x s

  

  
 

                                             1 2 1 2, , , 0x x s s 
 

Now we get the following table: 

Table 5.11  

 

C  

JC  4  3

2
 

0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
1s  4  3  1 0  0  12  

0  
2s  4  1 0  1 0  8  

0  
3s  4  1  0  0  1 6  

J J Jc E c   
4  1.50  0  0  0   

 

After 4 iterations we get the final result which is given below: 

 

Table 5.12 

 

C  

JC  0.02  0.40  0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
3s  0  0  1 2  1 2  

0  
2x  0  1 0.5  0.5  0  2  

0  
1x  1 0  0.13  0.38  0  1.5  

J J Jc E c   
0  0  0.25  0.75  0   
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So we have 
1

3
1.50 or 

2
x   , 2 2x 

 

Putting this value in the original objective function, we have 

                Maximize     

3
5 2 2 7

32
3 4

4 2 2 4
2

Z

   

 

   

 

Again we have another new linear objective function  L  as follows: 

               Minimize        1

2

3
[ 5,2 4,2 ]

4

x
L''

x

 
   

 
 

                                      
1 2

1
2

2
x x    

                      Subject to  1 2 14 3 12x x s    

                                          
1 2 2

1 2 3

4 8

4 6

x x s

x x s

  

  
 

                                             1 2 1 2, , , 0x x s s 
 

 

Now we get the following table: 

Table 5.13  

 

C  

JC  2  1

2
 

0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
1s  4  3  1 0  0  12  

0  
2s  4  1 0  1 0  8  

0  
3s  4  1  0  0  1 6  

J J Jc E c   
2  0.50  0  0  0   
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After 3 iterations we get the final result which is given below: 

Table 5.14  

 

C  

JC  2  1

2
 

0  0  0   

b  

Basis 
1x  2x  

1s  2s  3s  

0  
1s  0  0  1 2  1 2  

0  
2x  0  1 0.5  0.5  0  1 

0  
1x  1 0  0.13  0.13  0  1.75  

J J Jc E c   
0  0  0  0.50  0   

 

So we have 
1

7
1.75 or 

4
x   , 2 2x 

 

We see that 

Step 1.    
 

 
           

Step 2.    
 

 
           

Step 1.    
 

 
           

From all of these three cases we observe that the values of    and     are not equal. For 

this reason we cannot get an optimal solution by using Bitran & Novaes method.  

 

Solution (Using proposed method): 

                      Maximize   1 2

1 2

5 2 7

4 2 4

x x
Z

x x

 


 
 

                                                 1 2

1 2

5 2 7
   

4 2 4

x x

x x

  

  

 

                      Subject to  1 24 3 12x x   

                                          

1 2

1 2

1 2

4 8

4 6

    , 0

x x

x x

x x

 

 



 

Here we have,                      
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Where 11 12 1,  and A A b  is related to the first constraint, 21 22 2,  and A A b  is related to the 

second constraint and 31 32 2,  and A A b  is related to the third constraint. Now we get, 

' 1 1
1

5 4 ( 4) 7
     =

7

8
    

7

c d
c

 






    



 

' 2 2
2

2 4 ( 2) 7
     =

7

6
    

7

c d
c

 






    



 

'

7
  

4









 

 

So, we have the new objective function 

            Maximize   ' '

1 1 2 2 'g y c y c y      

                                      
1 2

8 6 7

7 7 4
y y    

For the constraint, 

Now we get  11 1 12 2 1 1 2 1 2A A   or 32 12 12 or 8 3 3y y b y y y y           

                                                     1 24 3 2y y    

                                                     1 24 8 3y y    

 

Converting the LP in standard form we have,  

                Maximize  
1 2

8 6 7
g( )

7 7 4
y y y    

                 Subject to 1 2 18 3 3y y s     

                                    1 2 24 3 2y y s     

                                    1 2 3 4 8 3y y s     

                                    1 2 1 2 3, , , , 0y y s s s   

11 11 1 1A

     4 4 12 ( 4)

     32

A b d  

    

 

 

12 12 1 2A

     3 4 12 ( 2)

     12

A b d  

    

 

 

21 21 2 1A

     4 4 8 ( 4)

     16

A b d  

    

   

 

22A 12    31A 8    32A 16    
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Now we get the following table: 

Table 5.15  

 

C  

JC  8

7
 

6

7
 

0  0  0   

b  

Basis 
1y  2y  1s  2s  3s  

0  
1s  8  3  1 0  0  3  

0  
2s  4  3  0  1 0  2  

0  
3s  4  8  0  0  1 3  

J J Jc E c   
8

7
  

6

7
  

0  0  0   

 

The problem is unbounded. 

 

5.6 Comparison 

In this section, we have compared the experimental results of our proposed method with 

the available methods in the literature.  

 i.    In our method we can solve any type of linear fractional programming problems. 

ii.   By using some technique we can easily transform the LFP problem into a LP problem. 

iii.   Its computational steps are so easy that there is no difficulty like other methods. 

iv.   In this method we need to solve one LP but other method one need to solve more than  

       one LP, which save our valuable time. 

v.    The final result converges quickly in this method. 

vi.   In this method there is one restriction that is   0   

vii.  Some cases of denominator and numerator say, 0 dx  and  0cx  Xx ,  

        where Bitran-Novaes fails and for the negative value of   all other method are also  

        fails but our method can solve the problem very easily. 

viii. Using computer program we get the optimal solution of the LFP problem very  

        quickly. 

From the above discussion it may conclude that proposed method is comparatively better 

than existing methods considered for solving FLP.   
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CHAPTER VI 

 

Discussion and Conclusion 

 

 

Operations Research (OR) is a science which deals with problem, formulation, solutions 

and finally appropriate decision making. The tools of operations research are not from any 

one discipline; rather Mathematics, Statistics, Economics, Engineering, Psychology, etc. 

have contributed to this newer discipline of knowledge. Today, it has become a 

professional discipline that deals with the application of scientific methods for decision-

making, and especially to the allocation of scare resources. 

 

Now a day Transportation problem with mixed constant and Linear fractional 

Programming Problems are very well-known in OR to solve real life problem. The More-

for-less (MFL) paradox in a TP occurs when it is possible to ship more „total goods‟ for 

less (or equal) „total cost‟ while shipping the same amount or more from each origin and 

to each destination, keeping all shipping costs non-negative. The occurrence of MFL in 

distribution problems is observed in nature. The mixed constraints TP have extensively 

been studied by many researchers in the past years. Here we try to introduce a modified 

VAM method for solving TPs with mixed constraints in MEL paradoxical situation. The 

optimal MFL solution procedure is illustrated with the help of numerical example. The 

experimental method is very simple, easy to understand and apply. The MFL situation 

exists in real life and it could present managers with an opportunity for shipping more 

units for less or the same cost. 

 

Assuming the positivity of denominator of objective function of linear fractional program 

(LFP), one can solve LFP problem applying the modified approach of Swarup‟s primal 

simplex type method and modified approach of Swarup. If the constraints set of the 

feasible region X is bounded and denominator of objective function of linear fractional 

program (LFP) is strictly positive for all x Є X, one can solve LFP problem by applying 

the method of Bitran-Novaes. Bitran-Novaes method is better than the modified approach 

of Swarup‟s primal simplex type method because (i) it does not require any modification 
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in the set of constraints, (ii) there is no need to make variable transformations, (iii) no 

additional constraints or variables are required and (iv) the conventional simplex algorithm 

can still be used.  

 

In this thesis, we have provided a new technique for solving the linear fractional 

programming problems. Some cases of denominator and numerator and the negative value 

of β, all other existing methods are fail to solve linear fractional problem but proposed 

method able to solve the problem vary efficiently. In the proposed technique, at first we 

transformed the LFP problems into a LP by some transformation technique and then solve 

it by using simplex method. For the validity of the proposed method, we have considered 

some instances along with negative value of  β. From the experimental study it is observed 

that the proposed approach able to solve the LFP including negative value of  β efficiently. 

We have also developed a computer program to implement the proposed method which is 

included in Appendix.  

 

Finally, we may conclude that the proposed method along the program code is able to 

solve all linear fractional programming methods for large-scale optimization problem.  To 

do this, one has to build the required mathematical programming model of the problem 

and required computer program. We further also expect that the proposed concept will be 

helpful for solving real-life problems involving linear fractional programming problem in 

agriculture, production planning, financial and corporate planning, health care and hospital 

planning etc. The proposed program is easy to apply in LFT and which is also effective as 

well as efficient.  
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APPENDIX 

 

Computer Technique (FORTRAN) 

we developed a computer program regarding proposed method for solving linear fractional 

problem in. In real life, the problem is so much large which is difficult to solve by hand 

calculation. But use this computer technique one can solve the problem very easily.   

 

 

!************************************************************************ 

!           ##########                PROGRAME FOR SOLVING LFP                  ##########              

!*******                                            A NEW TECNIQUE                                        ****** 

!************************************************************************ 

!*******                               LIST OF MAIN VARIABLES:                                    ******                                                                                      

!*******            C:       MAXIMIZE = 1,MINIMIZE = 2                                          ****** 

!*******            N:       NUMBER OF VARIABLES OF ECONOMIC FUNCTION  **** 

!*******                                   (TO MAXIMIZE OR MINIMIZE).                          ******                

!*******           M:       NUMBER OF CONSTRAINTS                                           ******  

!*******         M1:       NUMBER OF <= CONSTRAINTS                                      ****** 

!*******         M2:       NUMBER OF >= CONSTRAINTS                                      ******        

!*******         M3:       NUMBER OF  = CONSTRAINTS                                   ******                 

!*******         A,M,N,MP,NP,M1,M2,AND M3 ARE INPUT PARAMETERS      ****** 

!*******         ICASE,IZROV,AND IPOSV ARE OUTPUT PARAMETERS        ****** 

!**************************************************************** ******* 

   PARAMETER(MP=100,NP=100) 

   REAL X(MP,NP),Y(MP,NP),R,P(MP,NP),Q(MP,NP),UP,LO 

   INTEGER C,N,M,M1,M2,M3,IPOSV(MP),IZROV(NP) 

            PRINT *,' ' 

            PRINT *,'      ######### LINEAR FRACTIONAL PROGRAMING ######### 

            PRINT *,'       ************* A NEW TECNIQUE ************' 

            PRINT *,' ' 

            WRITE(*,10,ADVANCE='NO'); READ *,C 
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            IF(C.LE.0.OR.C.GE.3) PAUSE ' Bad input.' 

            WRITE(*,20,ADVANCE='NO'); READ *,N 

            WRITE(*,30,ADVANCE='NO'); READ *,M1 

            WRITE(*,40,ADVANCE='NO'); READ *,M2 

            WRITE(*,50,ADVANCE='NO'); READ *,M3 

            M=M1+M2+M3 

            X=0. 

            PRINT *,'Input Economic Function:' 

            DO i=2,N+1 

            WRITE(*,60,ADVANCE='NO') i-1; READ *,X(1,i) 

            END DO 

            WRITE(*,61,ADVANCE='NO'); READ *,X(1,1) 

            DO i=2,N+1 

            WRITE(*,60,ADVANCE='NO') i-1; READ *,Y(1,i) 

            END DO 

            WRITE(*,61,ADVANCE='NO'); READ *,Y(1,1) 

            UP=X(1,1) 

 LO=Y(1,1) 

            DO i=1,M 

            WRITE(*,70) i 

            DO j=2,N+1 

            WRITE(*,60,ADVANCE='NO') j-1; READ *,X(i+1,j) 

            END DO 

            WRITE(*,61,ADVANCE='NO'); READ *,X(i+1,1) 

            END DO 

   CALL LFP(X,Y,N,M,MP,NP) 

            DO i=1,M 

            DO j=2,N+1 

            X(i+1,j) = -X(i+1,j) 

            END DO 

            END DO 

            IF(C.EQ.2) then 
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            DO I=1,N+1 

            X(1,I)=-X(1,I) 

            END DO 

            END IF   

            PRINT *,' ' 

   CALL MAIN(X,M,N,MP,NP,M1,M2,M3,ICASE,IZROV,IPOSV) 

            PRINT *,' ' 

            IF(LO.LT.0.AND.UP.GE.0)THEN 

            X(1,1)=((X(1,1)+1.0)/(X(1,1)-1.0)) 

            END IF 

            IF(C.EQ.1)THEN 

            PRINT *,' Maximum of Objective Function= ',X(1,1) 

            ELSE IF(C.EQ.2)THEN 

            X(1,1)=-X(1,1) 

            PRINT *,' Minimum of Objective Function = ',X(1,1) 

            END IF 

            DO I=1,N 

            DO J=1,M 

            IF (IPOSV(J).eq.I) THEN 

 Y(J+1,1)=(Y(1,1)*X(J+1,1))/(1-(Y(1,i+1)*X(J+1,1))) 

            WRITE(*,110) I,Y(J+1,1) 

            GOTO 28 

            END IF 

            END DO 

            WRITE(*,110) I,0.0  

   28     END DO 

            PRINT *,' ' 

   10     FORMAT(' Maximize or Minimize? [MAX=1,MIN=2]..: ') 

   20     FORMAT(' Number of nonbasic variables: ') 

   30     FORMAT(' Number of <= inequalities..: ') 

   40     FORMAT(' Number of >= inequalities..: ') 
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   50     FORMAT(' Number of = equalities.....: ') 

   60     FORMAT(' Coefficient #',I2,': ') 

   61     FORMAT(' Constant term..: ') 

   70     FORMAT(' Input constraint #',I2,': ') 

 110     FORMAT('  X',I2,' = ',F12.6) 

            STOP 

            END 

   SUBROUTINE LFP(X,Y,N,M,MP,NP) 

   INTEGER M,N,UP 

   REAL X(MP,NP),Y(MP,NP),P(MP,NP)       

 IF(Y(1,1).GT.0) THEN 

 X(1,1)=X(1,1)/Y(1,1) 

 DO i=2,N+1 

 X(1,i)=X(1,i)-(Y(1,i)*X(1,1)) 

            END DO 

 ELSE IF(Y(1,1).LT.0.AND.X(1,1).GE.0)THEN 

 UP=X(1,1)+Y(1,1) 

 Y(1,1)=X(1,1)-Y(1,1) 

 X(1,1)=UP/Y(1,1) 

 DO I=2,N+1 

 P(1,I)=X(1,I)+Y(1,I) 

 Y(1,I)=X(1,I)-Y(1,I) 

 X(1,I)=P(1,I)-Y(1,I)*X(1,1) 

 END DO 

 ELSE IF(Y(1,1).LT.0.AND.X(1,1).LT.0)THEN 

 UP=-X(1,1) 

 Y(1,1)=-Y(1,1) 

 X(1,1)=UP/Y(1,1) 

 DO I=2,N+1 

 P(1,I)=-X(1,I) 

 Y(1,I)=-Y(1,I) 

 X(1,I)=P(1,I)-Y(1,I)*X(1,1) 
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 END DO 

 END IF 

            DO i=1,M 

            X(i+1,1)=(X(i+1,1)/Y(1,1)) 

            DO j=2,N+1 

 X(i+1,j)=X(i+1,j)+(X(i+1,1)*Y(1,j)) 

            END DO 

            END DO  

            RETURN  

            END 

   SUBROUTINE MAIN(X,M,N,MP,NP,M1,M2,M3,ICASE,IZROV,IPOSV)  

   INTEGER M,N,MP,NP,M1,M2,M3,ICASE,IPOSV(M),IZROV(N),MMAX,NMAX  

   REAL X(MP,NP),EPS  

   PARAMETER (MMAX=100,NMAX=100,EPS=1.E-6) 

   INTEGER I,IP,IS,K,KH,KP,NL1,L1(NMAX),L2(MMAX),L3(MMAX)  

   REAL BMAX,Q1  

            IF(M.NE.M1+M2+M3) PAUSE ' Bad input constraint counts in simplex.'  

            NL1=N  

            DO K=1,N  

            L1(K)=K     

            IZROV(K)=K  

            END DO  

            NL2=M 

            DO I=1,M  

            IF(X(I+1,1).LT.0.) PAUSE ' Bad input tableau in simplex, Constants bi must be  

            nonnegative.' 

            L2(I)=I 

            IPOSV(I)=N+I  

            END DO 

            DO I=1,M2 

            L3(I)=1 

            END DO 
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            IR=0 

            IF(M2+M3.EQ.0) GOTO 30  

   !********      The origin is a feasible starting solution. Go to phase two.            ******* 

            IR=1 

            DO K=1,N+1              

            Q1=0. 

            DO I=M1+1,M 

            Q1=Q1+X(I+1,K)  

            END DO  

            X(M+2,K)=-Q1  

            END DO  

   33     CALL SIMP1(X,MP,NP,M+1,L1,NL1,0,KP,BMAX)  

            IF(BMAX.LE.EPS.AND.X(M+2,1).LT.-EPS)THEN  

            ICASE=-1         

            RETURN              

            ELSE IF(BMAX.LE.EPS.AND.X(M+2,1).LE.EPS)THEN  

            M12=M1+M2+1 

            IF (M12.LE.M) THEN 

            DO IP=M12,M  

            IF(IPOSV(IP).EQ.IP+N)THEN  

            CALL SIMP1(X,MP,NP,IP,L1,NL1,1,KP,BMAX)  

            IF(BMAX.GT.EPS) GO TO 29   

            END IF                     

            END DO                      

            END IF 

            IR=0 

            M12=M12-1 

            IF (M1+1.GT.M12) GO TO 30  

            DO I=M1+1,M1+M2                

            IF(L3(I-M1).EQ.1)THEN  

            DO K=1,N+1  
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            X(I+1,K)=-X(I+1,K)  

            END DO  

            END IF  

            END DO  

            GO TO 30                         

            END IF  

   CALL SIMP2(X,M,N,MP,NP,L2,NL2,IP,KP,Q1)  

            IF(IP.EQ.0)THEN                                                  

            ICASE=-1  

            RETURN  

            END IF 

   29     CALL SIMP3(X,MP,NP,M+1,N,IP,KP)  

            IF(IPOSV(IP).GE.N+M1+M2+1)THEN    

            DO K=1,NL1  

            IF(L1(K).EQ.KP) GOTO 31  

            END DO  

   31     NL1=NL1-1  

            DO IS=K,NL1  

            L1(IS)=L1(IS+1)  

            END DO  

            ELSE 

            IF(IPOSV(IP).LT.N+M1+1) GO TO 32 

            KH=IPOSV(IP)-M1-N  

            IF(L3(KH).EQ.0) GO TO 32      

            L3(KH)=0                                                      

            END IF    

            X(M+2,KP+1)=X(M+2,KP+1)+1. 

            DO I=1,M+2  

            X(I,KP+1)=-X(I,KP+1)  

            END DO  

   32     IS=IZROV(KP)                 
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            IZROV(KP)=IPOSV(IP)  

            IPOSV(IP)=IS   

            IF (IR.NE.0) GO TO 33            

   30     CALL SIMP1(X,MP,NP,0,L1,NL1,0,KP,BMAX)  

            IF(BMAX.LE.EPS)THEN            

            ICASE=0  

            RETURN  

            END IF    

   CALL SIMP2(X,M,N,MP,NP,L2,NL2,IP,KP,Q1)   

            IF(IP.EQ.0)THEN                 

            ICASE=1  

            RETURN  

            END IF  

   CALL SIMP3(X,MP,NP,M,N,IP,KP)   

            GO TO 32                         

            END                             

   SUBROUTINE SIMP1(X,MP,NP,MM,LL,NLL,IABF,KP,BMAX)  

   INTEGER MP,NP,MM,LL(NP),NLL,IABF,KP,K  

   REAL BMAX,X(MP,NP),TEST 

            KP=LL(1)  

            BMAX=X(MM+1,KP+1) 

            IF(NLL.LT.2) RETURN  

            DO K=2,NLL  

            IF(IABF.EQ.0)THEN  

            TEST=X(MM+1,LL(K)+1)-BMAX  

            ELSE 

            TEST=ABS(X(MM+1,LL(K)+1))-ABS(BMAX)  

            END IF  

            IF(TEST.GT.0.)THEN  

            BMAX=X(MM+1,LL(K)+1)  
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            KP=LL(K)  

            END IF  

            END DO  

            RETURN 

            END  

   SUBROUTINE SIMP2(X,M,N,MP,NP,L2,NL2,IP,KP,Q1)  

   INTEGER M,N,MP,NP,L2(MP),IP,KP,I,K  

   REAL X(MP,NP),EPS,Q0,Q,Q1,QP  

   PARAMETER (EPS=1.E-6)  

            IP=0  

            IF(NL2.LT.1) RETURN 

            DO I=1,NL2  

            IF(X(I+1,KP+1).LT.-EPS) GO TO 56  

            END DO  

            RETURN   

   56     Q1=-X(L2(I)+1,1)/X(L2(I)+1,KP+1)  

            IP=L2(I) 

            IF(I+1.GT.NL2) RETURN  

            DO I=I+1,NL2  

            II=L2(I) 

            IF(X(II+1,KP+1).LT.-EPS)THEN  

            Q=-X(II+1,1)/X(II+1,KP+1)  

            IF(Q.LT.Q1)THEN  

            IP=II  

            Q1=Q  

            ELSE IF (Q.EQ.Q1) THEN  

            DO K=1,N  

            QP=-X(IP+1,K+1)/X(IP+1,KP+1)  

            Q0=-X(II+1,K+1)/X(II+1,KP+1)  

            IF(Q0.NE.QP)GOTO 57  

            END DO  

   57     IF(Q0.LT.QP) IP=II  
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            END IF  

            END IF  

            END DO  

            RETURN  

            END  

   SUBROUTINE SIMP3(X,MP,NP,I1,K1,IP,KP)  

   INTEGER MP,NP,I1,K1,IP,KP,II,KK 

   REAL X(mp,np),PIV  

            PIV=1./X(IP+1,KP+1) 

            IF (I1.GE.0) THEN  

            DO II=1,I1+1  

            IF(II-1.NE.IP)THEN  

            X(II,KP+1)=X(II,KP+1)*PIV  

            DO KK=1,K1+1  

            IF(KK-1.NE.KP)THEN  

            X(II,KK)=X(II,KK)-X(IP+1,KK)*X(II,KP+1)  

            END IF  

            END DO  

            END IF  

            END DO  

            END IF 

            DO KK=1,K1+1  

            IF(KK-1.NE.KP) X(IP+1,KK)=-X(IP+1,KK)*PIV  

            END DO  

            X(IP+1,KP+1)=PIV  

            RETURN  

            END 
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